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Al~traet--This paper illustrates the diversity and esthetic beauty of the spatial patterns produced by a 
class of heuristic procedures describable by a one-parameter algorithm. While the patterns may provide 
insight into the structures of biopolymcrs and other macromolecules, the main focus of this work is the 
demostration of how two-dimensional order may arise from one-dimensional processes. 

We begin this article with a discussion of an organized one-dimensional arrangement of 
points. These points are so chosen to correspond to a one-dimensional lattice and so we consider 
only those points that are an integer distance from the origin. It may appear more correct to 
consider all the points, both a positive and negative distance, than just the positive even if 
one immediately acknowledges the computational expediency of our simplifying assumption. 
However counterintuitive be the assumption,t the set of all points corresponding to 0 and the 
positive integers has the same number of points as the seemingly larger set of the points that 
correspond to all of  the integers. Nothing is thus conceptually lost by our decision to just consider 
points that are a positive integer from the origin. Our selection of points is equivalent to the 
elementary mathematical function f ( x ) =  0 for all non-integer x and f ( x ) =  1 for all positive 
integers x. Our one-dimensional lattice is also equivalent to an infinite string which has been 
knotted every cm. 

This paper presents a simple---perhaps far too simple---picture for the emergence of higher- 
dimensional order from "merely" the one-dimensional order of a one parameter paradigm. In 
particular, we consider the transformation of a one- to a two-dimensional lattice, and with this so 
consider evolution from one- to two-dimensional order. We opt to take our (half-) infinite 
one-dimensional lattice and "proceed on a [square] spiral starting at the origin" [2]. Proceeding in 
a rather related way to that of this just cited Ref. [2], one may identify each lattice point of 
the half-infinite line with a lattice point in the plane.:~ That is, the " l -point"  x = 0 corresponds 
to the "2-point" (x, y) = (O, O), x = l  to (x,y)=(O, 1), x = 2  to (x, y) = ( -1 ,1) ,  x = 3  to 
(x, y ) =  ( - 1 ,  0), x = 4 to (x, y ) =  ( - 1 ,  - 1 ) ,  etc. We now define an n-spiral by "decorating" the 
original line every n th lattice point. This decoration can be described in various ways. For example, 
we may say that our earlier funct ionf(x)  is non-zero only when x is an integer multiple on n. We 
may opt to tie a bow instead of "merely" a knot every n cm. 

The one-dimensional lattice is seemingly analogous to an arbitrarily long polymer composed of 
one type of monomeric subunit. However, many such "real" polymers twist and turn upon 
themsleves and thus have secondary and tertiary structure that are ordered or organized in all three 
spatial dimensions. Simple examples include the ~t-helices that are formed by the "polypeptide that 
would be a protein" poly-aaaa [3]. Of course, the majority of the distinct chemical species called 
proteins are ever so more involved, and thereby interesting, because they contain more than one 
type of amino acid monomeric subunit and the arrangement of the subunits is manifestly 

tThis assertion, and many others that are even less intuitively reasonable, may be rigorously proven in terms of the analysis 
given by G. Cantor [I]. 

:~Strictly speaking, our spiral is left-handed while that in Ref. [2] is right-handed. As such, there is a symmetric relation 
between our spiral and that earlier given, and the spiral handedness may "merely" subconsciously reflect the fact that 
the coauthor responsible for programming the spiral (JMR) is left-handed and another author (JFL) has often 
considered himself to be "ambi-levorous", i.e. equally bad with both hands. The reader should also note that because 
of the nature of our computer code and printer, our square spirals look rectangular. S/he should also be assured that 
they are mathematically, if not pictorially, square and, again for computatorial reasons have 66 characters across and 
66 lines down. 
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aperiodic.t Indeed, it has been argued that one reason why catalytically active proteins, more 
commonly called enzymes, are as large as they are is to allow for the proper three-dimensional 
arrangement, flexibility, orientation and general organization of active sites. Two quotes from 
recent reviews are worth citing. From Rebek [5] we cite: 

"It  would be most desirable to have access to systems in which the distance between convergent functional 
groups could be specified in increments of say, even 0.5 A. It is unlikely that access to such structures 
will be possible without a tremendous synthetic investment, and we have already suggested [elsewhere, 
6] that enzyme structure may be a response to the problems involved with such fine-tuning of small 
molecules." 

Taking a somewhat different tack, Kell [7] suggested: "Enzymes [may be] so big in o r d e r . . ,  to act 
as channellers of  thermal energy to their active sites." 

Whether either analysis has validity or not, the design of enzymes constitutes a rather 
major "engineering feat" because there are some rather tight tolerances for atomic sizes, bond 
lengths and both bond and torsion angles and because proteins/enzymes are, by definition, all 
composed of the universal - - N H C H R C O - -  building block. However obvious it is to the 
biochemist, it should be nonetheless be noted that there are even greater structural restrictions on 
polypeptides than that just implied. This building block is directional, i.e. they are only joined 
"head-to-tair '  to form the larger "dimeric" units - - N H C H R C O N H C H R ' C O - -  and seemingly 
never do either of  the alternative "head-to-head" - - N H C H R C O C O C H R ' N H - -  or "tail-to-tail" 
dimers - - -COCHRNHNHCHR'CO--  appear. Furthermore, while except for R = H, all of the 
building blocks are chiral and so "should" appear equally often in both mirror-image forms. 
However, real proteins are composed of but one type of handed amino acids, and all of  their 
handedness is the same. Admittedly, we have omitted here any appended coenzymes, i.e. small, 
non-protein species that contain the catalytically active sites of many enzymes. The presence of 
coenzymes adds considerable diversity to both structure and activity. 

This is all rather complicated. Nonetheless, in a severely simplified form, the protein metaphor 
may be used if one prefers a polypeptide chain wherein every nth amino acid is a recurring special 
one that is somehow functionalized and the rest are featureless, say for n = 5 corresponding to, 
say a 1-aspartyltetraglycyl [i.e. {--NHCH(C'~2L'OOH)CO[NHCH2CO]4--} or asp-gly-gly-gly-gly] 
repeat unit. Of com-se, the analogy is somewhat belied in that our square spiral is imposed on the 
one-dimensional "species" while the real molecule that is such a copolymer of  aspartic acid and 
glycine would have its own and certainly different secondary structure. As such, our model is rather 
artificial and so the term "special" rather than "catalytically active" was chosen as to not to alienate 
any biochemist of confuse anyone else. 

With the above caveats, most of the remainder of this article is dedicated to pictures of the special 
sites generated by n-spirals. In all that follows a • in the center denotes the beginning of the spiral 
while # is used for all of the other special sites. The l-spiral is of course every lattice point. The 
2-spiral looks like a chessboard or two-dimensional NaCI lattice. This, too, is rather obvious-- 
given a point described by the integer coordinates (x, y). It is a special site when the sum of the 
coordinates x + y is divisible by 2. This occurs only when both x and y are even or both odd. As 
such, "alternate" points in the two-dimensional lattice are decorated, and hence the observed 
pattern. What occurs for the higher n-spirals? Figures 1-14 reproduce our computer generated 
n-spirals: n was chosen somewhat artificially as the prime numbers 1, 2, 3, 5 and 7 and their lower 
powers. Numerous two-dimensional patterns seem to arise, although "explanations" for 
them analogous to that of the chessboard still evade us. Nonetheless, they demonstrate how 
one-dimensional order can be transformed into two-dimensional order by a simple geometric 
wrapping and mapping, and so give inferences as to how the one-dimensional primary structures 
of proteins are transformed through chemical interactions into their much more complicated, 
though also much more beautiful, three-dimensional secondary and tertiary structures and with 
this, into the highly efficient and selective species that are usually called enzymes. 

tAperiodicity is important in biomolecules. Another example of  what we are referring to are poly~tw.~otides wherein helical 
structures arise from chains of just one type of base instead of all four bases normally found i n D N A  orthe even greater 
number of bases normally found in RNA. Indeed quoting Schrtdinger: "We believe a gene----or perhaps the Whole 
chromosome fibre---to be an aperiodic solid." [4] 
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Fig. 2. Performing an interval of 2 spacing; finish printing 2 spiral. 
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Fig. 3. Performing an interval of 3 spacing; finish printing 3 spiral. 
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Fig. 4. Performing an interval of 4 spacing; finish printing 4 spiral. 
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Fig. 5. Performing an interval of 5 spacing; finish printing 5 spiral. 
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Fig. 6. Performing an interval of 7 spacing; finish printing 7 spiral. 
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Fig. 7. Performing an interval of 8 spacing; finish printing 8 spiral. 
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Fig. 8. Performing an interval of 9 spacing; finish printing 9 spiral. 
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Fig. 9. Performing an interval of 16 spacing; finish printing 16 spiral. 
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Fig. 10. Performing an interval of 25 spacing; finish printing 25 spiral. 
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Fig. 11. Performing an interval of 27 spacing; finish printing 27 spiral. 
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Fig. 12. Performing an interval of 32 spacing; finish printing 32 spiral. 
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Fig. 13. Performing an interval of 49 spacing; finish printing 49 spiral. 
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Fig. 14. Performing an interval of 64 spacing; finish printing 64 spiral. 
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