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Background: Recent studies have proposed various sources for the origin of
cooperativity in simplified protein folding models. Important contributions to
cooperativity that have been discussed include backbone hydrogen bonding,
sidechain packing and hydrophobic interactions. Related work has also
focused on which interactions are responsible for making the free energy of
the native structure a pronounced global minimum in the free energy
landscape. In addition, two-flavor bead models have been found to exhibit
poor folding cooperativity and often lack unique native structures. We
propose a simple multibody description of hydration with expectations that it
might modify the free energy surface in such a way as to increase the
cooperativity of folding and improve the performance of two-flavor models.

Results: We study the thermodynamics and kinetics of folding for designed
36-mer sequences on a cubic lattice using both our solvation model and the
corresponding model without solvation terms. Degeneracies of the native
states are studied by enumerating the maximally compact states. The
histogram Monte Carlo method is used to obtain folding temperatures,
densities of states and heat capacity curves. Folding kinetics are examined
by accumulating mean first-passage times versus temperature. Sequences in
the proposed solvation model are found to have more unique ground states,
fold faster and fold with more cooperativity than sequences in the
nonsolvation model.

Conclusions: We find that the addition of a multibody description of
solvation can improve the poor performance of two-flavor lattice models and
provide an additional source for more cooperative folding. Our results suggest
that a better description of solvation will be important for future theoretical
protein folding studies.

Introduction
What are the forces that guide a polypeptide chain to fold
both quickly and correctly to its native state? In the past
decade, theoretical [1–3] and experimental studies [3–6]
have made important progress towards piecing together
this complex story. It is now appreciated that the resolu-
tion of Levinthal’s well-known paradox lies in the exis-
tence of biases in the free energy landscape [2,7,8] guiding
the unfolded chain to the native state. These biases are
often described as creating a funnel [9,10] in the energy
landscape. The theoretical backing for this picture has
been developed from extensive studies and is now well
understood from the standpoint of simplified lattice and
off-lattice models. We are now at a position where we can
change the lattice model description in a simple and desir-
ably realistic manner and investigate the effects of such a
perturbation on the resulting thermodynamics and kinet-
ics. In this paper, we investigate the effect of adding fea-
tures of hydration forces to a simple lattice model of
protein folding.

Nearly all lattice and many off-lattice studies designed to
investigate protein folding have concentrated on
residue–residue interactions on the protein chain and do
not include explicit residue–water and water–water inter-
actions. A full study of protein folding with explicit
solvent and realistic atomistic potentials will probably
remain infeasible for years to come. Some notable excep-
tions do exist [11–13], primarily focusing on unfolding
studies; however, the multiple studies desired for good
statistics and eliciting general folding principles are still
only manageable with simplified models [14]. Solvation
forces are not completely left out in simplified models;
their effects are partially accounted for in the
residue–residue interactions.

We chose lattice models for our first study of adding
more realistic solvation forces to simplified protein
folding models because they have a long history [15] and
have now been well characterized. The energy terms in
lattice models are typically specified only for residues in
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nearest-neighbor contact on a cubic lattice. The energy
of the chain is given by the expression:

(1)

where the double sum is over the N residues of the chain,
Bij is the contact energy between residues i and j, and ∆ij is
1 if residues i and j are nearest neighbors and not contigu-
ous on the chain and 0 otherwise. The contact energy
terms are taken from statistical studies of the distribution
of residue–residue contacts in real proteins [16–18], are
drawn randomly from a statistical distribution [19], or are
motivated from physical pictures [20]. It has been argued
that statistical potentials derived from protein crystal
structures in the PDB suffer from the fact that they are
neither potentials of mean force [21] nor the correct
potentials necessary to recover the desired native states
from which they were drawn [22]. A further criticism of
the popular Miyazawa–Jernigan (MJ) contact potentials
[16] used in many lattice model studies of protein folding
[23–28] is that contacts made between hydrophilic
residues are predicted to be as much as twice as favorable
as contacts between hydrophobic residues. This predic-
tion is counter to experimental, simulation and theoretical
studies [29]. The result is that sequences designed with
the MJ parameters favor a core of hydrophilic residues
[25], in sharp contrast to the hydrophobic core known to
be a key element of protein structure [30]. Recently
derived contact potentials [18] that account better for the
effects of chain connectivity on the distribution of
residue–residue contacts seem to correct this aberrant pre-
diction; however, the use of pairwise contact potentials
neglects two prominent features of hydration forces: their
many-body nature and their potentially long-range effects. 

Recent simulations have made it increasingly apparent that
hydrophobic forces are strongly nonpairwise additive
[31–34]. The free energy of forming a cluster of hydropho-
bic solutes can differ by over 50% from the predicted free
energy based on the assumption of pairwise additivity [31].
The multibody nature of free energy potentials has been
repeatedly emphasized [35,36], but most studies to date
have employed strictly pair potentials. This is somewhat
justified in that we hardly know the exact nature of the pair-
wise interaction between residues on the protein chain, let
alone their multibody interactions. One aim of this present
study is to examine the effect of adding a simple multibody
potential on the previous conclusions drawn from studies of
lattice models with pairwise-additive energies. The simple
model we propose below also incorporates some of the long-
range nature of hydration forces. The long-range forces we
investigate are intimately tied to the multibody nature of
our description; this is similar to the long-range solvent
effects found in simulations [34,37] arising from solvent-
mediated solute–solute interactions [38,39].

A further aspect of hydration forces that has been noted
several times [3,40], but not addressed in the context of
lattice models, is their temperature dependence [41]. The
contact potentials used in lattice models are free energies,
and as such they will depend on temperature. Molecular
dynamics simulations have indicated that the contact
minimum in the hydrophobic potential of mean force
deepens with increasing temperature [42]. This same
study has shown that the free energy of the solvent-sepa-
rated minimum is relatively temperature independent.
These results indicate that incorporating temperature
dependence into the potential parameters of a lattice
model might involve not only a temperature-dependent
well-depth but also a temperature-dependent length scale
of interaction. Because of this added and only partly
understood complexity, we do not address this aspect here
and instead leave the issue of incorporating the tempera-
ture dependence of hydration forces for future studies.

There have been several previous attempts to add various
features of solvation to lattice models of protein folding.
Perhaps the approach most similar to our present study is the
recent lattice model study by Hao and Scheraga [43] where
solvent-accessible surface area terms were added to the free
energy of the chain. Their energy function has the form:

(2)

where the new term on the right represents a free energy
that is dependent on the solvent-accessible surface area of
each monomer. The solvation state si counts the number
of monomers neighboring monomer i, si

0 is the optimal
number of neighbors for monomer i and ui > 0 biases each
monomer towards its optimum solvation state. In their
study, the preferred solvation states were selected to rep-
resent a variety of hydrophilic and hydrophobic residues,
and the unknown parameters ui and Bij were optimized to
produce a good foldable model. They found that the
inclusion of the solvation terms produced a model that
folded more quickly to the native state with less chance of
being stuck in energetically low-lying misfolded states
compared to the same model with ui = 0.

Other solvation-motivated lattice model studies have
studied the effect of making contacts more repulsive
[27,40,44]. They have found that more repulsive terms in
the energy function force the protein to fold in a more all-
or-none transition, collapsing and folding to the native
state in a concerted manner. Misfolded compact states
were also found to be destabilized, in agreement with the
conclusions of Hao and Scheraga [43]. Onuchic et al. [45]
have added a solvent-accessible surface area term to only
the core monomer of the native structure of the chain in
an attempt to model the presence of denaturant. They
found that by increasingly favoring desolvation of the core
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monomer, the barrier to folding to the native state was
progressively increased. 

A further motivation of our current study was to attempt to
‘rescue’ the status of two-flavor lattice models. Two-flavor
models are those in which residues are allowed to be only
one of two types, traditionally hydrophobic (H) or polar
(P). From a computational and theoretical point of view,
they are some of the simplest models that display impor-
tant features of real proteins — unique ground states and
folding to these ground states, overcoming a Levinthalian
search. Whereas the early HP model proposed by Lau and
Dill [20] has been criticized for its lack of nondegenerate
ground states and an energy gap [23,46,47], other two-
flavor models do seem to possess unique ground states
and foldable sequences [44,48]; however, two-flavor
models have been routinely criticized for not possessing
the proper energy gap or Tf /Tg ratio predicted for real pro-
teins [1,49]. It was hoped in our current study that by
making the interaction between two flavors of monomers
more complex, we might regain some of the desirable fea-
tures present in multiflavor models such as more nonde-
generate ground states and a larger energy gap [23].

Results and discussion
Our proposed description of solvation in a lattice model
and our methods for simulation and sequence selection
are detailed in the Materials and methods section. We
found eight foldable sequences for study with the solva-
tion model; their sequence compositions are listed in
Table 1. Some of the folding properties of these
sequences and properties of their native structures are
given in Table 2. The folding temperature listed in this
table is the thermodynamic folding temperature Tf

SO,
defined as the temperature where the relative population
of the native state is 50% [44,48]. The relative population
of the native state, Pn(T), is defined as:

(3)

where Ω(E) is the density of states for energy E. Ω(E) was
calculated with the histogram Monte Carlo method
[44,50]. The accuracy of the calculated Ω(E) was con-
firmed by calculating E versus T and Cv versus T curves
and comparing these to the values found by simple averag-
ing from Monte Carlo simulations at various temperatures.

Also listed in Table 2 is the relative contact order (RCO)
for each native state structure — a measure of how many
local versus nonlocal interactions are present for a given
structure [51]. Such considerations have been proposed to
correlate with the folding kinetics of simplified models
[26,52] and real proteins [51]. In this work, we found that
the RCO has utility as a simple topological descriptor for
aiding structure selection (see the Materials and methods). 

Each of these eight sequences was also studied with the
nonsolvation model. Sequences 20, 26, 30 and 35 were
found to have degenerate ground states without solvation
and consequently could not be used for folding studies.
Table 2 shows that the folding temperature is consistently
higher for the sequences under the solvation model than
with the nonsolvation model. To validate studying the
same sequence in both models, we verified that the four
sequences studied with and without solvation were opti-
mally designed sequences in both models. This confirms
that the same sequences would have been arrived at had
we followed the six selection steps as in the Materials and
methods section but instead used the nonsolvation model
in the design and enumeration steps. Our two models are
energetically similar enough to allow the same sequence
to fold to the same native structure in both models.

Degeneracy
It was initially hoped that the introduction of the solvation
model would lift degeneracy and produce more unique
ground states than the corresponding two-flavor nonsolva-
tion model. The observation above that of the eight 
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Table 1

Foldable sequences in the solvation model.

Sequence Hydrophobic/polar composition

1 HHPHPPHHHHPPPPHHPHPHHHHHPPPPHPHPPHPP

3 HPHPPHHPPHPHPHPPHHHPPHHHPPPPHPHPHPHH

6 HHPHHPPHPPPHPPHPHHHHPPPPHHPPHPHHHHPP

20 PPHPHHPPHHPPPHPPPHPHHPPHHHHPHPHPHHPH

26 PPHPHPPHPHHPHPPHPHPPHHHPHPPPHHHHPPHH

29 HHHPPHHPHHHHPHHPPHPHHPHPPHPPPHHPPPPP

30 HPHPHHPPHHPPHHHHPHPHPPPPHPHHPHPPPHHP

35 HHHPHPPPPHHPHPHHPPPHPHPHHHHHHPPHPPPP

Table 2

Properties of foldable sequences studied with the solvation
model.

Solvation Nonsolvation

Sequence Emin Tf
SO Emin Tf

SO RCO (%)

1 –35.17 0.46 –36 0.42 30.1
3 –34.50 0.39 –36 0.30 31.1
6 –36.00 0.50 –34 0.39 27.6
20 –36.50 0.45 –36 na 26.3
26 –35.92 0.43 –36 na 28.9
29 –35.83 0.34 –36 0.31 28.3
30 –36.00 0.36 –36 na 29.0
35 –35.17 0.39 –36 na 32.1

Sequence numbers correspond to the sequences in Table 1. Emin is
the native state energy, Tf

SO is the thermodynamic folding temperature
and RCO is the relative contact order for each structure [51].



foldable sequences only four had nondegenerate native
states in the nonsolvation model indicates that this lifting
of degeneracy was partially achieved. 

This conclusion rests on sequences that passed all six
selection steps (see the Materials and methods). To show
its validity for more sequences, we took the structures that
did not produce foldable sequences in the solvation model
and followed the first four selection steps in the nonsolva-
tion model to study the degeneracy of the resulting native
states. Every sequence/structure examined in this way had
a degenerate ground state in the nonsolvation model. Four
of these structures produced sequences with nondegener-
ate ground states in the solvation model (sequences that
failed selection step five). We see again that a solvation
component has partly lifted the degeneracy problem that
plagues two-flavor models [46,47].

This observation is not surprising when we recast our
model as a multiflavor model. Table 3 shows how the
contact energies given by Equations 5, 6, 10 and 11 can be
reformulated in a multiflavor fashion. It is known that mul-
tiflavor models have more sequences with nondegenerate
ground states [1,47]. The difference between our solvation
model and a true multiflavor model is that the flavors of
each monomer are environment dependent and are able to
change over the course of the simulation. In effect, the
protein is given some freedom to redesign itself as it folds.

Kinetics
The folding kinetics were explored for each sequence by
varying temperature and collecting statistics on mean first-
passage times for folding to a collapsed state (≥ 36 con-
tacts), folding to a compact state (40 contacts) and folding
to the native state. Following previous kinetics studies
[44,48,53], if in a particular run a sequence was found not
to fold within the maximum simulation time of 109 steps,
we averaged the maximum time into the mean. As such,
the reported times are all lower bounds to the true mean
first-passage times; the associated standard deviations

should give a sense of how much this averaging has
affected the reported times. Table 4 shows the tempera-
ture dependence of the mean first-passage times for
folding for the eight sequences. The fastest folding times
and temperature of fastest folding are shown in Table 5.
Although the thermodynamic folding temperatures listed
in Table 2 vary by up to 40%, the temperature of fastest
folding appears more sequence independent; in the lan-
guage of past studies, it appears to be a self-averaging
property [54]. Each sequence folds faster under the solva-
tion model, although the extent of this varies from a factor
of 5.3 for sequence 3 to near equality for sequence 6. On
the basis of the four sequences studied in both models, it
appears that the solvation model has modified the topol-
ogy of the energy surface in such a way as to better guide
the search for the native state.

Tf /Tg

Of particular interest for comparing minimalist protein
folding models with experiment is the ratio of the folding
temperature to the glass transition temperature, Tf /Tg [49].
This ratio gives a simple characterization of the steepness
of the protein folding funnel for theoretical and real 
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Table 3

Representation of the solvation model as a multiflavor model. 

H0 H1 H2 H3 P0 P1 P2

H0 –1 –1 –1 –1 0 0.25 0.5
H1 –1 –1 –1 –1 0.167 0.417 0.667
H2 –1 –1 –1 –1 0.333 0.583 0.833
H3 –1 –1 –1 –1 0.5 0.75 1.0
P0 0 0.167 0.333 0.5 1 0.5 0
P1 0.25 0.417 0.583 0.75 0.5 0 –0.5
P2 0.5 0.667 0.833 1.0 0 –0.5 –1

The number after the residue type is the solvation state si (Equation 9).
Flavors H4, H5, P3, P4 and P5 are not shown because by Equation 8
they are equivalent to flavors with lower solvation states. H0 and P0 do
not actually occur in simulation because energies are present only
between residues in contact and the presence of a single contact
would necessarily raise the solvation state above zero.

Table 4

Mean first-passage times for folding versus temperature for the foldable sequences in the solvation model. 

Temperature

Sequence 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.90 1.1

1 9.7(3) 8.3(5) 7.0(7) 5.6(5) 7.1(5) 7.2(7) 9.6(3) 9.6(3) 10.0(0)
3 8.8(7) 5.8(7) 2.5(6) 1.3(2) 3.0(5) 4.9(7) 9.5(3) 9.6(5) 10.0(0)
6 6.8(7) 3.7(6) 1.3(2) 1.0(1) 1.1(1) 2.2(3) 7.0(6) 10.0(0) 10.0(0)
20 8.9(5) 6.2(6) 3.1(4) 1.8(3) 1.5(1) 1.8(3) 5.0(7) 9.2(4) 10.0(0)
26 7.6(7) 2.2(5) 0.9(2) 0.6(1) 0.7(1) 1.5(3) 6.5(7) 9.7(4) 10.0(0)
29 8.5(7) 5.1(7) 3.0(5) 1.4(2) 1.2(1) 1.3(2) 4.4(7) 9.0(6) 10.0(0)
30 9.7(4) 9.3(5) 5.0(7) 3.7(5) 1.8(3) 3.9(7) 8.4(5) 9.6(4) 10.0(0)
35 9.1(6) 7.7(7) 5.1(7) 1.9(3) 2.3(4) 4.1(7) 8.0(7) 9.5(6) 10.0(0)

Times are in 108 Monte Carlo moves. The uncertainty in the last digit is given in parentheses. The temperature is in units of E/kB.



proteins. It has been found that Tf /Tg is about 1.3 for two-
flavor models whereas the experimental ratio is expected
to be approximately 1.6 from comparison to predictions of
the random energy model [10,49]. Lattice models with
more flavors have been found to possess a Tf /Tg ratio closer
to that predicted for real proteins [49,55].

There are several possible definitions of the folding and
glass transition temperatures for use in calculating this
ratio. For the folding temperature, we used the thermody-
namic folding temperature given above (Tf

SO) and the
folding temperature where the free energy of the native
state is equal to the free energy minimum of the unfolded
states [43,56,57]. This second definition of a thermody-
namic folding temperature, denoted as Tf

HS, is similar to
the previously given definition, but it produces a different
temperature. It can either be found from calculating the
free energy:

F(E)=E–TS(E) (4)

using the histogram method and finding the temperature
that equates the free energies of the native state and the
minimum free energy of the unfolded states, or from a
tangent construction using the density of states [43]. The
form of F(E) for sequences in the solvation and nonsolva-
tion model is shown in the next section. For the glass tran-
sition temperature we used a kinetic definition proposed
by Socci and Onuchic [48]. The kinetic Tg is defined as the
temperature below the folding temperature at which the
folding time is half way between the maximum simulation
time, τmax, and the fastest folding time for that sequence
(given in Table 5).

Table 6 shows the result of this calculation for sequences
in the solvation and nonsolvation models. Depending on
the definition of folding temperature used, we see that the
folding temperature is either below or above the glass
transition temperature for our model. Good folding
sequences should have folding temperatures above the

glass temperature [48]. Seven of our eight sequences do
not meet this requirement with the above definition of a
kinetic glass temperature and Tf

SO for the folding tempera-
ture, but all pass with the second definition of folding
temperature. In contrast, the four sequences in the non-
solvation model are bad folders using either definition. We
expect that the poor values of Tf

SO/Tg arise from the
unfolding and folding interactions chosen for this study
(Equations 10 and 11). These matrices are not optimized,
and we would anticipate optimized interactions to
produce better ratios. In all cases, the Tf /Tg ratio is higher
for sequences under the solvation model; this indicates
that the addition of solvation terms has shaped a better
free energy surface for folding. 

Since the Tf /Tg ratios are noticeably dependent on the defi-
nition of a folding temperature, we should make a few
remarks about the various definitions of Tf. The concept
of a folding transition is borrowed from the theory of phase
transitions in bulk systems, and as such is not a precise
description for a finite-sized system such as our 36-mer
polymer chain; thus, several definitions have been put
forward for use. Perhaps the best definition of Tf would be
the one that is most similar to the definition used in
experimental thermodynamic studies — defining Tf as the
temperature of the maximum in the heat capacity versus
temperature curve [58]. While this definition might be
problematic for some protein folding models that exhibit a
strong collapse transition as well as a folding transition
[59,60], we found this not to be a problem in this work.
We have evaluated this temperature for our sequences
and found that it defines a folding temperature that is
closer to Tf

HS than Tf
SO (JM Sorenson, T Head-Gordon,

unpublished data). Examining the values of Tf
HS/Tg,

Table 6 shows that sequences clearly have a more favor-
able ratio under the solvation model. This definition also
appears more useful for discriminating between the solva-
tion and nonsolvation models because it correlates better
with the folding speed of the sequence, as seen in
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Table 5

Fastest folding times for foldable sequences. 

Solvation Nonsolvation

Sequence τMFPT Tf
kin τMFPT Tf

kin

1 5.2(8) 0.63 6.2(8) 0.61
3 1.3(2) 0.60 6.9(6) 0.62
6 1.0(1) 0.60 1.0(3) 0.63
20 0.9(2) 0.66 na –
26 0.5(1) 0.61 na –
29 1.0(1) 0.67 1.2(2) 0.61
30 1.5(4) 0.63 na –
35 1.9(3) 0.60 na –

Times are measured in 108 Monte Carlo moves. The uncertainty in the
last digit is given in parentheses. Tf

kin is the kinetic folding temperature,
corresponding to the temperature of fastest folding.

Table 6

Tf /Tg for the foldable sequences.

Solvation Nonsolvation

Sequence Tg Tf
SO/Tg Tf

HS/Tg Tg Tf
SO/Tg Tf

HS/Tg

1 0.50 0.92 1.15 0.55 0.76 0.87
3 0.51 0.75 1.09 0.51 0.59 0.67
6 0.49 1.02 1.30 0.50 0.78 0.99
20 0.51 0.87 1.23 – – –
26 0.49 0.88 1.30 – – –
29 0.53 0.64 1.02 0.51 0.61 0.79
30 0.55 0.65 1.00 – – –
35 0.53 0.74 1.05 – – –

Tg is the kinetic glass temperature, Tf
SO is the thermodynamic folding

temperature found from Pn(Tf
SO) = 0.5, and Tf

HS is the folding temp-
erature found from the tangent construction with the density of states.



Table 5. We show in the next section that Tf
HS is closely

related to the degree of two-state kinetics present in the
folding transition, and the higher Tf

HS/Tg ratios for the sol-
vation model indicate a more cooperative folding process.

Part of determining Tf /Tg also depends on how we define
the glass temperature, Tg. (It has been recently suggested
that a true glass transition does not exist for lattice models
[61]; as such, the definition of a glass transition tempera-
ture becomes more complicated.) In previous work [48], it
has been shown that Tg has some dependence on τmax. In
our present work, we might expect a much greater depen-
dence on τmax since, unlike the previous studies, the fastest
folding times of many of our sequences are less than an
order of magnitude different from τmax. This is especially a
concern for calculating Tg for the slower folding sequences
in the nonsolvation model. Because of this dependence on
τmax, the reported kinetic Tg is an upper bound on the true
kinetic glass transition temperature [48]. The extent of
this was tested for sequence 6 by running simulations at
low temperatures for ten times τmax (1010 steps). The
resulting prediction for the kinetic Tg was shifted to lower
temperature by 9% and appears converged. This is similar
to the shift found by Socci and Onuchic [48], and would
increase our Tf /Tg ratios by about 10%.

Sequences 3 and 6
The folding kinetics in Table 5 show that sequences fold
faster in the model with solvation terms present. To inves-
tigate what might be underlying this difference between
models, we further examined sequences 3 and 6 in the sol-
vation and nonsolvation models. We chose these
sequences to be representative of the trends found in the

kinetics; sequence 3 showed the greatest speed-up in
folding in the solvation model and sequence 6 showed the
least effect. The temperature dependence for the mean
first-passage times for these two sequences in the solva-
tion and nonsolvation models are shown in Figures 1 and2.
At any given temperature, the collapse, compaction and
folding times are faster in the solvation model, with the
only exception being at lower temperatures for sequence 6
where the times are equal within the associated uncertain-
ties. The close coincidence of the times for compaction
and folding show that folding in both models is an all-or-
none transition, similar to that seen in other studies with
repulsive potentials [27,40,44]. The convergence of these
two times has been observed before in the context of 
27-mer folding in the nonsolvation model [44].

Figures 3 and 4 show the density of states computed with
the histogram Monte Carlo method for sequences 3 and 6
in the two models. We can readily see that the logarithm
of the density of states, S(E) = lnΩ(E), is more concave for
sequences under the solvation model. This has been
noted before as a criterion for two-state kinetics and fast
folding [56]. The fine structure of the density of states for
the solvation model is not noise; it is a consequence of the
distribution of fractional contact energies given in Table 3.
For example, integral and half-integral values of the
energy are more likely to occur than other fractions.

The corresponding Pn(T) versus T curves are shown in
Figure 5. This figure shows well the higher thermody-
namic folding temperatures found for sequences in the sol-
vation model. The folding curves are shifted to the right
by ≈0.1 in the solvation model. (Boltzmann’s constant kB
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Figure 1

Mean first-passage times for collapse (no symbols), compaction
(circles) and folding (squares) for sequence 3 in the solvation model
(solid lines) and nonsolvation model (dashed lines).
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Figure 2

Mean first-passage times for collapse (no symbols), compaction
(circles) and folding (squares) for sequence 6 in the solvation model
(solid lines) and nonsolvation model (dashed lines).
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was set to 1 in our simulations so the unit of temperature is
equivalent to the unit of energy.)

The origin of the observed differences in kinetics
becomes clearer when we examine the free energy of
folding versus energy, F(E), at the temperatures where
the free energy of the folded state equals that of the
minimum free energy of the unfolded states. Figure 6
shows this comparison for sequence 3 in the solvation and
nonsolvation models. The first set of curves corresponds
to T = 0.57, where the free energy of the folded state is
equal to the minimum free energy of the unfolded states
in the solvation model. The second set of curves are for
T = 0.345, which is the equivalent temperature in the non-
solvation model. Figure 7 is the corresponding figure for
sequence 6. The scale for the free energies is a relative
scale; for comparison, the curves shown here were offset to
make F(–5) = 0.

The free energy curves are dramatically different from
one another in the solvation and nonsolvation models. In
particular, the curves in the solvation model look similar to
curves in previous studies that found good two-state
kinetics [43,56,57]. The corresponding curves for the non-
solvation model barely exhibit two minima, a prerequisite
for two-state kinetics. This is equivalent to the observa-
tion above that S(E) is not very concave in the nonsolva-
tion model [57]. These plots give a graphical illustration of
the Tf /Tg ratios summarized in Table 6. The extremely low
value of Tf

HS/Tg for sequence 3 in the nonsolvation model
helps explain why its kinetics are so slow. We see here

that this arises from a small value of Tf
HS because of the

lack of a well-defined cooperative transition. Sequence 6
in the nonsolvation model shows some evidence for two-
state kinetics and consequently has a more favorable
Tf

HS/Tg ratio in Table 6.

A close examination of the free energy curve in Figure 6
for T = 0.57 and sequence 3 in the solvation model also
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Figure 3

Logarithm of the density of states for sequence 3 in the solvation
model (solid line) versus the nonsolvation model (circles). Values have
been offset by one for the solvation model and ten for the nonsolvation
model for better clarity. The tangent lines are drawn to illustrate the
concavity of S(E); the slopes of the lines are the inverse folding
temperature (1/Tf

HS).
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Figure 4

Logarithm of the density of states for sequence 6 in the solvation
model (solid line) versus the nonsolvation model (circles). See the
legend to Figure 3 for details.
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Figure 5

Relative population of the native state versus temperature for
sequences 3 and 6 in the solvation and nonsolvation models.
Sequence 3, solvation model (solid line); sequence 3, nonsolvation
model (dotted line); sequence 6, solvation model (dashed line);
sequence 6, nonsolvation model (dotted-dashed line).
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offers a possible explanation why the folding temperature
(Tf

HS = 0.57) predicted from this plot is so high whereas
the folding temperature predicted from Pn(T) = 0.5 is rel-
atively low (Tf

SO = 0.39). We see the existence of an inter-
mediate at E = –32.5 with free energy lower than both
the folded and unfolded state at this temperature. It is
likely that the presence of this energetically favorable
intermediate slows down the search for the ground state
and is responsible for the low thermodynamic folding
temperature. At lower temperatures, the intermediate is
destabilized relative to the ground state as seen in
Figure 6. We would expect that destabilizing this inter-
mediate with sequence design might make sequence 3 a
faster folding sequence and increase its thermodynamic
folding temperature.

A final example of the sharper two-state kinetics in the
solvation model can be seen in the heat capacity curves
shown in Figure 8 for sequence 6. From the figure, we can
see that the heat capacity curve is much sharper and more
peaked for the solvation model, characteristic of a first-
order-like transition. The heat capacity in both models
also exhibits a shoulder at higher temperatures indicating
a weak pre-folding collapse transition. It is curious that the
folding of sequence 6 in the solvation model is more coop-
erative, yet the sequence folds at comparable speeds in
both models. It would appear that the rougher free energy
curve in the solvation model, seen in Figure 7, works
against this sequence, possessing many stable traps in the
region of the transition ensemble. Similar to sequence 3,
sequence design could be used to destabilize these obsta-
cles to faster folding.

These thermodynamic results combined with our kinetic
data indicate that the addition of solvation terms to our
model has changed the underlying free energy landscape.
The differences in the free energy surfaces for the folding
of sequence 6 are illustrated in Figure 9. In the solvation
model at this temperature, the native state is favorable
enough to create a marked depression at the center of the
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Figure 6

Free energy versus energy for sequence 3 in the solvation model and
nonsolvation model. T = 0.57, solvation model (solid line); T = 0.57,
nonsolvation model (dashed line); T = 0.345, solvation model (dotted
line); T = 0.345, nonsolvation model (dotted-dashed line).
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Figure 7

Free energy versus energy for sequence 6 in the solvation model and
nonsolvation model. T = 0.636, solvation model (solid line); T = 0.636,
nonsolvation model (dashed line); T = 0.487, solvation model (dotted
line); T = 0.487, nonsolvation model (dotted-dashed line).
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Figure 8

Heat capacity (Cv) versus temperature for sequence 6 in the solvation
(solid line) and nonsolvation models (dashed line). The curves were
generated with the histogram Monte Carlo method; the points are
taken from Monte Carlo simulations at those temperatures.
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funnel. The slow steps of folding will be in searching
through the plateau of partially collapsed states just above
the native state in free energy. Such an entropic bottle-
neck in the energy landscape has been described by Dill
and Chan as a champagne glass landscape [8]. We see that
in the nonsolvation model, the free energy minimum
favors a multitude of partially collapsed states, and the
native state is decidedly unfavorable. Similar to the free
energy curves in Figures 7 and 8, the energy landscape is
much smoother in the nonsolvation model. The addition
of multibody terms roughens the free energy surface in
the solvation model allowing for a higher likelihood of
traps that hamper fast folding, but also making possible
discrete-state kinetics and a more pronounced global
minimum, important for good folding.

The combined evidence points to the conclusion that
folding is a more cooperative, two-state process in our sol-
vation model. Higher cooperativity and faster folding have
been noted before in the context of models that incorporate
multibody structure biases [56,57,62]. Here, we see better
two-state folding in a model that incorporates a different
form of multibody interaction, one arising from the many-
body nature of solvation. Our model gives a simple demon-
stration of the increased cooperativity associated with
multibody interactions in the context of lattice models.

Conclusions
It is widely appreciated that water plays an important role
in governing the forces that control protein structure and
stability [63,64]. The strong hydration forces that are
responsible for hydrophobic attraction and stabilization of
a protein’s native core are expected to also play an impor-
tant role in governing how the protein folds quickly to the
proper folded state. To address the issue of how solvation
forces might influence the kinetics of protein folding, we
have examined the addition of simple features of solvation
forces to a minimalist model of protein folding. The 36-
mer lattice model examined is far from the complex reality
of genuine proteins in aqueous solvent, but it possesses
some of the essential features of the protein folding
problem such as a unique ground state and a large set of
possible conformations (≈1024) [65]. More importantly, we

studied a lattice model that is closely related to many pre-
vious models with well-characterized kinetics and thermo-
dynamics from over 20 years of studies [1,3,15].

To address the issue of solvation in lattice models we pro-
posed a simple model that incorporates many-body and
long-ranged forces while retaining a simple form. In partic-
ular, we were able to examine the effect of the breakdown
of the pairwise additivity assumption often made when
using potentials of mean force. As noted above, recent sim-
ulation results have emphasized the acknowledgement of
this departure from traditional approximations [31–34].

We have found that the adoption of a model that incorpo-
rates some of these features of solvation forces leads to
faster folding, unique native states, and a more coopera-
tive, two-state folding transition. Of particular interest is
the fact that these properties are not typically found in tra-
ditional two-flavor models. We find it encouraging that
such a simple model can recover some of these important
properties observed in the folding of small lattice proteins.
We have observed that the inclusion of multibody hydra-
tion forces leads to a more cooperative folding transition,
similar to the effect of multibody internal interactions on
other protein folding models [57,62]. This lends support
to the view that hydration forces are an important source
of cooperativity in the protein folding transition [66].

Our conclusion that a simple lattice model of protein
folding can be improved with a description of solvation
forces motivates further research into the experimental
characterization of the solvation forces present between
residues on the protein chain [67–69]. Now that the addi-
tion of solvation-like terms has been shown to affect
lattice protein studies, it will be important to better under-
stand the nature of the solvation terms necessary in more
detailed theoretical studies of protein folding.

Materials and methods
The model
The use of lattice models for protein folding has now been described
numerous times in the literature [1,3]. For our studies, we modeled 36-
mers as self-avoiding walks on a cubic lattice with each residue repre-
sented by a single interaction site.
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Figure 9

Free energy versus entropy for sequence 6 in
the (a) solvation and (b) nonsolvation models
at T = 0.5. The depth of the funnel
corresponds to the free energy and the radial
coordinate is the entropy. T = 0.5 is below
Tf

HS for sequence 6 in the solvation model but
not in the non-solvation model.
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The energy of a particular protein configuration is given by an energy
function depending on the contacts between interaction sites, similar
to Equation 1. In proposing a new solvation model for lattice model
studies, we desired to find a form for the energy which, while remaining
relatively simple, captures several aspects of hydration: different free
energies of solvation for hydrophobic and polar residues, multibody
effects and long-range effects. Our proposed form is that of Equa-
tion 1, where the double sum is over the N residues of the chain and ∆ij
is the same contact function as defined above. Our approach differs
from previous work in the definition of the contact energy matrix:

(5)

where Bu
ij represents the contact energy matrix for the unfolded chain and

Bf
ij is the contact energy matrix for the folded chain. We let the energy of

contacts interpolate between a matrix of unfolded contact energies and a
matrix of folded contact energies, with 0≤ λij ≤ 1, the interpolation para-
meter, representing the degree to which a particular contact is solvated.

This form is motivated by the breakdown of the pairwise additivity
assumption noted above. Many recent simulations have investigated
the multibody nature of hydration forces [31,33,34,70]. The bulk of evi-
dence from these studies suggests that the nature of the pairwise
hydrophobic interaction changes strongly depending on the surround-
ing concentration of additional solutes. Other hydration forces such as
hydrophilic–hydrophilic interactions would be expected to also display
some multibody character. By making the contact energy of a pair of
residues dependent on the solvation state of the pair, we can incorpo-
rate these kind of effects into a lattice model.

We have many options for how to choose λij, the pair solvation state
parameter. In this paper we chose the following form: 

(6)

where 0 ≤ λij ≤ 1 is a parameter dependent on the solvation state of
residue i. An example of a related form, not investigated here, is:

λij = λi λj (7)

Some of the properties of the form in Equation 7 and the relative merits
of the first form versus the second are explored in the Supplementary
material (published with this paper on the internet). The individual
monomer solvation parameter λi is defined as:

(8)

where si is a measure of the solvent-accessible surface area of
monomer i:

(9)

and si
0 is a measure of the optimal solvation state for residue i. We

chose si
0 = 3 for hydrophobic residues and si

0 = 2 for polar residues,
representing the tendency for hydrophobic residues to bury themselves
in the protein interior, away from solvent. Our definition of si is similar to
that used by Hao and Scheraga [43]. It differs in that we do not count
residues adjacent on the chain in determining the solvation states of
monomers. Thus 0 ≤ si ≤ 4 for monomers 2 through N–1 and 0 ≤ si ≤ 5
for the two end monomers. 

Our current study is a two-flavor model; the type of each residue is
restricted to be either hydrophobic (H) or polar (P). For the unfolded
chain contact energy matrix we chose:

(10)

For the folded contact energy matrix we chose:

(11)

The form of the unfolded matrix is motivated by the observation that
hydrophobic surfaces are attracted to each other in water, and the
interaction between hydrophilic surfaces is more repulsive [29]. Our
own experimental work [67–69] is focused on probing the extent to
which these observations remain true on the molecular scale of
residue–residue interactions. We have recently found evidence from
neutron scattering studies that hydrophobic amino acids are indeed
positively correlated with each other in solution [69]. The folded matrix
in Equation 11 is similar to a form studied in previous theoretical
[71,72], design [73,74] and simulation [44,48] studies. Our matrix
differs from this previous work in that the average interaction energy is
more repulsive; most of the past studies with this form have added a
background attractive field [44,48,71,73].

The form of the matrix encourages compact ground states. We wanted
to encourage folding to maximally compact states because this allows
full enumeration [75] as a check that the ground state is indeed nonde-
generate and the minimum energy structure of the compact states.
Because of the repulsive interactions both in the unfolded matrix and
the folded matrix, all ground states in our model possess some degree
of frustration and we are not guaranteed that a maximally compact
state gives the lowest energy structure. However, in the comparative
folding studies reported above, all of the evaluated sequences fold to
compact structures, with no lower energy structure found in the course
of numerous long simulations (more than 100 simulations of 109 Monte
Carlo moves each for each sequence).

Simulations
Our Monte Carlo simulations used the standard move set of one- and
two-monomer moves employed in past studies [19,44,76]. The relative
probabilities of one-monomer versus two-monomer moves were taken
from Sali et al. [19]. We used the Metropolis energy criterion for
acceptance of a new move [77]. Moves that were rejected because
they caused chain overlap were still counted as steps for the purpose
of calculating elapsed ‘time’. This agrees with the definition used by
Socci and Onuchic [48] and Pande et al. [74] but differs from that
used by Shakhnovich and coworkers [19]. Folding studies were per-
formed by starting with an arbitrary random coil configuration from a
high temperature simulation, and allowing the chain to equilibrate for
20 × 106 moves. Chains were studied for an additional 109 moves.
Energies were binned every 20,000 moves for use with the Monte
Carlo histogram method [50] and mean first-passage times were calcu-
lated for collapse, compaction and folding to the native state [48].

As this is a comparative study, we also performed simulations using the
folding matrix alone for interactions; that is, Bij = Bf

ij in Equation 5. This
model is referred to as the nonsolvation model in the text. The nonsol-
vation study can be compared to a similar 27-mer study by Socci and
Onuchic [44], where part of their study looked at folding using the
same matrix (Eavg in their terminology).

Sequence selection
We were interested in comparing the thermodynamics and kinetics of
protein folding in our proposed solvation model with that in the nonsol-
vation model. For this purpose, we needed to find sequences that
folded in both our solvation model and the nonsolvation model.
Sequence selection was performed by the following set of steps: 

1. First we chose a compact 3 × 3 × 4 structure. We used several dif-
ferent approaches, described below, for finding appropriate structures.

2. Next, a sequence was designed within the solvation model that should
fold to this structure. Sequences were designed at low temperature
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using the constant composition design algorithm proposed by
Shakhnovich and Gutin [73]. We fixed the sequence composition at
50% H, 50% P.

3. If the energy of the best designed sequence was not sufficiently low,
we went back to step 1. This was done because early studies showed
that when frustration is high enough, poorly optimized sequences tend
not to fold to compact states but collapse instead to degenerate non-
compact states. We found that for many structures, the distribution of
contacts was such that a sufficiently low energy sequence could not
be designed (Sorenson JM, Head-Gordon T, unpublished data).

4. We next enumerated the 84,731,192 maximally compact structures
for a 36-mer [75] to find if the lowest energy for this sequence corre-
sponded to a nondegenerate compact structure. 

5. If so, folding studies were conducted to verify that the sequence
could fold to this compact state within a reasonable number of moves
(109) and the putative native state was the lowest energy state found in
the simulation.

6. Sequences that passed this last criterion were considered foldable
and their thermodynamics and kinetics were examined in the nonsolva-
tion model as well. 

Each step reduced the number of sequences available for study. Ini-
tially, 60 structures were looked at in step 1. Of these, we enumerated
compact conformations for 35 sequences in step 4. From this, twelve
sequences were evaluated in step 5 and finally eight sequences were
found to pass to step 6.

Trial structures for step 1 were chosen from several sources. The first
sequence was designed on a 36-mer structure used by Shakhnovich
and coworkers in many previous studies [24,25,27,78]. Other struc-
tures were generated randomly from enumerating the maximally
compact structures. Several structures came from step 4 when enu-
meration would show that a sequence had a lower energy structure
than the one it had been originally designed for.

Unbiased random selection of structures from the 84,731,192 possible
maximally compact structures can lead to many structures that are not
able to pass all six steps, and it is useful to identify simple topological
descriptors of structures that are more likely to produce foldable
sequences. To improve our random selection of maximally compact
structures, we first grouped the compact structures into subsets based
on their relative contact order (RCO). The relative contact order is a
measure of how many local versus nonlocal interactions are formed for
a given structure [51,79]. It is defined as the average sequence dis-
tance between contacting residues: 

(12)

where Nc is the total number of contacts, N is the total number of
residues and ∆ij is as defined above. Many kinetics studies have tried to
correlate this kind of order parameter with the folding time, although
there remains a debate whether local interactions or nonlocal interac-
tions are more important for determining fast folding [26,51,52]. We
found that structures with an RCO of around 27–30% led to designed
sequences that were more likely to pass all six steps, so many of the
randomly selected compact structures were drawn from this subset.
For comparison, we also randomly picked structures with an RCO
21–26% or an RCO of 30–40% but found that the resulting
sequences were less likely to pass step 4. From full enumeration, we
found that the lowest possible RCO for a maximally compact 36-mer is
21.11% and the highest possible RCO is 54.58%. The average RCO
is 33.95% with a standard deviation of 4.12%. Future studies might
also benefit from this grouping of structures into simple topological cat-
egories for the purposes of random structure selection.

Supplementary material
An analysis of the solvation model is available as Supplementary mater-
ial published with this paper on the internet.
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S1

Analysis of the solvation model
In this appendix, we make explicit the long-range and multibody nature
of the solvation model proposed in Equations 1, 5, 6, and 8. We start
with Equations 1 and 5 for the energy of the chain: 

(13)

where the factor of 1/2 is now in place to account for double counting.
The form of λij described in Equations 6 and 8 was used in our study,
but for the purposes of the following analytical treatment it is useful to
redefine λi as

(14)

that is, we no longer restrict λi and λij to be ≤ 1. For our studies, we
enforced this restriction to keep the λs as interpolative parameters.
This minor change for the purposes of the following development does
not affect the resulting conclusions about the range and multibody
nature of the model.

Equation 13 is first rewritten as:

(15)

where B′ij = Bf
ij − Bu

ij. Inserting the definitions of si in Equation 9 and λij
from Equation 6 we have:

(16)

This can be further simplified by introducing the definition:

(17)

∆2
ik is a similar operator to ∆ij but its effect is longer ranged in that it

connects sites that are next-nearest neighbors on the lattice. ∆2
ik is

nonzero if a path of two nonbonded interactions can be drawn
between residues i and k. The action of ∆2

ik is depicted in Figure S1.
Like ∆ij, ∆2

ik ranges from 0 to 1 (as long as sj
0 ≥ 2), although it can take

on fractional values because of the 1/sj
0 weight in the sum.

With this definition, we can perform the sum over i for the first term in
the second sum and sum over j for the second term in the second sum
to arrive at:

(18)

The first term on the right is of the same form as Equation 1, the pair-
wise contact energy used in traditional lattice models. The new term
connects sites that are further away, up to next-nearest neighbors. We
see that by making the strength of a residue–residue interaction depen-
dent on the relative solvent accessibility of the pair, we have incorpo-
rated a dependence of the energy on interactions that are further apart
than nearest neighbor. 

From the definition of ∆2
ij, Equation 17, we have:

(19)

Thus ∆2
ii is a measure of the solvent accessibility of site i, similar to the

definition of si (Equation 10), but differing in that it is weighted differ-
ently. With this identification, the final form of the energy becomes:

(20)

where now the first term is a Scheraga-like (see Equation 2) solvent
accessibility term, the second term is a nearest-neighbor term and the
third term links next-nearest neighbors. 

This completes the explicit demonstration of the longer ranged aspects
of the proposed solvation model. From this development, it is not diffi-
cult to show that the multiplicative definition of λij given in Equation 7
requires the definition of an analogous ∆3

ij operator, and the energy now
depends on interactions between residues that are next-next-nearest
neighbors as well as nearest-neighbor contacts.
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Figure S1

The action of the operator ∆2
ik. Sites that are connected by this

operator to the core site on the left are shown in white. Note that this
site is connected to itself (∆2

ii ≠ 0, see text).


