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Abstract--.A ne~ class of methods, for sol~mg stiff s)stems, which axolds the exactness of the Jacobian 
matrix is introduced. The order condmons for methods of order p <~ 5 are gtxen. The linear stabdtt) 
properties for such methods are anal)sed: numerical testings are also mcluded 

I. I N T R O D U C T I O N  

It is widely recognized that the linearly implicit Rosenbrock methods  (with its variat ions) and the 
diagonal ly implicit methods  are major  compet i tors  for the backward differentiation formulae for 
the numerical  solution of  the stiff systems: 

dy = f(v( x )). ~'(x,., ) = y,~. x >t x,,. ( i ) 
dx . . . .  

However ,  the t ~ o  classes of  methods  share a c o m m o n  difficult)' and that is the greater need for 
the exact Jacobian  matrix of  the system considered. For  example,  an) Rosenbrock  method requires 
the evaluat ion of  the " 'exact" Jacobian  matrix at exery integration step which makes  it less 
at t ract ive for integrating large systems with expensive function and Jacobian e~aluations. 

A new class of  linearly implicit methods,  in which the exact exaluation of  the Jacobian matrix 
is avoided,  in introduced. This class of  methods  is a modification to the well kno~n  R O W - m e t h o d s  
[I]. An s-s tage Modified R O W - m e t h o d  ( M R O W  for short) takes the form 

3'.+] = Y . + h ~ + l  ~f b k, .  (2a) 
, = l  

where 

and 

' ' ' a,,k,') ' ~  M k , = f ( y . + h . + , ~ 7  + h , + , A °  d,, k, .  i = l " . . . . . . .  s, (2b) 
t = l  , = ]  

M = I - h . ~ . l d A .  

A. = J .  + h.+ ~B. (2c) 

The coefficients b,. a . .  d,, and d are assumed to be real and h. ~ ~ is the step length. J .  is the Jacobian  
matrix evaluated at y. and B is an)  real square matrix that is to represent a per turbat ion  in J .  where 
it has been computed  numerically. This. however,  represents an assumpt ion  that the error  in the 
approx ima te  Jacobian  is O ( h )  as h ~ 0 :  and that in practice the matrix B is comparab le  in size to 
J .  for range of  step sizes that occur. In addition, we may view the matrix B as a representat ion 
of  the accumulat ive  error  that is to be expected when the same Jacobian matrix is used o~er several 
steps. 

R o s e n b r o c k - W a n n e r  (ROW)  methods  can be obtained by setting B = 0 in equat ion (2c) above.  
This class of  methods  has been thoroughly  examined by man) '  authors:  Kaps  and Rent rop  [2], have 
constructed a fourth order  method with local error  estimate,  and Kaps  and Wanner  [3], have 
considered the construct ion of  higher orders ROW-type  methods.  

Codes  which are based on an)' R O W - m e t h o d  emplo)  strategies such as keeping the Jacobian  
value fixed for some integrat ion steps. Further.  an approx imat ion  to the Jacobian matrix is often 
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used. These strategies, hox~ever, are incompatible  with the wa~ the methods  were originalb derived. 
In other ~ords ,  keeping the Jacobian fixed has an effect on both the order and the stability 
properties of  the method concerned.  

The class of  methods  proposed in this paper is an attempt to deal with this problem. In Section 
2 the order condit ions  o f  M R O W - m e t h o d s  (of  order p ~< 5l are given. The linear stability properties 
of  M R O W - m e t h o d s  are discussed in Section 3. A second order two-parameter  famib and a third 
order M R O W - m e t h o d s ,  each t~ith local error est imate are gixen in Section 4. Some  numerical 
results are also included. 

2. O R D E R  C O N D I T I O N S  

The order o f  the method described b~ formula (2) can be defined in the usual way as follows.  
Let h, +, = h and A.,, = y(x + h) - y(x ). ~ here y lx )  is the true solution o f  equation ( I ). Assume that 
)~ = y(.\ 1. Consider 

Using Taylor expansion o f  ~k,(l',) 

+(h) 
= _ 0 ' , " ( 0 )  

r = ; )  , 

Thus. an M R O W - m e t h o d  is of  order p ~hen  

0 ' , " ( 0 )  = O. 

0 ''+, ~'(0) ~ O. 

O , ( h i = A v - h  V h,k,. 

~ e  get ( 0 < 0  < I) 

I l i t , +  i 
- -  q S e  

+ t,,p + I I!) ' 
+ ' ( Oh 1. 

I b r / =  I ( I ) p .  

,As in the case of  R O W - m e t h o d .  it can be easily shown that the max imum order of  an s-stage 
M R O W - m e t h o d  i s s  + I. Table 1 contains the order condit ions  fc)r M R O W - m e t h o d s  forp  ~< 5 each 

T a b l e  I 

O r d e r  Elementar.~ dufferenual O r d e r  cc)ndntnon.,  

r 

I 

t 

Bt  

I l 

I t 

l r t  

l t l  

Bt  

Bt 

I I I 

t t l  

t l  I 

I l l  

t l  

t i t  

l t l  I 

r t l l  

t t B/ 

t BI t 

t B t  t 

B/  I I 

B/ t l 

B B t  

V h _  I 

v f. n - ~ d 

E.~.A..X = ! - . t + , / -  
v.~. ~1 - ' 

v,~ D = ,1 

v ~ , , h , K , ~ , = : ' ~  ~ , l + : d - d '  

• -~ ,~, u -  : , '  - i , I  

zh,~t,  x =', ',/ 

v h h  D =,1 ( , I  !) 

v t~ , l  Y - , h d -  ~) 

v / , , A . K , h , , 5 , _  ~ - ! , l  + d : -  2 d ' + d '  

• - ~ , h A ,  ~ t i = ' , - ~ , ~ + ! a  
¢_~, h, ~1.,, ,~, - ,,, - .~ d + ~,/: 

v_/, ~t,a h', x, = ,,, ' , , / +  i,t- 
Eb ~.1.., ~./:= ,', 
V b l a .  '~ ) : = , , - ' , d + ! , l :  

z~, ~ t : , , . ,  ~ = ,, ,  - ~a 
t la,  t t t t 

Zt, h h.. D, =,11-,/- + d !1 

E h K  , t . D ,  = , t 1 - ' .  + ; , t  d ' )  

E h  M , ~  , t  = - ' . d  

Eb D K,, ~,, = d[ ~ + d - ,/:l  

Y b . d  ~,1:= - i ¢ /  

Z b  d, D = ,t 

I I  = V ' a  . ~ =').'-- K . D ="~"- ,I 
--", =l  =l  
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with its associated e lementary differential. The derivation of  the table is lengthy and is therefore 
omitted.  

3. S T A B I L I T Y  

The applicat ion of  an s-stage M R O W - m e t h o d  of  order  p >/s to the scalar test equat ion 

v'=2,  2 ~ C  

yields 

. t ' ,  + ~ = / ~  (z: ,x ) 3 ' ° .  

with the stability function 

i = q ~  

where - = h2, ,~- = hao and L , ( - )  is the Laguerre polynomial  o f  order  s such that 

, / j  - i "~ .r' = ,_+ 
! = 0  , -  i 

In general .x is a complex number,  where 

and 

6 
x =  I + 7  

h6 
= 1 + - -  

O) 

= a ~  - -  , ~ .  

Therefore ,  we view ~t - 1 as the relative error in the exact Jacobian  which is introduced either by 
its numerical  approx imat ion  or by keeping its value fixed for some integration steps. 

Similar to the ROW-method ,  the stability propert ies of  the M R O W - m e t h o d s  can be related to 
the acceptability propert ies of  the rational function /~(z: :t). We define the ,-f-acceptability of  
/~(z; :~) as follows. 

Definition 

For  a given :~ e C, R( : :  z~) is said to be :~-acceptable iff 

I/~(z;.:x)I ~< 1, vz 6 c - .  • 

Consequent ly,  an M R O W - m e t h o d  is .-i-stable iff l~tz: .x)is . ,i-acceptable. The above  definition 
requires the boundedness  of  the numerical solutions {.v,} for a given per turbat ion  to the exact 
Jacobian.  

Similarly, an M R O W - m e t h o d  is said to be { - s tab le  iff it is ,.i-stable and i/~(z: ~ ) I - . 0  as z--* x.. 
The natural  question is therefore: how much is the error  in the Jacobian  matrix allowed to 

accumula te  so that  R(z:  .:~) is .4-acceptable? Generally,  the answer depends on the number  of  stages 
of  the part icular  method.  For  example,  the following results establish an upper  bound for the error  
in the Jacobian  matrix for the cases s = I. 2. 

Theorem 

(I)  A general I-stage M R O W - m e t h o d  is ,4-stable iff ½ ~< d < 7:. and ~(=,~  - I) is 
such that  Re(~,')>t 1 . 2 d -  I. 

(2) A general 2-stage M R O W - m e t h o d  is ,4-stable iff ~ <~ d < ~ and ~ is such that 
Re(~) >I 1 . 4 d -  I. 
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ProoL  (I) From equation (3) with s = I we get 

I + : ( I - d ,  x l  
/ ~ ( : ,  ~ ) - 

I - zd:~ 

= Q I z :  ~ l" 

Set ,;~ = u  +i t , ,  where, u , c ~ R .  To establish the ,-i-acceptability o f  /~ ( : : a ) .  and hence the 
.-i-stabilit3 for the method,  we construct the corresponding E-polynomial  [4], where for all v e R 

Eli., ';  :~ I = I/~li.v: I~ )1" -I0  i,: I~ )1" 

For .-i-acceptability, we require that 

which gives the stated bound. 

= v : ( 2 d u -  I). 

E((v::~)1>0, v v e R ,  

12) For _~ = 2, we follow similar argument  as in (I) to get 

E( iv: x ) = y ~[[4(th~ )~ - 5(~h~ )2 + 21 ¢ht I - ~ ] + I th' ):[4l~ht ) - 3]] + y :'[2(¢h' ) [2(&e ) - I ]]. 

We require 

E l i v :  ,x) >1 O, 'V e R ,  

i.e. 

2(&' ) [2{ th~ ) - I ] = 0, 

for ~hich (th,) = 0 .  Thus, E ( i y ; x ) > ~ O ,  v v e R  if and only if 

[4(du I' - 5(du )'- + 2~du } - ~] >1 O, 

~ hich implies 

I 

and hence the stated results. • 

N o l e s  

Similar results may be obtained for higher values o f  ~. The lack of  space does not permit us to 
do so. 

4. F O R M U L A E  

Using the order condit ion of  Table I we can construct M R O W - m e t h o d s  with several orders o f  
accuracy 4for p ~< 5). For  each method and estimator o f  the local truncation error is provided. The 
~ell known embedded technique will be adopted.  In order to reduce the computa t ional  cost 
invol~ed, an optimal number  of  stages for both the basic integration method and the local error 
estimator must be used. 

4.1. S e c o n d  order  . / o rmula  

A second order M R O W - m e t h o d  with a third order error estimate may be designed b~ solving 
seven order condit ions [cf. Table (I)]. However,  in order to keep the number  o f  function-ex aluations 
in the formulae optimal (i.e. two function-evaluations onl))  the following constraint  is applied 

M ,  = M~,  

i.e. 

a31 = a21 

and 

a:,: = 0. 
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The  fo l lowing  so lu t ions  give us a t ~ o - p a r a m e t e r  fami ly  o f  s econd  o r d e r  M R O W - m e t h o d  with 
bui l t - in  e r r o r  e s t ima te  

a.~ = i, b! -'1 = ; .  hl,"l = I - ; .  

3 - 6¢t - 4"; 
d,i - d~._ = fl. 

6~' 

6¢t" - 6d  + 1 
hi, ~1 = 0.25. bt3 *1 - bk ~1 = 0.75 - bl) I. 

fl(4 + 6d_. t ) 

d + hk'ld,_, + bI~lfl 
d~l = b I~ ~1 

where  )., fl and  d are  free p a r a m e t e r s  such tha t  ; :~ 0, fl 4: 0, hi:, '1 :~ 0 and  N., 4: 0. 
The  cho ice  o f  ),, fl and  d d e p e n d s  on several  factors :  S tab i l i ty ,  m i n i m i z a t i o n  o f  e r r o r  c o n s t a n t s  

and  c o m p u t a t i o n a l  ef for ts  o f  the fo rmulae .  The  resul ts  o f  the p re~ ious  sec t ion  showed  tha t  the va lue  
d = I - I , \  2 m a d e  the s econd  and  th i rd  o r d e r  l\-~rmulae. £ - s t a b l e  and  ,,~-stable. respect ive ly .  The  
p a r a m e t e r  ). on the o t h e r  hand  ~ a s  chosen  to min imize  the e r r o r  c o n s t a n t  in the bas ic  i n t eg ra t i on  
f o r m u l a .  The  local  t r u n c a t i o n  e r r o r  is gixen b3 

where  

and  

! . + ,  = h3G~,, + h ~G~,, + O I h  ~). 

G~, = . 4 J  ".1 ".f + .-I._f" f t" + .-I~ B f  

G4., = A # " B f  + A~ B f  ' !  + . 4 J  "' t f f  + .4 ~.l " t " t T  + A , f  '.t " t f  + . ' l~ l ' " . l :  

where  the coeff ic ients  .-I,. Vi = I. 2 . . . . .  9 are  func t ions  o f  the f o r m u l a ' s  p a r a m e t e r s .  
Since  the f o r m u l a ' s  e r r o r  e s t ima te  will ca l cu la t e  h3G~°,  then there is no need to c h o o s e  ), o r  fl 

such tha t  the coeff ic ients  B f  in G , ,  is cance l led .  A l so  the e r r o r  e s t ima te  w o r k s  well unde r  the 
a s s u m p t i o n  tha t  G4., is smal l  e n o u g h .  H o w e v e r .  this a s s u m p t i o n  is no longer  ~al id  in ou r  case.  As  we 
are  p l a n n i n g  to use an a p p r o x i m a t e  J a c o b i a n  and  to keep  its ~alue fixed for  as long  as ~ e  can.  the 
coeff ic ients  A~ and  .45 will be qu i te  large if the sys tem is highly st iff  and  hea~ ib  non l inea r .  Thus .  the 
free p a r a m e t e r  7 is chosen  to cancel  those  coeff ic ients  f rom G4.~. Hence .  the va lue  ~, = 3( I - d)  2. As  
for  fl it was chosen  to reduce  the c o m p u t a t i o n a l  effort  inxol~ed.  Thus  the ~alue o f f l  = I was chosen .  

4.2. Th i rd  order  f o r m u l a  

F o r  a th i rd  o r d e r  m e t h o d  with a four th  o r d e r  e r r o r  e s t ima te ,  16 o r d e r  c o n d i t i o n s  mus t  be 
sa t is f ied [see T a b l e  (I)].  The  fo l lowing  was a s sumed :  

a ~ , = h ,  ~,i = 1 . 2 . 3 .  

In this case  the f o r m u l a e  use on ly  three  funct ion-e~ a l u a t i o n s  per  eve r )  accep t ed  s tep o the rwi se  four  
f u n c t i o n - e v a l u a t i o n s  are  used. The  fo l lowing  is the ana ly t i c  so lu t ion  for  the f o r m u l a e ' s  coefficients:  

4¢t( I - 3¢t I - 2 4 d q  I - 3d ) l  I - 4¢t1 

a ,~  - I - 12¢t-" d ,~  = ~1 - 12¢t")-" 

( I  - 4 d ) ( I  - 1 2 d - ' ) "  

= 0 ' 5 - 3 2 d { I - 6 ¢ 1 + 1 2 d Z ) { I - 3 d ) "  
0 3 2 = 0 . 5  ¢/31 

I - 12d z): 
d31= - I . 5 d + 8 ( l _ 6 d +  12d-')" d~z= - I . 5 d - d ~ l .  

- ( I  - 12¢t"-) 2 8 (d  z -  d + ~) 

a ~ - ' = 2 4 d ( I - 2 d ) ( I - 3 d l ( I - 6 d ) "  a 4 ~ = ( I  - 2 d ) ( I - 6 ¢ t ) "  

a41 = ] - -  a42  - -  az3, 

2a4_,( I - 24d + 144¢t-" - 324d  ) + 216d"1 
d42 = 

I - 6 d  + 12¢t-" 
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211 - 24d + 96d: - 72d 3) 
d~ = , d~] = - Ida_, + d~, ), 

3(I - 2 d ) ( I  - 6 d )  

~;,='. t;,=0. L=',. ~;~=! 
Results sumilar to that given in Section 3 sho~ed  that the ~alue d = 0.435 866 5215 gi~es an . , i-stable 
l\-~urth o rder  method and an / ] -s table  thnrd order  method.  

5. N L i M E R I C A L  T E S T S  

The methods  derixed in the prexnot.s secuon t~ere implemented  in the codes M R O W 2 3  and 
M ROW34.  The codes were tested over  a wide range of  stiff s} stems. For  the lack o f  space, ~e  shall 
only present results ob ta ined  by M R O W 3 4  on t ~ o  sample  test problems.  Our  stepsize strategy Ifor 
M R O W 3 4 )  can be summar ized  as follows. Fo r  the user specified tolerance,  TOL 

la) Calcula te  R A T I O  = (TOL EST) ~ 
Ib) Hn~ = H,-,u * R A T I O  

(c. l l EST ~< 2. TOL then accept step and advance  x~ith H . . . .  Otherx~ise reject step 
and repeat  step ~ i th  Hn~,. 

(c.2) I f0 .2  • T O L  ~< EST <~ 2. *TOL then accept  step and advance  ~ i th  H,,., = H~j~. 
(dl kU-decompos i tnon  ~as  updated  ~henexer  a ne~ Ii ~as  used. The Jacobian  

matr ix ~as  app rox ima ted  b~ numerical  differences and upda ted  x~ hene~er there 
~as  a change in stepsize. 

INote  that EST = -.<'+, I., The two sample  examples  are 

Example I 

Examph' 2 

v. = 0.01 - [ I  + (.v, + 1000 ) ( y~  + I ) ] [ 0 . 01  + ) ,  + v.,], 

Y l  = 0.01 - [ I  + y i ] [ O . 0 1  + . v ,  + y_,], 

. v ~ 1 0 )  = y : ( 0 )  = 0, 

.i',(100) = -I) .99164207.  ~,( 100~ = 0.9833636. 

v, = I).I)4 - 0 . 0 4 ( y ,  + .v_,) + 10~y,y_, - 3 * lO-y~.  

. v :  = 3 * 10".v~,  

1' I[O) = )'2101 = 0, 

f , c  10) = 0. ] 6 2 3 3 9 1 0 6 3  * I0  ~ f : t  10) = 0 . 1 5 8 6 1 3 8 4 2 4 .  

The '~alues of  ~ were ob ta ined  using the N A G  l ibrary rout ine C02QBF [5], which is based on the 
G E A R  method ~ i th  T O L  = 10-~. The testing results are g ~ e n  in Tables  _.2 and 3 below. 

Table 2 Re,u lb  of  Problem I 

T O L  NSTEP N F C N  N,IAC NL l.~ l' 
,ft. 

l(i ' 22 i ~ ' h  12o54x 
I I  k)66 ~,,,1.~ ('151 

[u ' 1,) "¢, 15 15 u q'~5 "5,2 2h ~ 

Il l  224 "q*3 22 22 - I * ~ g l  I/~3 74", 
ut '-;x3 5h ~ l",u 

Table 3 Re,u l t ,  o f  Problem 2 

T O L  NSTE p N FCN NJ AC N L U Y ff., 

II~ ' 5 5 I/~ 5 ~000 ul6qJg~l 
I, 16c~615 315 

In) ' lip 8 ~1 n al Ol j l )( j l6 I'~" 

Iql 24 ] I x2 I I o 000  016  222 
u L5.~6 I xSI 
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6. R E L A T E D  WORK AND R E M A R K S  

The Steihaug and Wolfbrandt paper [I]. was the first to consider the problem of using inexact 
Jacobian matrix in ROW-methods. In Ref. [I] the.,,' have considered formula (2) without condition 
(2c) and constructed a second order method with built-in error estimate for an.~ square matrix A: 
higher order methods of this t~ pe are not possible. 

Day and Murth,~ [6], ha~e introduced t~o classes of Rosenbrock-type methods (called 
generalized Runge-Kut ta)  and deri~ed a second and a third order processes ~hich are internalb 
S-stable only when an accurate Jacobian matrix is used. Hosteler,  it was claimed that the processes 
remain stable ~hen an approximate Jacobian is used. 

The class of methods presented in this paper is an attempt to~ards o~ercoming the limitations 
in an~ linearly implicit Rosenbrock-t.x pe t\wmula for solving stiff systems. A class of M ROW-meth- 
ods was introduced ~ hich avoids the exactness of the Jacobian matrix. A second and a third order 
M ROW-methods ~ere derived. These methods remain consistent and highb stable when an inexact 
Jacobian matrix is used and or its ~alue kept unchanged for some integration steps. Initial test 
results showed that the new methods ha~e pefforn~ed quite ~ell. However. more tests are needed 
to inxestigate the perfornlance of MROW-methods  on large stiff systems. Strategy for the 
automatic update of the Jacobian matrix, ~hich is based on an upper bound of the error ~, (see 
Section 3), needs further investigation. 
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