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AVOIDING THE EXACTNESS OF THE JACOBIAN
MATRIX IN ROSENBROCK FORMULAE
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Computer Science Department. University of York. Heslington. York YOI 3DD. England
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Abstract—A new class of methods. for solving stitf systems. which avoids the exactness of the Jacobian
matrix 1s introduced. The order conditions for methods of order p < 3 are given. The linear stability
properties for such methods are analysed: numerical testings are also mcluded

I. INTRODUCTION

[t is widely recognized that the linearly implicit Rosenbrock methods (with its variations) and the
diagonalty implicit methods are major competitors for the backward differentiation formulae for
the numerical solution of the stiff systems:
j—: =f(y(x). ¥(X,)=¥n X 24X, (1)

However, the two classes of methods share a common difficulty and that is the greater need for
the exact Jacobian matrix of the system considered. For example. any Rosenbrock method requires
the evaluation of the “exact” Jacobian matrix at every integration step which makes it less
attractive for integrating large systems with expensive function and Jacobian evaluations.

A new class of linearly implicit methods. in which the exact evaluation of the Jacobian matrix
is avoided., in introduced. This class of methods is a modification to the well known ROW-methods
[1]. An s-stage Modified ROW-method (MROW for short) takes the form

yn+l=yn+hn*l Z btk" (2&)
e=1
where
I = " =1
Mk, =y, + oy T ak ) +h A Y dke i= L2, (2b)
\ =1 , =1
M=I1-4,, dA,
and
A,=J,+h,, B 2c)

The coefficients b,. a,. d, and d are assumed to be real and 4, , | is the step length. J, is the Jacobian
matrix evaluated at y, and B is any real square matrix that is to represent a perturbation in J, where
it has been computed numerically. This. however. represents an assumption that the error in the
approximate Jacobian is O (/) as h—0; and that in practice the matrix B is comparable in size to
J, for range of step sizes that occur. In addition. we may view the matrix B as a representation
of the accumulative error that is to be expected when the same Jacobian matrix is used over several
steps.

Rosenbrock-Wanner (ROW) methods can be obtained by setting B =0 in equation (2c) above.
This class of methods has been thoroughly examined by many authors: Kaps and Rentrop [2], have
constructed a fourth order method with local error estimate. and Kaps and Wanner [3], have
considered the construction of higher orders ROW-type methods.

Codes which are based on any ROW-method employ strategies such as keeping the Jacobian
value fixed for some integration steps. Further. an approximation to the Jacobian matrix is often
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used. These strategies. however, are incompatible with the way the methods were originally derived.
In other words. keeping the Jacobian fixed has an effect on both the order and the stability
properties of the method concerned.

The class of methods proposed in this paper is an attempt to deal with this problem. In Section

2 the order conditions of MROW-methods (of order p < 5) are given. The linear stability properties
of MROW-methods are discussed in Section 3. A second order two-parameter family and a third
order MROW-methods. each with local error estimate are given in Section 4. Some numerical
results are also included.

2. ORDER CONDITIONS

The order of the method described by formula (2) can be defined in the usual way as follows.
Leth,,, =hand Ay = y{.x + /1) — y(x), where y(x) is the true solution of equation (1). Assume that
¥, = ¥(x). Consider

dhy=Av —h zhl\

Using Taylor expansion of ¢ (1) we get (0 <t < |)

o.thy= V( )(p"' >+( )w*'(em.

+ )
Thus. an MROW-method is of order p when
¢'0)y=0, forj=1I(Lp.
(I)I.'p+ |l(0’ # 0

As In the case of ROW-method. it can be easily shown that the maximum order of an s-stage
MROW-method is s + I. Table 1 contains the order conditions for MROW-methods for p < 5 each

Table 1
Order Elementary differenual Order conditions

| ! Th=

2 I Shn ="' -

3 ot ThAA N = -d+d
[ ThAL =
Br ThD = —d

4 ot AR KN =5 —d+d =
Y ShR M=t -
Y ShMa N = -d
Il el =
1 Br Ak D =did -1
Br 1 Shd N =ad -0

N rorrot ShA K AN =5~ d =0
AT ThA K M= L
[N A ShRA Mu, N =5 - 5d+3d
tororry :,h[\”‘_:'f,_'“/
[AY] SAAMa K, N =5 —ta+tid
oo SEMa M=2
(AN Y Shie A=l otd+td
rorornt AN == d

Mirrgr

B ShR K, D, =dl-d +d -]
r B AR J.D, ==t id =)
t Brt ThMad=-4d
Br o1 TADK, N, =d[-}!+d -
Br o1t Thd M= =d
BB Thd D =
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with its associated elementary differential. The derivation of the table is lengthy and is therefore
omitted.

3. STABILITY
The application of an s-stage MROW-method of order p > s to the scalar test equation
Y =4 4AeC”
yields
Yooy =Rz,

with the stability function

. . TR
R(z:x)=(l —adz)" — xd- IL(’S—H(_ . 3
(o) =( xd=) Z:”( ad- ) ,xa’) (3)
where - = h4, az = ha, and L () is the Laguerre polynomial of order s such that
Loy =3 - j;')‘—
::ﬁ gt ki

’

In general x is a complex number, where

0
1=I+T
}
hé
and
od=a,— A

Therefore. we view a — | as the relative error in the exact Jacobian which is introduced either by
its numerical approximation or by keeping its value fixed for some integration steps.

Similar to the ROW-method, the stability properties of the MROW-methods can be related to
the acceptability properties of the rational function R(z:x). We define the .{-acceptability of
R(z: %) as follows.

Definition

For a given 2 € C. R(z: %) is said to be A-acceptable iff
|R(z:2)| <1, V-eC~. [ ]

Consequently, an MROW-method is .4-stable iff R(z:x) is 4-acceptable. The above definition
requires the boundedness of the numerical solutions {y,} for a given perturbation to the exact
Jacobian.

Similarly. an MROW-method is said to be L-stable iff it is A-stable and |R(z:x)| =0 as = - x.

The natural question is therefore: how much is the error in the Jacobian matrix allowed to
accumulate so that R(z: 2) is 4-acceptable? Generally, the answer depends on the number of stages
of the particular method. For example. the following results establish an upper bound for the error
in the Jacobian matrix for the cases s = 1. 2.

Theorem
(1) A general 1-stage MROW-method is A-stable iff i<d< > and k(=a — 1) is
such that Re(k)=>1,2d — 1. )
(2) A general 2-stage MROW-method is 4-stable iff } <d < x and « is such that
Re(k) = 1.4d — 1.
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Proof. (1) From equation (3) with s =1 we get

. | + (1 — d
R(::o()=-u
| — zdx
_15(::1)
T Qziay

Set a =u + v, where. u.v€R. To establish the .{-acceptability of R(z:x). and hence the
A -stability for the method. we construct the corresponding E-polynomial [4], where for all vy e R

Etiviz)=|Plivia)| —|Qtiv: o))

=17 2du — 1)

For .{-ucceptability, we require that
Etiv:x)=0. vreR,
which gives the stated bound.
{2y For s =2, we follow similar argument as in (1) to get
Etivia) = v [Mdu) —5du) + 2duy — ] + (e V[Hdu) — 3] + v [ 20de) 20y — 1]).

We require

Etihvix)=0.veR,

Adre)[2tdu) — 11 = 0.
for which (dv)=0. Thus, Etiv:2) 20, vy e R if and only if
[Hdu)' — Sdu ) + 2duy =1 =0,

which implies

and hence the stated resuits. [ ]

Notes
Similar results may be obtained for higher values of s. The lack of space does not permit us to
do so.

4. FORMULAE

Using the order condition of Table | we can construct MROW-methods with several orders of
accuracy (for p < 5). For each method and estimator of the local truncation error is provided. The
well known embedded technique will be adopted. In order to reduce the compurtational cost
involved, an optimal number of stages for both the basic integration method and the local error
estimator must be used.

4.1. Second order formula

A second order MROW-method with a third order error estimate may be designed by solving
seven order conditions [cf. Table (1)]. However. in order to keep the number of function-evaluations
in the formulae optimal (i.e. two function-evaluations only} the following constraint is applied

M. =M.,

ay = dy
and

a; = 0.



Avoiding the exactness of the Jacobian matriy 87

The following solutions give us a two-parameter family of second order MROW-method with
built-in error estimate

3_6d —4
dy = (‘) L ode=p
6d” — 6d + |
P =025, BY=——""T " pil—=075 Y,
! S =BGt ed, s Dr 0TI
{ d +b0d,, + BB
(1|=— N

b Il‘l

where y, f and d are free parameters such that 7 £0, 8 #0. AL 20 and N. #0.

The choice of y. f and d depends on several factors: Stability. minimization of error constants
and computational efforts of the formulae. The results of the previous section showed that the value
d =1— 1. 2 made the second and third order formulae. L-stable and A-stable. respectively. The
parameter y on the other hand was chosen to minimize the error constant in the basic integration
formula. The local truncation error is given by

L, =h'G,, +h'G,, +Oh".

where
G, =401+ 4071+ 4.8
and
Goo=Ast ' Bf + ABIf+ A S MLS + AL ST+ AL SIS+ 4,07
where the coefficients 4,. Vi =1.2.....9 are functions of the formula’s parameters.

Since the formula’s error estimate will calculate #°G,,. then there is no need to choose y or 8
such that the coefficients Bf in G,, is cancelled. Also the error estimate works well under the
assumption that G, is small enough. However, this assumption is no longer valid in our case. As we
are planning to use an approximate Jacobian and to keep its value fixed for as long as we can, the
coefficients A, and 4; will be quite large if the system is highly stiff and heavily nonlinear. Thus. the
free parameter 7 is chosen to cancel those coefficients from G, ,. Hence. the value v = 3(1 — d) 2. As
for B it was chosen to reduce the computational effort involved. Thus the value of # = 1 was chosen.

4.2. Third order formulu
For a third order method with a fourth order error estimate. 16 order conditions must be
satisfied [see Table (1)]. The following was assumed:
a,=h. Yi=1.7273.

In this case the formulae use only three function-evaluations per every accepted step otherwise four
function-evaluations are used. The following is the analytic solution for the formulae’s coefficients:

_4d(] = 3d) 3 =244 = 3] — 4d)

E T T (1 — 12d°)
) (1 =34d)(l —124°F -

=05 — - . oan=05—a,,.

4 =03 — S e T i 3y =
(1 — 124
b= —15d+— " 4= _15d-d,.
el i —6d + 1245 ¢ %
(1 — 12477 8 —d +1)

s =

24d(1 —2d)(1 =31 —6d)" ™~ (01— 2d)1 - 6d)°
a, =1 —a;—as.
2001 — 24d + 134d° — 324d* + 216d)

1 —6d + 12d° )

dy=
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/ _3(]—24d+96d:—72d:‘) = —tde i
WETRI 2 —ed)y T TR

[;lz‘l. 6:=0. ".=::. ,;J:l

r. "

Results similar to that given in Section 3 showed that the value = 0.435 866 5215 gives an 4 -stable
fourth order method and an L-stable third order method.

5. NUMERICAL TESTS

The methods derived in the previous section were implemented in the codes MROW?23 and
MROW 34. The codes were tested over a wide range of stiff systems. For the lack of space. we shall
only present results obtained by MROW 34 on two sample test problems. Our stepsize strategy (for
MROW234) can be summarized as follows. For the user specified tolerance. TOL

(a) Calculate RATIO = (TOL EST)}
(by H., = H, * RATIO
{c.1) EST < 2. TOL then accept step and advance with H,.,. Otherwise reject step
and repeat step with H, ..
(¢.2) 0.2« TOL < EST <€ 2. *TOL then accept step and advance with H,., = H ;.
(d) LU-decomposition was updated whenever a new /., was used. The Jacobian
matriy was approximated by numerical differences and updated whenever there
was a change in stepsize.
(Note that EST =| v}, — 11", |.) The two sample examples are

Example 1

=000 =1+, += 10000y, + D001 + 1, + 1]
0.01 —[1 + v3][0.01 + v, + 1],
Y0y = 1,0y =0,

F0100) = —0.99164207.  ©.(100) = 0.9833636.

re

-

Example 2
=004 00400, + v+ 107 0y — 3% 1071

ve=23% 1071
1) = v (0) =90,
Fe10)=0.1623391063 = 107, 10y = 01586138424,

The values of ©* were obtained using the NAG library routine CO2QBF [5]. which 1s based on the
GEAR method with TOL = 10-*. The testing results are gnen in Tables 2 and 3 below.

Table 2 Results of Prablem |
TOL NSTEP NFCN NJAC NLU Y

! N a2 "

— 1897 ] 20 348
1 96k A5 05]
o 19 K N 13 —1Y9s 782267
YR T A 48T

AN 03 n » — 0 yyl 16374
YNl 36T [so

Table 3 Results of Problem 2

TOL NSTEP NFCN NJAC NLU Yior s
- 5 5 6 3 a0 o6 090
L1665 A3
1 1 3 ]| B HOUY LA 1R7
1155 %04 1Ay
0 4 11 82 11 0006 222

U1 5x 601 XS]
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6. RELATED WORK AND REMARKS

The Steihaug and Wolfbrandt paper [1]. was the first to consider the problem of using inexact
Jacobian matrix in ROW-methods. In Ref. [1] they have considered formula (2) without condition
2c) and constructed a second order method with built-in error estimate for any square matrix A;
higher order methods of this type are not possible.

Day and Murthy [6], have introduced two classes of Rosenbrock-type methods (called
generalized Runge-Kutta) and derived a second and a third order processes which are internally
S-stable only when an accurate Jacobian matrix is used. However, it was claimed that the processes
remain stable when an approximate Jacobian is used.

The class of methods presented in this paper is an attempt towards overcoming the limitations
in any linearly implicit Rosenbrock-ty pe formula for solving stiff systems. A class of MROW-meth-
ods was introduced which avoids the exactness of the Jacobian matrix. A second and a third order
MROW-methods were derived. These methods remain consistent and highly stable when an inexact
Jacobian matrix is used and or its value kept unchanged for some integration steps. [nitial test
results showed that the new methods have performed quite well. However, more tests are needed
to imestigate the performance of MROW-methods on large suff systems. Strategy for the
automatic update of the Jacobian matrix, which i1s based on an upper bound of the error « (see
Section 2), needs further investigation.
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