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In this paper we show that the vector field X{ , h on a based path space Wo(M)
over a Riemannian manifold M defined by parallel translating a curve h in the
initial tangent space To M via an affine connection { induces a solution flow which
preserves the Wiener measure on the based path space Wo(M), provided the affine
connection { is adjoint skew-symmetric. In the case when { is a metric connection,
then { is adjoint skew-symmetric if and only if { is torsion skew-symmetric.
� 1997 Academic Press

1. INTRODUCTION

Let (M, g) be a compact, d-dimensional Riemannian manifold, let 2 be
the Laplace�Beltrami operator, and let W(M) be the path space of all
continuous paths in M with time length [0, 1]. For any o # M, there is a
unique probability measure Po on the paths x with x(0)=o such that
(W(M), x(t), Po) is a 1

2 2-diffusion process. We fix a base point o # M, and
for simplicity use & to denote the diffusion measure Po. The measure &
is called canonical Wiener measure, and is supported on the based path
space Wo(M).

Suppose we are given a metric connection {. By parallel translating a
curve h in the initial tangent space To M, we obtain a vector field X h on the
path space Wo(M): by definition, for any _ # Wo(M), define Xh(_) to be the
vector field along the curve _ given by Xh(_)s=#shs , where # is the unique
horizontal lift of _, based on a fixed point uo in the orthonormal frame
bundle O(M), ?(uo)=o. Note that Xh is only well defined &-almost surely.

It is natural to ask if there is a solution flow on the based path space
Wo(M) induced by the vector field X h. Because Xh is only well defined
&-almost surely, one should ask that does the solution flow leave the
Wiener measure & quasi-invariant? These problems are considered and
solved by B. Driver [7] for a metric connection { on the Riemannian
manifold (M, g).
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B. Driver [7] has proved that the vector field Xh induces a quasi-invariant
flow on the based path space Wo(M) provided the metric connection { is
torsion skew-symmetric (TSS) with respect to the metric g.

B. Driver [8, 9, 10] further considered a class of so-called geometric vector
fields on the based path space��those vector fields are obtained by parallel
translating adapted vector fields on the Wiener space via a metric and torsion
skew-symmetric connection {. More precisely, if K is an adapted vector
field on ToM, i.e. K is a d-dimensional continuous semimartingale which
has form

Ks=|
s

0
Cu dbu+|

s

0
Ru du,

where Cu is a Lie algebra o(d)-valued adapted process, Ru is an Rd-valued
adapted process, and b is a standard d-dimensional Brownian motion, then
we formally define a geometric vector field XK on the based path space
Wo(M) by setting X K (_)t=#t Kt , where # is the horizontal lift of _.
Essentially an adapted vector fields on the Wiener space is the tangent
vector field of a progressive measurable transformation flow which leaves
the Wiener measure quasi-invariant.

It is showed in B. Driver [7, 8, 9, 10] that the pull-back vector field MK

on the Wiener space of a geometric vector field XK by the Itô's develop-
ment map (defined by the connection {) is still an adapted vector field, so
that such a geometric vector field XK induces a solution flow on the based
path space leaving the Wiener measure quasi-invariant.

In this paper we consider vector fields X{, h on the based path space
Wo(M) defined via any affine connection {, and we shall prove that the
vector field X{ , h induces a quasi-invariant flow on the path space Wo(M)
provided { is adjoint skew-symmetric. That is we will show that X{ , h is a
geometric vector field in the sense of B. Driver [8, 9, 10], provided {
is adjoint skew-symmetric. If the affine connection { preserves the Riemannian
metric g, then our adjoint skew-symmetric condition is equivalent to that
{ is torsion skew-symmetric. However an adjoint skew-symmetric affine
connection does not need to be metric.

The study of vector fields on the piece-wisely smooth path space W�(M)
of a smooth manifold M is a classical topic in differential geometry, for
example, in the study of geodesics on a Riemannian manifold, cf. [28, 31].
The study of adapted vector fields on the continuous path space W(M) (a
reason to study continuous path space, rather than the smooth path space,
is that there is not any natural measure on smooth path space) has been
motivated by attempts to establish a geometric analysis on the path space
W(M) endowed with for example a Brownian motion measure, cf. [7, 13,
15, 17, 22, 24, 26] etc., where it is needed to extend classical Cameron�
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Martin theorem for Wiener measure [3, 4, 5] to the case of curved spaces.
Equivalently we need a nonlinear extension of Cameron�Martin quasi-
invariance theorem of Wiener measure under translation in directions in
the Cameron�Martin space, cf. [25, 30] and the references in [7].

Let (Wo(Rd), +) be the Wiener space and let T| be the measurable
transformation from W0(Rd) to itself; T| z=z+|. Then the measure
T &1

| b + is absolutely continuous with respect to the Wiener measure + if
and only if | # H1(Rd): the Cameron�Martin space of all Rd-valued
absolutely continuous functions on [0, 1] with L2-integrable first order
derivatives. Instead of considering the transformation T| we may consider
a transformation flow (Tt

|)t # R on W0(Rd) defined by

T t
| z.=z.+t|., \z # W0(Rd),

so that T1
|=T| , and

�T t
| z

�t
=|, \t # R, z # W0(Rd).

That is, (T t
|)t # R is the solution flow of the vector field M|(z)=|.

Thus it is natural to study nonlinear transformations on the Wiener
space generated by a vector field. A. B. Cruzeiro [6] first solved a class of
differential equations on the Wiener space induced by a special class of
vector fields, and proved quasi-invariance of the solution flows. P. Malliavin
[22] proposed two classes of natural vector fields on the path space over
a Riemannian manifold, and studied their induced solution flows [24].

A significant breakthrough has been made by B. Driver [7] in which he
has proved the pull-back on the Wiener space of the vector field Xh

obtained by parallel translating a curve in the initial tangent space via a
metric connection is an adapted vector field, so that he was able to
solve the geometric flow equation, and extend the Cameron�Martin quasi-
invariance theorem to the case of the based path space.

The paper is organised as follows. In Section 2, we recall several basic
facts in differential geometry and introduce the notion of adjoint skew-
symmetric connection. Section 3 is the main part of this paper, in which we
deduce a formula for the pull-back vector field. We define a vector field on
the based path space over a Riemannian manifold via an affine connection.
The main difference from that of B. Driver [7] is that we always pull back
a vector field via the Levi�Civita's connection rather than the affine
connection {, because the law of the diffusion generated by the projection
of the Bochner�Laplacian defined by an affine connection may not be
absolutely continuous with respect to the Wiener measure. As soon as a
pull-back formula of a vector field is obtained, we can employ the same
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strategy in B. Driver [7] to construct a solution flow. Thus in Section 4,
we recall a result about solution flow on the Wiener space induced by a so-
called Itô's vector field. Finally in Section 5 we use results in Sections 4
to obtain a solution flow on the based path space, and followed by an
integration by parts formula.

2. AFFINE CONNECTIONS

In this section we recall several basic notions and facts about affine
connections, and establish notations as well. Our standard references are
[11, 29].

Let M be a d-dimensional smooth manifold, and let ? : L(M) � M be its
frame bundle. L(M) is a principal fibre bundle with its structure group
GL(d ). Each u # L(M) is a frame of the tangent space Tx M at x=?(u), so
that u is an isomorphism from Rd to TxM determined by

u!=!iEi , if u=(x, (E1 , ..., Ed)),

where (Ei) is a base of Tx M, and we use the convention of summation over
repeated upper-lower indices.

The canonical 1-form % on L(M) is the Rd-valued 1-form defined by

%(V)=u&1?
*

(V), \V # Tu L(M),

where ?
*

is the differential of the bundle map ?.
The vertical tangent bundle VTL(M) is the kernel of the canonical

1-form %.
An affine connection thus is an assignment of a complementary horizontal

tangent bundle HTL(M) such that

TuL(M)=VTu L(M)�HTuL(M), \u # L(M),

each HTu L(M) is invariant under the natural right action of GL(d ) on the
frame bundle L(M), and the field u � HTuL(M) is smooth, for detail, see
[29].

An affine connection can be described via a connection form |; by
definition which is a gl(d )-valued 1-form on L(M) satisfying the following
conditions:

(1) | b (Ra)
*

=ad(a&1) b |, for any a # GL(d ), Ra is the right action,
and ad(a&1) is the adjoint action of GL(d ) on its Lie algebra gl(d ).

(2) |(A*(u))=A, for any A # gl(d ), u # L(M), where A*(u) the
fundamental tangent vector of A, i.e. A*(u) is the differential of t � Rexp(tA)u at
t=0.
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It is clear that A*(u) # VTuL(M). Given a connection form | on L(M),
the horizontal tangent bundle is defined to be the kernel of the connection
1-form |.

We will use h : TL(M) � HTL(M) to denote the projection along the
vertical tangent bundle VTL(M).

Given a connection, the torsion form 3 and the curvature form 0 are
2-forms on L(M) defined by

3(V1 , V2)=d%(hV1 , hV2), \V1 , V2 # TL(M)

and

0(V1 , V2)=d|(hV1 , hV2), \V1 , V2 # TL(M)

respectively, where d denotes the exterior differential, and for any 1-form :
we use the convention that

d:(V1 , V2)=V1:(V2)&V2:(V1)&:([V1 , V2]),

if V1 , V2 are two vector fields.
The first structure equation:

d%(V1 , V2)=&|(V1)%(V2)+|(V2)%(V1)+3(V1 , V2),

\V1 , V2 # TL(M). (1)

The second structure equation:

d|(V1 , V2)=&[|(V1), |(V2)]+0(V1 , V2), \V1 , V2 # TL(M). (2)

We say an affine connection | is torsion free if 3=0.
Given a C1-curve _ in M, _(0)=x and a base point u # L(M) such that

?(u)=x, there is a unique horizontal lift # of _ such that #(0)=u, where
we say # is the horizontal lift of _ if ?(#(t))=_(t) and #* (t) # HTL(M).
Hence any tangent vector X # TxM there is a unique horizontal lift
X� # HTuL(M) such that ?

*
(X� )=X, for any u # L(M), ?(u)=x.

For any u # L(M), and ! # Rd, we use B(u)! (or Bu !) to denote the
unique horizontal lift in TuL(M) of u! # T?(u)M. Then B : L(M) �
L(Rd, TL(M)) is a smooth section of the fibre bundle ? : L(Rd, TL(M)) �
L(M). B is called the standard horizontal vector field, although it defines
d vector fields on L(M).

By definition |(Bu!)=0, and

%(Bu !)=!, (Ra)
*

(Bu !)=BRau(a&1!),

for any u # L(M), ! # Rd and a # GL(d ).
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Given an affine connection |, the covariant derivative { is defined by

{X Y(x)=u
d
dt

#&1
t Y(#(t))} t=0

, \u # L(M), ?(u)=x,

for X # TxM, a vector field Y on M, where # is the unique horizontal lift
(with based point u) of _, and any curve _ in M such that _(0)=x,
_* (0)=X. Also we call a covariant derivative { an affine connection.

We next assume that M is endowed with a Riemannian metric g. An
affine connection | is called a metric connection if its corresponding
covariant derivative { preserves the metric g, i.e.

dg(X, Y )(Z)= g({Z X, Y )+ g(X, {Z Y )

for any vector fields X, Y, Z on M.
If | is a metric connection, then | restricted on the orthonormal frame

bundle O(M) of (M, g) is o(d )-valued, so is its curvature form 0. O(M) is
a principal bundle with its structure group O(d ); o(d ) is the Lie algebra of
O(d ).

The unique torsion free, metric connection is called the Levi�Civita
connection, denoted by D.

If {, {� are two affine connections, then

S(X, Y )={X Y&{� XY,

defines a (1,2)-type tensor on the manifold M. In this case we write
{={� +S.

Definition 1. Let S be a (1, 2)-type tensor on M, and g be a Riemannian
metric. Then we say S is skew-symmetric with respect to the metric g if

g(S(Z, X ), Y)+ g(S(Z, Y), X )=0, \X, Y, Z # TM,

and we say S is adjoint skew-symmetric with respect to the metric g if

g(S(X, Z), Y )+ g(S(Y, Z), X )=0, \X, Y, Z # TM,

respectively.

Proposition 1. (1) Let {=D+S be an affine connection on the
Riemannian manifold (M, g). Then { is a metric connection if and only if S
is skew-symmetric.

(2) Let {=D+S be a metric connection on (M, g). Then S is adjoint
skew-symmetric if and only if { is torsion skew-symmetric: torsion tensor of
the connection { is skew-symmetric with respect to the metric g.
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Remark. 1. If a metric connection { is torsion skew-symmetric, then
the projection on M of the Bochner�Laplacian L{=�i BiBi is the
Laplace�Beltrami operator, Bi=Bei , where (ei) is the standard base of Rd

and B is the standard horizontal vector field defined by {.

2. If { is a metric connection and {X Y=DX Y+S(X, Y ), then
{� X Y=DX Y+S(Y, X ) is an adjoint skew-symmetric affine connection.

3. We say an affine connection is adjoint skew-symmetric if S=
{&D is adjoint skew-symmetric.

3. NATURAL VECTOR FIELDS

In the sequel we are working with a Riemannian manifold (M, g) with
its Levi�Civita connection D. Points o # M and uo # O(M), ?(uo)=o, are
fixed. The curvature form, development map, horizontal lift etc. are those
defined by the Levi�Civita connection D, and the based point uo if
appropriate, except otherwise specified.

For a manifold N and a point u # N, we will use W �
u (N) (resp. Wu(N))

to denote the family of all continuous, piece-wisely smooth paths (resp. the
space of all continuous paths) with time length [0, 1] starting at u.

In order to introduce a class of vector fields on the path space Wo(M),
we first recall the development map associated to the Levi�Civita connection D.

Let _ # W �
o (M). Then its unique horizontal lift # is the unique solution

of the differential equation:

d#t=B(#t) #&1
t b d_t , #0=uo .

Let zt=�t
0 %( b d#s). Then it is easily seen that # is the unique solution to the

differential equation:

d#t=B(#t) b dzt , #0=uo , (3)

and _t=?(#t). We will denote by #=I(z), z=J &1(_), and by _=J(z).
I (or J) is called the development map (or Itô map if involved paths are
semimartingales).

Given a W # T_ W �
o (M), i.e. W is a smooth vector field along the path

_ # Wo(M) starting at zero, so that W(t) # T_(t)M. Let z=J &1(_). Then we
define

M=J
*
&1W,
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the pull-back of the tangent vector W by the development map J&1. By
definition, if _= # Wo(M) such that _0=_ and

d_=(t)
d= } ==0

=W(t), \t # [0, 1],

then

Mt=
dz=(t)

d= } ==0

, z==J&1(_=).

Using the first and the second structure equations, we can obtain the
following formula

Mt=Kt&|
t

0
|

s

0
0(B#u b dzu , B#u Ku) b dzs , (4)

where Kt=#&1
t Wt , and # is the unique solution of Eq. 3. Note that K is

Rd-valued. Formula 4 can be deduced by the use of the same method as in
[7, 18]. If W(t)=#tht , then Kt=ht .

We are now given another affine connection |~ with its corresponding
covariant derivative {. We use B� to denote the standard horizontal vector
field defined by |~ . Let _ # Wo(M), and z=J&1(_), and # be the unique
horizontal lift of _, i.e. # is the unique solution of Eq. 3. Using #~ to denote
the unique horizontal lift of _ under the connection |~ , so that #~ is the
unique solution of the differential equation:

d#~ t=B� (#~ t) #~ &1
t b d_t , #0=uo . (5)

Note that #t # O(M), #~ t # L(M), and

?(#t)=?(#~ t)=_t .

Define X{ , h to be a vector field on Wo(M) for h # H(Rd) by

X{ , h(_)t=#~ t ht , \_ # Wo(M). (6)

Let z=J&1(_) and define

M{ , h(z)=J
*
&1X{ , h(_). (7)

By formula 4, we need to calculate K(z)t=#&1
t #~ tht .

To this end, we set Ht=#&1
t #~ t . Then Ht # L(Rd, Rd), and H0=id.

Let S be the (1,2)-type tensor defined by

{X Y=DX Y+S(X, Y).
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In a local chart (x1, ..., xd), let ds2= gij dxi�dx j, D=(1 k
ij), and {=(1� k

ij),
so that S k

ij=1� k
ij&1 k

ij .
We can write

#(t)=(_t , (E1(t), ..., Ed (t))), Ei (t) # T_t M,

and

#~ (t)=(_t , (E� 1(t), ..., E� d (t))), E� i (t) # T_t M.

Note that g(Ei , Ej)=$ij . For any ! # Rd, we have

Ht !=H j
i (t) !iej ,

where (e1 , ..., ed) is the standard base of Rd, and

H j
i (t)= g(E� i (t), Ej (t))

= gkl (_(t)) E l
j(t)E� k

i (t).

Using these notations, we can write Eq. 3 and Eq. 5 in local chart
(cf. [27]):

d_i (t)=E i
:(t) b dz:(t),

dE i
j(t)=&1 i

mk(_(t)) E k
j (t) b d_m(t),

and

d_i (t)=E� i
:(t) b dz~ :(t),

dE� i
j(t)=&1� i

mk(_(t)) E� k
j (t) b d_m(t),

respectively, where z~ =J� &1(_), J� is the development map defined via the
connection |~ . Hence

dE� i
j(t)=&1� i

mk(_(t)) E� k
j (t) E m

: (t) b dz:(t). (8)

Since Ei is an orthonormal base, we have

E� j (t)= g(E� j (t), Ei (t)) Ei (t)=H i
j (t) Ei (t),

so that

E� k
j (t)=H i

j (t) E k
i (t). (9)
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Inserting Eq. 9 into Eq. 8, we get

dE� i
j=&1� i

mk(_(t)) H p
j (t) E k

p(t)E m
: (t) b dz:(t).

Thus we have

dH j
i = gklE� k

i b dE l
j+ gklE l

j b dE� k
i +

�gkl

�xq E� k
i E l

j b d_q

=&gkl 1 l
mpH ;

i E k
;E p

j E m
: b dz:& gkl1 l

mp H ;
i E p

; E k
j E m

: b dz:

&gklS l
mpH ;

i E p
; E k

j E m
: b dz:+

�gmn

�xq H ;
i E m

; E n
j E q

: b dz:.

Since D is the Levi�Civita connection,

�gmn

�xq = gln1 l
qm+ gml1 l

qn ,

so that

dH j
i =&gklS l

mpH ;
i E p

; E k
j E m

: b dz:,

H j
i (0)=$ j

i .

That is,

dHt=&g(S(#t b dzt , #t(Ht&)), #t&),

H0=id.

In other words,

d(Ht !, ') Rd=&g(S(#t b dzt , #t(Ht !)), #t'), \!, ' # Rd,

H0=id.

Hence we have proved the following

Theorem 1. Let (M, g) be a Riemannian manifold with its Levi�Civita
connection, and let {=D+S be an affine connection. For any _ # W �

o (M),
and h # H1(Rd), define X{ , h(_)s=#~ s hs , where #~ is the unique horizontal lift
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of _ under the connection {. Let z=J &1(_), and M{ , h(z)=J*&1X {, h(_).
Then

M{ , h(z)t=|
t

0
Hs dhs&|

t

0
g(S(#s b dzs , #s(Hshs)), #s&)

&|
t

0
|

s

0
0(#u b dzu , #u(Huhu)) b dzs , (10)

where # and H are the unique solutions of the equations:

d#s=B(#s) b dzs , #0=uo ,

and

dHs=&g(S(#s b dzs , #s(Hs&)), #s&), H0=id,

respectively.

4. ITO� 'S VECTOR FIELDS ON WIENER SPACE

Adapted vector fields on the classical Wiener space (W0(R
d), +) are

proposed and discussed in detail by B. Driver [8, 9, 10], although various
authors [3, 4, 5, 6, 24, 22] have noticed several progressive measurable
transformation flows on the Wiener space (W0(Rd), +) which leave the
Wiener measure + quasi-invariant.

In this section we introduce a sub-class of adapted vector fields on the
Wiener space (W0(Rd), +); which consist of those vector fields defined by
solving differential equations. The vector fields in this class are called Itô's
vector fields.

For making sense of our next discussion we regard a path in W0(Rd) as
a continuous semimartingale on (W0(Rd), F, Ft , |, +), where | is a
standard Rd-valued Brownian motion under the measure +, and F, Ft are
the natural filtration of |. A vector field M on W0(Rd) by definition is a
map from W0(Rd) to the tangent bundle TW0(Rd), i.e. for any
_ # W0(R

d), M(_) is a vector field along _, so that M(_)t # T_t R
d. However

Rd is flat, we identify Tp(Rd) with Rd, so that M(_) is a continuous curve
in Rd. Given such a vector field M, its solution flow (!t)t # R by definition
is a family of progressive measurable maps !t from W0(Rd) to W0(R

d),
such that

�!t
.

�t
=M(!t

. ), !oz.=z, \z # W0(Rd).
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Now we assume that solution flow (!t)t # R exists and !t leaves the
Wiener measure quasi-invariant for each t, i.e. the law of the semimar-
tingale !t is absoultly continuous with respect to the measure +. Then the
local martingale part of !t must be a d-dimensional standard Brownian
motion, so that zt has the following Doob�Meyer's decomposition:

!t
s=W t

s+variation process, \t # R.

By martingale representation theorem (cf. [32], p. 187), we can write

W t
s=|

s

0
Ot

u d|u .

Since Wt is a Brownian motion, so that Ot is O(d )-valued. Hence

M(z)s=
dzt

s

dt } t=0

=|
s

0

dOt
u

dt } t=0

d|u+variation process;

and C=dOt�dt| t=0 is o(d)-valued. Thus M(z) has the following decomposition:

M(|)s=|
s

0
Cu d|u+variation process,

where C is o(d )-valued.

Proposition 2. If M is a vector field on (W0(Rd), +) which induces a
quasi-invariant, progressive measurable flow, and

M(|)s=|
s

0
Cu d|u+variation process.

Then Cu is o(d )-valued.

Now we consider an Itô's vector field on (W0(Rd), +). Let M(z) be the
unique strong solution of the following stochastic differential equation:

dEt= f1(Et , zt , ht , t) b dzt+ f2(Et , zt , ht , t) dht , E0=e0 ,

dMt= f3(Mt , Et , zt , ht , t) b dEt , M0=0,

where h is an RN-valued continuous function with finite variation, f1 is
L(Rd, Rm)-valued, f2 is L(RN, Rm)-valued, f3 is L(Rm, Rd) valued, and they
are all smooth. M(z) is an Rd-valued continuous semimartingale for any
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d-dimensional semimartingale z, so that z � M(z) defines an adapted
vector field on the Wiener space (W0(Rd), +). Since

dMt= f3f1(Mt , Et , zt , ht , t) b dzt

+f3 f2(Mt , Et , zt , ht , t) dht , M0=0,

we have (cf. [7, 8) 9, 10])

Theorem 2. If in addition f3 f1 ; which is L(Rd, Rd)-valued ; is valued in
the Lie algebra o(d ), f3 f2 has bounded derivatives and h # H1(Rd), then there
is a unique quasi-invariant solution flow of the Itô's vector field M. That is,
there is a unique measurable map !t : Wo(Rd) � W0(Rd) for each t # R, such
that

(1) !t is a d-dimensional continuous semimartingale for each t # R,

(2) The law (!t)&1 b + of the semimartingale !t is equivalent to the
Wiener measure + for each t # R,

(3) !t b !s=!t+s for any t, s # R,

(4) (!t)t # R is the solution flow, i.e.

d!t
s

dt
=M(!t)s , !0=id, +&a.e. \t # R, s # [0, 1].

(!t)t # R is called the Driver's flow of the adapted vector field M.

5. DRIVER'S FLOW ON PATH SPACE

In this section we are going to look for a solution flow induced by a
vector field X{ , h on the based path space Wo(M), i.e. to solve the
geometric flow equation:

d`t

dt
=X{ , h(`t), `0=id.

We assume that (M, g) is a d-dimensional, compact Riemannian manifold
with Levi�Civita connection D. Let & be the unique probability measure on
the based path space Wo(M) such that the coordinate process (xt)t # [0, 1] is
a Brownian motion on the Riemannian manifold (M, g) starting from o,
and let F, Ft be the natural filtration of (xt).
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Let { be an affine connection, and {=D+S, and let h # H1(Rd). Define
X{ , h(_)s=#~ shs , where #~ s is the solution of the differential equation:

d#~ s=B� (#~ s) #~ &1
s b d_s , #~ 0=uo ,

for any continuous semimartingale _ on M.
By Th. 1, we define an Itô's vector field M{, h by

M{ , h(z)t=|
t

0
Hs dhs&|

t

0
g(S(#s b dzs , #s(Hshs)), #s&)

&|
t

0
|

s

0
0(#u b dzu , #u(Huhu)) b dzs ,

for any continuous Rd-valued semimartingale z, where # and H are the
solutions of the stochastic differential equations:

d#s=B(#s) b dzs , #0=uo ,

and

dHs=&g(S(#s b dzs , #s(Hs&)), #s), H0=id,

respectively, and b d denotes the Stratonovich's differential.
If furthermore z is a Brownian semimartingale, i.e. the local martingale

part of z is a d-dimensional Brownian motion, then we can write M{, h in
Itô's form:

M{ , h(z)t=|
t

0
C(z)s dzs+|

t

0
R(z)s ds, (11)

where

C(z)s=|
s

0
0(#u b dzu , #u(Huhu))+ g(S(#s } , #s(Hs hs)), #s&), (12)

and

R(z)s=Hsh4 s+
1
2 3S(#s)(#s(Hshs), &)& 1

2{3S(#s)(#s(Hs hs), &)

+1
2Ric(#s(Hshs)). (13)
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We have used the following definitions in the above formulas. Given a
(1,2)-type tensor S on the Riemannian manifold (M, g), we define two
maps

fS : O(M) � L((Rd) �4, R),

f� S : O(M) � L((Rd) �6, R)

by

fS(u)(!1 , ..., !4)= g((Du!2
S)(u!1 , u!3), u!4), (14)

and

f� S(u)(!1 , ..., !6)= g(S(u!1 , u!2), u!3) g(S(u!4 , u!5), u!6), (15)

respectively. Then 3S ; {3S : O(M) � L((Rd) �2, R) defined by

3S(u)(!, ')= :
d

i, j=1

f� S(u)(ei , ej , ', ei , !, ej), (16)

and

{3S(u)(!, ')= :
d

i=1

fS(u)(ei , ei , !, '), (17)

respectively, for any !, ' # Rd, where (ei) is any orthonormal base of Rd.
We recall also that Ric denotes the Ricci tensor defined by

Ric(X)= :
d

i=1

0(Bu(X ), uei) ei , \X # TxM, u # O(M), ?(u)=x,

where (ei) is any orthonormal base of Rd.
Since 0 is o(d )-valued, so that we have

Proposition 3. If the (1,2)-type tensor S={&D is adjoint skew-
symmetric, then C(z) is o(d )-valued.

In the remainder of this paper we always assume S={&D is adjoint
skew-symmetric. By Th. 2, there is a unique solution flow of M{ , h on the
Wiener space W0(R

d), i.e. there exists a family (!t)t # R of measurable maps
from W0(Rd) into W0(R

d), such that each !t is an Rd-valued continuous,
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Brownian semimartingale with law equivalent to the Wiener measure
+ ; !t b !s=!t+s almost surely with respect to + ; and

d!t

dt
=M {, h(!t), !0=id, +-a.e..

Define `t : Wo(M) � Wo(M) by

`t=J b !t b J&1.

Then `t is &-a.e. well defined, and we have (cf. [8]):

Theorem 3. The family (`t)t # R is a solution flow of the vector field
X{ , h. That is,

1. `t is an M-valued continuous semimartingale with law equivalent to
the Brownian measure &,

2. `t b `s=`s+t, &-a.e.,

3. (`t)t # R is a solution flow of X { , h :

d`t
.

d
t=X{ , h(`t)., `0=id, &-a.e.

In the final we write down an integration by parts formula in our
context, using Bismut's method (cf. [2]).

Let b=J&1(x) be the standard Brownian motion. For any = # R, let

b=
s=|

s

0
e=C(b) u dbu+= |

s

0
R(b)u du.

Then b= is a Brownian semimartingale, and

db=
s

d= } ==0

=M{ , h(b)s . (18)

Let _==J(b=). Then by Th. 1, we have

d_=

d= } ==0

=X {, h(_). (19)

We say a real valued function F on the based path space Wo(M) is a
smooth function, if

F(_)=F� (_t 1
, ..., _t k), 0�t1< } } } <tk�1, (20)
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for some smooth function F� on Mk. For such a function F, we define

D[{ , h] F(_)= :
k

i=1

dF� i (_t 1
, ..., _tk )(#~ t i ht i ). (21)

Note that the right hand side of Eq. 21 is well defined &-almost surely. It
is easy to see that

D[{, h] F(_)=
d
d=

F(_=), &&a.e., (22)

so that D[{, h] F is well defined, i.e. it does not depend on the special
representation of F. Note we can rewrite Eq. 22:

D[{ , h] F(_)= :
k

i=1

dF� i (_t 1
, ..., _t k )(#t i (Ht iht i ))

= :
k

i=1

({F� i (_t 1
, ..., _t k ), #ti (Hti ht i ))

= :
k

i=1

(#&1
t i

{F� i (_t 1
, ..., _tk), Hti ht i ) R d ,

where # and H are the solutions of the differential equations:

d#s=B(#s) b dbs , #0=uo ,

and

dHs=&g(S(#s b dbs , #s(Hs&), #s&), H0=id,

respectively.
Let += be the probability measure on W0(Rd) such that

d+=

d+
=exp _= |

1

0
exp(&=C(b)u) R(b)u dbu&

1
2

=2 |
s

0
|R(b)| 2

u du& ,

and let K= denote the right side of the above equation.
Let Y==K= b J. Then

dY=

d= } ==0

=|
1

0
R(b)u dbu .
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Using P. Le� vy characterisation theorem (cf. [32], p. 141) and Girsanov's
theorem (cf. [32], p. 303), one can show that b= is a d-dimensional
standard Brownian motion under +=, so that

d
d=

E+ =
[F b J(b=)]=0.

Hence we have

d
d=

E&(F(_=) Y=)=0,

which yields that

E&(D[{ , h] F)=&E& \F |
1

0
R(b)u dbu+ , (23)

where b=J&1(x) is a standard Brownian motion.
There are several papers by various authors about integration by parts

formulas, e.g see [2, 6�8, 12, 13, 15, 16, 18�20, 23] etc.
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Note added in proof. In [12], and using a different method, Elworthy and Li also proved
an integraton by parts formula for the vector fields considered in this paper.

REFERENCES

1. S. Albeverio and R. Hoegh-Krohn, The energy representation of Sobolev Lie groups,
Compositio Math. 36 (1978), 37�52.

2. J.-M. Bismut, ``Large Deviations and the Malliavin Calculus,'' Birkha� user, Boston�Basel�
Stuttgart, 1984.

3. R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under
translations, Ann. of Math. 45(2) (1944), 386�386.

4. R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general
class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), 184�219.

5. R. H. Cameron and W. T. Martin, The transformation of Wiener integrals by nonlinear
transformations, Trans. Amer. Math. Soc. 66 (1949), 253�283.

6. A. B. Cruzeiro, Equations diffe� rentielles sur l'espace de Wiener et formules de Cameron�
Martin non line� aires, J. Funct. Anal. 54 (1983), 206�227.

222 LYONS AND QIAN



File: 580J 301319 . By:CV . Date:18:03:97 . Time:11:29 LOP8M. V8.0. Page 01:01
Codes: 4136 Signs: 3459 . Length: 45 pic 0 pts, 190 mm

7. B. Driver, A Cameron�Martin type quasi-invariance theorem for Brownian motion on a
compact Riemannian manifold, J. Funct. Anal. 110 (1992), 273�376.

8. B. Driver, Towards calculus and geometry on path spaces, Proc. Sympos. Pure Math. 57
(1995), 405�422.

9. B. Driver, A primer on Riemannian geometry and stochastic analysis on path spaces,
preprint, 1995.

10. B. Driver, The Lie bracket of adapted vector fields on Wiener spaces, preprint, 1995.
11. D. Elworthy, ``Stochastic Differential Equations on Manifolds,'' Cambridge Univ. Press,

London, 1982.
12. D. Elworthy and X. M. Li, A class of integration by parts formula in stochastic analysis I,
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