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The regime of small isospin chemical potential in QCD is investigated. Using the phase quenched partition
function in the ε-regime an expression for the chiral condensate is given, which is studied in the
temperature isospin chemical potential plane. Lines of constant values of the condensate are shown and
it is estimated how the critical temperature varies as a function of the isospin chemical potential. Finally,
the dependency of the fermion sign problem on the chemical potential and temperature is examined.
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1. Introduction

During the past years the phase diagram of QCD at finite baryon
density has been a subject of great interest. Even though, a large
number of phases have been suggested [1,2] only now direct con-
firmation by first principle calculations has emerge. One reason
is that the phase of the fermion is complex, which makes stan-
dard Monte Carlo simulations possible only for small values of the
chemical potential [3–9].

The phenomenology of heavy ion collisions and neutron stars
has also been contributing to the confirmation of the phase dia-
grams of QCD [10]. In both neutron stars and relativistic ion colli-
sions the isospin density is different from zero. Therefore, it is of
great interest to study the influence of isospin chemical potentials
on the phase diagram of QCD. The main goal of this Letter is thus
to examine the phase diagram of QCD at nonzero temperature and
isospin chemical potentials.

The starting point will be the work of Gasser and Leutwyler,
who propounded that in the ε-regime [11] the low energy parti-
tion function, which is dominated by the zero modes of the Gold-
stone bosons, reduces to a group integral uniquely determined by
the pattern of chiral symmetry breaking [12–14]. Since the light-
est degrees of freedom, the pions, have zero baryon charge, the
low energy effective partition function at zero temperature is not
affected by the baryon chemical potential. In addition, due to the
complex fermion determinant it is not possible directly to simulate
lattice QCD at nonzero baryon chemical potential by probabilistic
methods. By instead considering the absolute value of the fermion
determinant, one gets a situation which is doable. For an even
number of flavors this corresponds to the product of a fermion
determinant and its complex conjugate. The conjugate flavors cor-
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respond to ordinary fermionic flavors with the opposite sign of
the chemical potential [15]. A theory with one flavor and a con-
jugate flavor is therefore identical to a theory with two flavors
at nonzero isospin chemical potential μiso . For further discussions
of isospin chemical potential see [16–19]. Since the pions have
nonzero isospin charge, the low energy effective partition func-
tion depends on the chemical potential. Thus, by looking at the
isospin chemical potential instead of a baryon chemical potential,
a situation is reached, where numerical calculations and nontrivial
analytic computations are possible.

The organization of this Letter is as follows. In Section 2 the
expected features of the QCD phase diagrams for nonzero temper-
ature, baryon and isospin chemical potentials are reviewed from
general arguments. QCD is considered in the ε-regime for which
the volume of Euclidean space–time is taken such that chiral per-
turbation theory is valid and that the Goldstone modes associated
with chiral symmetry are the dominant degrees of freedom [20].
Moreover, the Goldstone field is treated as constant. This has the
advantage of allowing for exact, analytic calculations. In Section 3
the effective theory is used to derive an expression for the chiral
condensate in the case of two quark flavors N f = 2. The expression
is presented in the (μiso, T )-plane and from the lines of constant
values of the chiral condensate it is estimated how the critical tem-
perature drops as a function of the isospin chemical potential. In
Section 4 the fermion sign problem is investigated by plotting the
expectation value of the phase factor in the (μ, T )-plane. Finally,
in Section 5 concluding remarks are given.

2. QCD at nonzero chemical potential

The QCD partition function at temperature 1/β and chemical
potential μ is given by

ZQCD =
∑

e−β(Ek−μ), (1)

k
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Fig. 1. A schematic phase diagram of QCD in the temperature baryon chemical potential plane (left) and the temperature isospin chemical potential plane (right). The mπ

denotes the pion mass and mN denotes the nucleon mass.
where the sum is over all states. This partition function can be
rewritten as the Euclidean QCD partition function for N f quark
flavors

Z N f (m;μ) =
〈 N f∏

f =1

det(D + μ f γ0 + m f )

〉
, (2)

where the average is over the Euclidean Yang–Mills action and
the Dirac operator is D = γμ(∂μ + i Aμ), with γμ the Euclidean
γ -matrices, and Aμ an SU(Nc) valued gauge potential. The quark
masses are denoted by m f and the chemical potential for each fla-
vor is denoted by μ f . Below, focus will mainly be on QCD with
two quark flavors and nonzero baryon number and isospin chemi-
cal potential, which in this case are defined as

μB = μ1 + μ2, (3)

μiso = μ1 − μ2. (4)

Before proceeding to the expression for the chiral condensate
some general remarks on the QCD phase diagrams are given. For
a further discussion of the QCD phases see [21–23]. Fig. 1 shows
the simplified phase diagram of QCD in the temperature baryon
chemical potential plane and in the temperature isospin chemi-
cal potential plane. At temperature T ∼ 170 MeV QCD undergoes
a phase transition from a chirally broken phase to a chirally sym-
metric phase. Since lattice QCD requires a real action, information
of the structure of the phase diagram along the chemical potential
axis cannot be achieved reliably using that regularization. There-
fore, most of the knowledge of QCD at nonzero baryon density is
based on models and general properties of the phases of QCD. For
a discussion see [24].

In the case of isospin chemical potential an analysis of the chi-
ral Lagrangian to one-loop order in the low temperature range
shows that the pions Bose condense for μiso > mπ/2, where mπ is
the physical pion mass [25,26]. Contrary to the partition function
for μB �= 0, the partition function for μiso �= 0 can be simulated by
Monte Carlo methods. When using an isospin chemical potential
instead of a baryon chemical potential the fermion determinant is
real and therefore traditional numerical lattice methods can be ap-
plied [27].

Measurements of lattice QCD are necessarily performed at finite
volume. In this Letter the standard choice in lattice regularization
of QCD is used. This choice considers a torus, where the extension
in the Euclidean time direction determines the temperature L4 =
1/T and the quantities L1, L2, L3 specify a three-dimensional box.
By considering a torus with L1 = L2 = L3 = L4 = L the volume of
the Euclidean space–time is thus defined by V = L4.
Moreover, the effective theory is considered in the presence of
an isospin chemical potential. With the usual pattern of sponta-
neous chiral symmetry breaking for two light flavors, the theory is
described by a Lie-group valued field U (x) ∈ SU(2). As mentioned,
focus will be on the ε-regime, also known as the microscopic do-
main of QCD. In this regime the chiral Lagrangian is treated as a
perturbative expansion around the zero-momentum modes in a fi-
nite volume.

3. Effective theories at low energies

In QCD the low-lying degrees of freedom are the pions, which
according to Goldstone’s Theorem result from the spontaneous
breaking of chiral symmetry for N f � 2. Since the mass of the
pion is about 140 MeV, pions are much lighter than the lightest
non-Goldstone particles, such as the nucleons, which has a mass of
about Λ ∼ 1 GeV. Therefore, at sufficiently low energies the QCD
partition function is well approximated by the partition function of
an effective low-energy theory involving only pions. The QCD par-
tition function in a finite Euclidean volume V 4 = L4 is dominated
by the pions if

1

Λ
� L. (5)

This statement follows by comparing the contribution of the pion,
exp(−mπ L), to that of a heavier particle, exp(−ΛL). The interac-
tions of the pions can be separated into zero-momentum modes
and nonzero-momentum modes. It was realized by Gasser and
Leutwyler that there exists a kinematic regime, where the fluctu-
ations of the zero-momentum modes dominate the fluctuations of
the nonzero-momentum modes [31]. This regime is given by the
condition

L � 1

mπ
, (6)

where mπ is the pion mass. Intuitively this means that the wave-
length of the pion is much larger than the linear extent of the
box. Thus, the pion field does not vary appreciably over the size
of the box, which result in small derivative terms. Therefore, it
is possible to only consider the zero-momentum modes in the ε-
regime (6). In this regime the Lie group can be factorized as U (x) =
U0 exp[i√2φ(x)/Fπ ], where U0 is the zero-momentum part and
φ(x) represents the fluctuation fields [33]. It turns out that to lead-
ing order one keeps only the static modes in the path integral,
while the fluctuation degrees of freedom decouple. This can be
seen as follows. When the isospin chemical potential couples to
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the theory it gives rise to a covariant time derivative in the effec-
tive SU(2) Lagrangian [28–30],

∂0U (x) → ∇0U (x) = ∂0U (x) − μiso
[
σ3, U (x)

]
, (7)

where σ3 is the usual Pauli matrix. The leading-order terms in the
effective Lagrangian then read

L = Fπ

4
Tr

[∇0U (x)∇0U †(x) + ∂i U (x)∂i U
†(x)

]
− Σ

2
Tr

[
MU †(x) + M†U (x)

]
, (8)

where M = diag(mu,md) is the quark mass matrix and Σ is the
chiral condensate. By expanding the Lie group

U (x) = U0
[
1 + i

√
2φ(x)/Fπ + · · ·], (9)

the usual kinetic term for φ(x) is produced. When power counting
is used in the ε-expansion it is assumed that mπ ∼ p2 = O(ε2),
while φ(x) ∼ 1/L = (ε) and that a consistent power counting for
the μiso-term is μiso = O(ε2) [14,31,32]. Indeed, when the covari-
ant derivative (7) is expanded using Eq. (9), the leading contribu-
tion becomes

∇0U (x) = i
√

2/Fπ∂0φ(x) − μiso[σ3, U0] + · · · . (10)

In the chiral Lagrangian (8) the mixed terms ∂0φ(x)[σ3, U0] pro-
duce only boundary contributions and play no role here. Thus, to
leading order in the ε-expansion the fluctuation field φ(x) gives
rise only to the kinetic energy term [33]∫

d4x
1

2
Tr∂μφ(x)∂μφ(x), (11)

which decouples as in the theory with μiso = 0.
Collecting the remaining terms it is seen that the leading con-

tribution to the partition function in the ε-regime is the zero-
dimensional integral

Z N f =2(M;μiso)

=
∫

SU(2)

dU e
1
4 V F 2

πμ2
iso Tr[U ,σ3][U †,σ3]+ 1

2 Σ V Tr(M†U+MU †), (12)

where the 0-suffix on the group element U ∈ SU(2) has been
dropped for convenience.

Projection onto fixed gauge field topology ν is done by a Fourier
transform, and amounts to the simple modification [14,31]

Z N f =2
ν (M;μiso)

=
∫

U (2)

dU (det U )νe
1
4 V F 2

πμ2
iso Tr[U ,σ3][U †,σ3]+ 1

2 Σ V Tr(M†U+MU †),

(13)

where the leading-order contribution to the ε-regime depends
only on the scaling variables

m̂i ≡ miΣ V , μ̂2
iso ≡ μ2

iso F 2
π V . (14)

Derivation of the integral (13) gives the following expression [34]

Z N f =2
ν (m̂u,m̂d; μ̂iso) = 2e2μ̂2

iso

1∫
0

dt te−2μ̂2
isot2

Iν(tm̂u)Iν(tm̂d).

(15)

In sectors of fixed topological index ν the chiral condensate follows
by differentiation of Eq. (15)
Fig. 2. The chiral condensate is plotted as a function of the isospin chemical po-
tential for m̂ = 1. The upper line shows the full chiral condensate The lower line
shows the case for ν = 0. It is seen how the simplified case, ν = 0, makes up a fine
candidate for the full situation.

〈ψ̄ψ〉ν = 1

2
∂m̂ log Z N f =2

ν (m̂; μ̂iso)

=
∫ 1

0 dt e−2μ̂2
isot2

t2 Iν(m̂t)(Iν+1(m̂t) + Iν−1(m̂t))∫ 1
0 dt te−2μ̂2

isot2
Iν(m̂t)2

, (16)

where for simplicity m̂ = m̂u = m̂d .
By summing over topology Eq. (16) gives

〈ψ̄ψ〉 =
∫ 1

0 dt e−2μ̂2
isot2

t2 ∑ν=∞
ν=−∞ Iν(m̂t)(Iν+1(m̂t) + Iν−1(m̂t))∫ 1

0 dt te−2μ̂2
isot2 ∑ν=∞

ν=−∞(Iν(m̂t)2)

=
∫ 1

0 dt e−2μ̂2
isot2

t2(I1(2m̂t) + I−1(2m̂t))∫ 1
0 dt te−2μ̂2

isot2
I0(2m̂t)

. (17)

For simplicity the vacuum angle θ has been set equal to zero
[35,36].

In Fig. 2 Eq. (17) is plotted as a function of μiso . The upper
line shows the case where a summation over ν has been made,
and the bottom line shows the case where ν = 0. It is seen that
the simplified case, ν = 0, does not diverge significantly from the
full situation. Thus ν is set equal to zero from now on and the
expression of the chiral condensate is given by

〈ψ̄ψ〉ν=0 = 2
∫ 1

0 dt e−2μ̂2
isot2

t2 I0(m̂t)I1(m̂t)∫ 1
0 dt te−2μ̂2

isot2
I0(m̂t)2

. (18)

In Fig. 3 lines of constant values of the chiral condensate 〈ψ̄ψ〉
are plotted in the (μiso, T )- and in the (μ2

iso, T )-plane, respectively.
The increase in the imaginary plane is in agreement with [37].

The validity of the formulas fails at a temperature of T ∼
150 MeV. At this point the interactions among the massive par-
ticles becomes increasingly important. Thereby, the theory cannot
be described by only considering the zero momentum modes in
the ε-regime.

By performing a three-loop analysis of the low temperature re-
gion of QCD, Gerber and Leutwyler have estimated the value of
the critical temperature at which the chiral phase transition takes
place [38]. This is done by plotting the temperature dependence
of the chiral condensate and following read off the temperature
in the limit where 〈ψ̄ψ〉 = 0. Their analysis indicates that in the
chiral limit the phase transition occurs around

Tc  170 MeV.

This value is beyond the range of validity of the formulas, but since
the order parameter falls rapidly at the upper end of the range,
Gerber and Leutwyler consider it meaningful to make the estimate.

In this Letter the critical temperature is estimated as the max-
imum value of the differentiated condensate with respect to tem-
perature for fixed values of μiso .
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Fig. 3. The figures show the evaluation of the chiral condensate in the (μiso, T )- and (μ2
iso, T )-plane, respectively. The value of the condensate decrease with darker colours.

To perform the plot one free parameter has to be chosen. In order to make the values on the axes dimensionless the free parameter has been picked to be (2μ2
c F 2

π )/T 4
0 = 10,

where μc = mπ /2. It is emphasised that T0 is not the critical temperature at which the QCD phase transition takes place, but is simply the scale chosen for these particularly
plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
Fig. 4. The critical temperature, Tc , is plotted as a function of the isospin chemical
potential, μiso , for (2μ2

c F 2
π )/T 4

0 = 10. The figure shows how Tc slightly drops with
increasing μiso .

In Fig. 4 the critical temperature is plotted as a function of
μiso < mπ/2. It is seen how Tc slightly drops for increasing isospin
chemical potential.

By Taylor expanding the critical temperature,

Tc(μiso)

Tc(μiso = 0)
= 1 − A

(
μiso

μiso,c

)2

. (19)

A calculation of the average value of the curvature for (2μ2
c F 2

π )/

T 4
0 = 10 gives A ≈ 0.01. This value is relatively stable for (2μ2

c F 2
π )/

T 4
0 � 5 and is comparable to the value obtained in [27] for the

lowest quark mass.

4. The fermion sign problem

As mentioned, the fermion determinant is complex at nonzero
chemical potential. This prohibit standard Monte Carlo sampling of
the path integral in what is known as the sign problem. Overviews
with references to various studies of this problem may be found in
[4,2,39,40].

By factoring the determinant of the Dirac operator into its ab-
solute value and the phase factor, exp(iφ), the determinant can be
rewritten as

det(D + m + μγ0) = ∣∣det(D + m + μγ0)
∣∣eiφ. (20)

The severity of the sign problem can be measured through the
expectation value of the average phase factor. A physical interpre-
tation is obtained by defining the phase with respect to the phase
quenched partition function

〈
e2iφ 〉

pq = 〈det2(D + m + μγ0)〉
〈|det(D + m + μγ0)|2〉 ≡ Z N f =2

QCD

Z N f =2
. (21)
|QCD|
Fig. 5. The expectation value of the average phase factor, 〈e2iφ〉pq , is plotted in
the (μ, T )-plane for (2μ2

c F 2
π )/T 4

0 = 1. The value of 〈e2iφ〉pq increase with lighter
colours. Since the fermion sign problem is mild, when the phase factor is of the
order one, the figure shows how the sign problem is getting more mild with in-
creasing temperature. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this Letter.)

By inserting Eq. (15) in Eq. (21) the expectation value of the aver-
age phase factor becomes

〈
e2iφ 〉

pq =
∫ 1

0 dt t Iν(tm̂)2

e2μ̂2
iso

∫ 1
0 dt te−2μ̂2

isot2
Iν(tm̂)2

. (22)

According to [9] the sign problem is mild if 〈e2iφ〉pq is of the
order one. In Fig. 5 Eq. (22) is plotted for ν = 0 in the (μ, T )-
plane. A plot after summation over ν has been made too, but since
no significantly difference between the two plots were to be seen,
only the case for ν = 0 is shown. Thus, the ν = 0 contribution
makes up a fine candidate for the visualization of the sign prob-
lem.

The figure shows that the value of 〈e2iφ〉pq increase with larger
temperature and thus makes the sign problem mild. Fig. 5 is in
good agreement with [41], where random matrix theory (RMT) is
applied to obtain an analytic expression for the average phase fac-
tor as a function of T , μB and m.

5. Conclusions

In this Letter QCD has been considered in the ε-regime of
small isospin chemical potentials. Contrary to the regime of baryon
chemical potentials, where the complex fermion determinant
makes it impossible to directly simulate lattice QCD by proba-
bilistic methods, the isospin chemical potentials makes up a very
accommodating situation.
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The ε-regime was specified such that chiral perturbation the-
ory was valid and that the Goldstone modes associated with chiral
symmetry were the dominant degrees of freedom. Moreover, the
Goldstone field was treated as constant. This had the advantage of
allowing for exact analytic calculations.

Further, the effective theory has been used to derive an ex-
pression for the chiral condensate in the case of two quark flavors
N f = 2, which has further been plotted in the (μiso, T )-plane and
in the (μ2

iso, T )-plane. The lines of constant values of the chiral
condensate showed a curvature in the real plane and an increase
in the complex plane.

Additionally, an estimate of the critical temperature as a func-
tion of the isospin chemical potential has been given. The mea-
sured small decrease of the critical temperature proved to be com-
parable to the values obtained in lattice QCD [27].

Finally, the fermion sign problem has been investigated by plot-
ting the expectation value of the phase factor in the (μ, T )-plane.
It was seen how the phase factor gets larger with increasing tem-
perature and thus makes the fermion sign problem more mild.
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