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1. Introduction

In the 1960s, the codes obtained from the row span of the incidence vectors of the
blocks of designs obtained from finite geometries were shown to have some useful
properties which made them good candidates for practical usage: see [AK92] for refer-
ences to this work. In particular, the dual codes of those from planes were capable of
being used with majority-logic decoding. MacWilliams [Mac64] at this time introduced
the notion of permutation decoding and applied it mainly to cyclic codes and the Golay
codes. In [KMM], codes from planes were looked at with a view to permutation de-
coding; here we obtain similar results for the codes of higher dimensional geometries,
mostly in the case of those over prime fields.

The codes from finite geometries are the generalized Reed–Muller codes and their
subfield subcodes. They have the projective and affine semi-linear groups as automor-
phism groups. We found in [KMM] that permutation decoding to correct up to the
full capability of the code cannot be used for the whole class of codes from planes
as the order of the plane increases; this is due to the existence of a lower bound (see
Result 1) on the size of the PD-set, which depends on the length, dimension and min-
imum weight of the code, and which is larger than the size of the full automorphism
group above a certain field order. The same will hold for the codes of higher dimen-
sional geometries, for the same reasons. Thus we introduced the notion of s-PD-sets
to correct s errors, where s may be lower than the full error-correction capability. We
examine these again here in the higher dimensional cases. Also we note that suitable
information sets need to be found for the decoding; we were aided in this in the case
of planes of prime order through the previously known bases for the codes that were
obtained using the geometry of the plane: see Moorhouse [Moo91]. Here we will obtain
suitable information sets, at least in the prime case, linked to the polynomial basis for
the codes.

Our principle results for information sets and bases are Theorem 1, Corollary 2 and
Proposition 5. In Theorem 1 we obtain information sets for a class of polynomial codes
that includes the q-ary generalized Reed–Muller codes RFq

(�, m), and in Corollary 2
a particularly simple information set is given in the case where q is a prime. This
then applies in particular to the codes from the affine geometry designs over fields of
prime order, and this leads to information sets for the codes of projective geometry
designs (see Section 5). From this we can obtain a simple description for bases of
minimum-weight vectors for the codes of the symmetric point-hyperplane designs in
the prime case which leads to similar bases of minimum-weight vectors for the affine
point-hyperplane designs: see Proposition 5. These bases are different in general from
those found in [GK98].

The establishment of information sets is of assistance in the search for s-PD-sets and
here our main results are Propositions 1, 2 and 6. In Proposition 1 we show that the
translation group will provide an s-PD-set, within certain bounds for s, for RFq

(�, m),
and we obtain, for q a prime, some relatively small 2-PD-sets for the point-hyperplane
designs in the affine case in Proposition 2 and in the projective case in Proposition 6.

The paper is laid out as follows: in Section 2 we give the background notation and
definitions; in Section 3 we obtain the information sets; in Section 4 we examine partial
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permutation decoding in the affine case; in Section 5 we apply the previous results to
the projective geometry designs.

2. Background

An incidence structure D = (P, B, I), with point set P , block set B and incidence
I is a t-(v, k, �) design, if |P| = v, every block B ∈ B is incident with precisely k
points, and every t distinct points are together incident with precisely � blocks. The
design is symmetric if it has the same number of points and blocks. The code Cp(D)

of D over the finite field Fp, is the space spanned by the incidence vectors of the
blocks over Fp, and is thus a subspace of FP

p , the full vector space of functions from
P to Fp. Its dimension is called the p-rank of D.

The notation [n, k, d]q will denote a linear code C of length n, dimension k, and
minimum weight d, over the field Fq . A generator matrix for the code is a k × n

matrix made up of a basis for C. The dual code C⊥ is the orthogonal subspace under
the standard inner product (, ), i.e. C⊥ = {v ∈ Fn

q |(v, c) = 0 for all c ∈ C}. A check
matrix for C is a generator matrix H for C⊥; the syndrome of a vector y ∈ Fn

q is
HyT . If c ∈ C then the support of c is the set of non-zero coordinate positions of c,
and the weight of c is the cardinality of the support. Two linear codes of the same
length and over the same field are isomorphic if they can be obtained from one another
by permuting the coordinate positions. Any linear code is isomorphic to a code with
generator matrix in so-called standard form, i.e. the form [Ik | A]; a check matrix then
is given by [−AT | In−k]. The first k coordinates are the information symbols (or set)
and denoted by I, and the last n − k coordinates are the check symbols, denoted by
C. An automorphism of a code C is an isomorphism from C to C. The automorphism
group will be denoted by Aut(C).

For any finite field Fq of order q, the set of points and r-dimensional subspaces
of an m-dimensional projective geometry forms a 2-design which we will denote by
PGm,r(Fq). Similarly, the set of points and r-dimensional flats of an m-dimensional
affine geometry forms a 2-design, AGm,r(Fq). The automorphism groups of these de-
signs (and codes) are the full projective or affine semi-linear groups, P�Lm+1(Fq)

or A�Lm(Fq), and are always 2-transitive on points. If q = pe where p is a prime,
the codes of these designs are over Fp and are subfield subcodes of the generalized
Reed–Muller codes: see [AK92, Chapter 5] for a full treatment. The dimension and
minimum weight is known in each case: see [AK92, Theorem 5.7.9].

Permutation decoding was first developed by MacWilliams [Mac64] and involves
finding a set of automorphisms of a code called a PD-set. The method is described
fully in MacWilliams and Sloane [MS83, Chapter 15] and Huffman [Huf98, Section
8]. We extend the definition of PD-sets to s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C,
then a PD-set for C is a set S of automorphisms of C which is such that every t-set of
coordinate positions is moved by at least one member of S into the check positions C.
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For s� t an s-PD-set is a set S of automorphisms of C which is such that every
s-set of coordinate positions is moved by at least one member of S into C.

That a PD-set will fully use the error-correction potential of the code follows easily
and is proved in Huffman [Huf98, Theorem 8.1], and that an s-PD-set will correct s
errors follows in a similar manner.

The algorithm for permutation decoding is as follows: we have a t-error-correcting
[n, k, d]q code C with check matrix H in standard form. Thus the generator matrix
G = [Ik|A] and H = [−AT |In−k], for some A, and the first k coordinate positions
correspond to the information symbols. Any vector v of length k is encoded as vG.
Suppose x is sent and y is received and at most s errors occur, where s� t . Let S =
{g1, . . . , gm} be an s-PD-set. Compute the syndromes H(ygi)

T for i = 1, . . . , m until
an i is found such that the weight of this vector is s or less. Compute the codeword c
that has the same information symbols as ygi and decode y as cg−1

i .
Such sets might not exist at all, and the property of having a PD-set will not, in

general, be invariant under isomorphism of codes, i.e. it depends on the choice of I
and C. Furthermore, there is a bound on the minimum size of S (see [Gor82,Sch64],
or [Huf98]):

Result 1. If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n − k,

then |S|�
⌈

n
r

⌈
n−1
r−1

⌈
. . .

⌈
n−t+1
r−t+1

⌉
. . .

⌉⌉⌉
.

This result can be adapted to s-PD-sets for s� t by replacing t by s in the formula.
To obtain PD-sets, a generator matrix for the code needs to be in standard form, and

thus the question of what points to take as information symbols arises.
We use the notation of [AK92, Chapter 5] or [AK98] for generalized Reed–Muller

codes. Let q = pt , where p is a prime, and let V be the vector space Fm
q of m-tuples,

with standard basis. The codes will be q-ary codes with ambient space the function
space FV

q , with the usual basis of characteristic functions of the vectors of V. We can

denote the elements f of FV
q by functions of the m-variables denoting the coordinates

of a variable vector in V, i.e. if x = (x1, x2, . . . , xm) ∈ V , then f ∈ FV
q is given by

f = f (x1, x2, . . . , xm) and the xi take values in Fq . Since aq = a for a ∈ Fq , the
polynomial functions can be reduced modulo x

q
i − xi . Furthermore, every polynomial

can be written uniquely as a linear combination of the qm monomial functions

M = {xi1
1 x

i2
2 . . . xim

m | 0� ik �q − 1, for 1�k�m}.

For any such monomial the degree � is the total degree, i.e. � = ∑m
k=1 ik and clearly

0���m(q − 1).
The generalized Reed–Muller codes are defined as follows (see [AK92, Definition

5.4.1]):

Definition 2. Let V = Fm
q be the vector space of m-tuples, for m�1, over Fq , where

q = pt and p is a prime. For any � such that 0���m(q−1), the �th-order generalized
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Reed–Muller code RFq
(�, m) is the subspace of FV

q (with basis the characteristic func-
tions of vectors in V) of all m-variable polynomial functions (reduced modulo x

q
i − xi)

of degree at most �. Thus

RFq
(�, m) =

〈
x

i1
1 x

i2
2 · · · xim

m |0� ik �q − 1, for 1�k�m,

m∑
k=1

ik ��

〉
.

These codes are thus codes of length qm and the codewords are obtained by evalu-
ating the m-variable polynomials in the subspace at all the points of the vector space
V = Fm

q . From [AK92, Theorem 5.4.2] we know that RFq
(�, m)⊥ = RFq

(�, m) for
� < m(q − 1) and where � + � + 1 = m(q − 1).

The code RFp
((m − r)(p − 1), m) is the p-ary code of the affine geometry design

AGm,r(Fp): see [AK92, Theorem 5.7.9].

3. Information sets

In this section we determine some useful information sets for the generalized Reed–
Muller codes that will be used in later sections to obtain some small 2-PD-sets for some
of the codes from geometries, and also to obtain bases of minimum-weight vectors for
the codes from affine and projective point-hyperplane designs in the prime case.

The set of monomial functions of degree at most �,

B =
{

x
i1
1 x

i2
2 . . . xim

m | 0� ik �q − 1, for 1�k�m,

m∑
k=1

ik ��

}
,

is an Fq -basis of RFq
(�, m). A subset S ⊆ V = Fm

q will be an information set of

the code if, and only if, the subspace of FS
q spanned by the restriction of B to S has

dimension |B|.
The following theorem holds for a wider class of codes spanned by monomials and

we state and prove it in the more general form

Theorem 1. Let V = Fm
q be the vector space of m-tuples, for m�1, over the finite

field Fq of order q, where q = pt and p is a prime. Let �0, . . . , �q−1 be the elements
of Fq and let

S = {[i1, i2, . . . , im]|ik ∈ Z, 0� ik �q − 1, 1�k�m}.
Let � denote the partial order defined on S by [i1, i2, . . . , im]�[j1, j2, . . . , jm] if and
only if ik �jk for all k such that 1�k�m.

Let X ⊆ S have the property that y ∈ X if y ∈ S and y�x for some x ∈ X , and
let C = 〈xi1

1 x
i2
2 · · · xim

m | [i1, i2, . . . , im] ∈ X 〉. Then the set of vectors

I = {(�i1 , . . . , �im) | [i1, i2, . . . , im] ∈ X }
is an information set for C.



J.D. Key et al. / Finite Fields and Their Applications 12 (2006) 232–247 237

In particular, if X = {[i1, i2, . . . , im] ∈ S| ∑m
k=1 ik ��}, then I is an information

set for the �th-order generalized Reed–Muller code RFq
(�, m).

The proof depends on some identities involving polynomials and these will be stated
and proved through a series of lemmas. Let u0, u1, . . . , uq−1 be independent commuting
indeterminates, and for 0� i, j �q − 1, let ai,j = ui − uj . For q − 1� t �0, let sr,t =∑
0� i1 � i2 � ···� ir � t

ui1ui2 . . . uir for r �1 and let s0,t = 1.

Lemma 1. For 0�r, t �q − 1, sr,t =
∑

0� i � t

ur+t
i∏

0��� t, ��=i

ai,�

.

Proof. If t = 0, sr,0 = ur
0 which is also the only term occurring in the right-hand sum.

If r = 0 and t �1, consider the first term of the right-hand sum and obtain partial
fractions.

ur+t
0∏

1�k � t

(u0 − uk)
= 1 +

∑
1�k � t

bk

u0 − uk

, where bk = ur+t
k∏

1��� t, ��=k

(uk − u�)
. Hence

ur+t
0∏

1�k � t

(u0 − uk)
= 1 −

∑
1�k � t

ur+t
k∏

0��� t, ��=k

(uk − u�)
, which establishes the identity in

this case as s0,t = 1.
Now use induction on r + t . If r, t �1,

sr,t = sr,t−1 + sr−1,t ut =
∑

0� i � t−1

ur+t−1
i∏

0��� t−1, ��=i

ai,�

+
∑

0� i � t

ur+t−1
i ut∏

0��� t, ��=i

ai,�

=
∑

0� i � t−1

ur+t−1
i∏

0��� t−1, ��=i

ai,�

(
1+ ut

ai,t

)
+ ur+t

t∏
0��� t−1

ai,�

=
∑

0� i � t

ur+t
i∏

0��� t, ��=i

ai,�

since ai,t + ut = ui . �

Lemma 2. Let y be an indeterminate which commutes with u0, u1, . . . , uq−1. For 0� t

�r and t �q − 1,∑
0�k � t

⎛
⎝sr−k,k

∏
0���k−1

(y − u�)

⎞
⎠ =

∑
0� i � t

ur
i

⎛
⎝ ∏

0��� t, ��=i

y − u�

ai,�

⎞
⎠.
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Proof. We use induction on t. If t = 0, the left-hand side is sr,0 and the right-hand
side is ur

0. Now suppose t �1. Then the left-hand side is

∑
0� i � t−1

ur
i

⎛
⎝ ∏

0��� t−1, ��=i

y − u�

ai,�

⎞
⎠ + sr−t,t

∏
0��� t−1

(y − u�)

=
∑

0� i � t−1

ur
i

⎛
⎝ ∏

0��� t−1, ��=i

y − u�

ai,�

⎞
⎠ +

⎛
⎜⎜⎜⎝

∑
0� i � t

ur
i∏

0��� t, ��=i

ai,�

⎞
⎟⎟⎟⎠

×
∏

0��� t−1

(y − u�)

=
∑

0� i � t−1

ur
i

⎛
⎝ ∏

0��� t−1, ��=i

y − u�

ai,�

⎞
⎠ (

1 + y − ui

ai,t

)
+ ur

t

∏
0��� t−1

y − u�

at,�

=
∑

0� i � t

ur
i

⎛
⎝ ∏

0��� t, ��=i

y − u�

ai,�

⎞
⎠ . �

Replacing y by ut in Lemma 2 and setting ci,j =
∏

0��� j−1

ai,�, for 0�j � i�q − 1,

we get the following result.

Lemma 3. For 0� t �r and t �q − 1,
∑

0�k � t

sr−k,kct,k = ur
t .

We also derive an identity for certain polynomials in y using Lemma 2.

Lemma 4. For 0�r �q − 1,
∑

0�k � r

⎛
⎝sr−k,k

∏
0���k−1

(y − u�)

⎞
⎠ = yr .

Proof. The left-hand side of the equation in Lemma 2 with t = r , is equal to the
polynomial

∑
0� i � r

ur
i

⎛
⎝ ∏

0��� r, ��=i

y − u�

ai,�

⎞
⎠

in y of degree r. Replacing y by uj , for each j with 0�j �r , we get ur
j . Hence this

polynomial coincides with yr for r + 1 values. Consequently, these polynomials are
identical. �
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From this we derive an identity similar to that of Lemma 3 by substituting ut for y
in Lemma 4:

Lemma 5. For 0�r � t and t �q − 1,
∑

0�k � r

sr−k,kct,k = ur
t .

We denote the lexicographic order on X by ≺, i.e. [i1, . . . , im] ≺ [j1, . . . , jm] if,
and only if, for some k with 1�k�m, ik < jk and i� = j� for � < k. We use 	 to
denote the corresponding non-strict order; that is, the union of ≺ and =. Note that 	
is a total order. We use � for the partial order on X , as defined in the statement of
the theorem.

We define three matrices M, L and R whose rows and columns are indexed by X ,
ordered by ≺. Let x, y ∈ X and write x = [i1, . . . , im] and y = [j1, . . . , jm]. We set
Mx,y = ux

y = u
i1
j1

· · · uim
jm

. We set Lx,y = si1−j1,j1 . . . sim−jm,jm if y�x and Lx,y = 0
otherwise. We set Rx,y = cj1,i1 . . . cjm,im if x�y and Rx,y = 0 otherwise. Note that
x ≺ y implies that y�x. So, L is lower triangular and R is upper triangular.

Lemma 6. M = LR and det M =
∏

0� j<i �q−1

a
ni

i,j where ni is the number of occur-

rences of i among the coordinates of elements of X .

Proof. We calculate the (x, y)-entry in the product LR. For 1�k�m, let hk =
min{ik, jk} and z = [h1, . . . , hm]. Then z�x and z�y implies z ∈ X and every
w ∈ S for which w�z is also in X , by the assumed properties of X . Now (LR)x,y =∑

w∈X Lx,wRw,y . Since Lx,w = 0 if w�x and Rw,y = 0 if w�y, we may take the
sum over all w ∈ X such that w�z. Thus we have

(LR)x,y =
∑
w�z

Lx,wRw,y

=
∑

0�gk �hk, 1�k �m

si1−g1,g1 . . . sim−gm,gmcj1,g1 . . . cjm,gm

=
∏

1�k �m

⎛
⎝ ∑

0�gk �hk

sik−gk,gk
cjk,gk

⎞
⎠ =

∏
1�k �m

u
ik
jk

= Mx,y,

using Lemmas 3 and 5.
To compute det M , we only need to determine the diagonal entries of L and R. The

diagonal entry of L at position [i1, . . . , im] is s0,i1 . . . s0,im = 1. The diagonal entry of

R at position [i1, . . . , im] is ci1,i1 . . . cim,im and ci,i =
∏

0��� i−1

ai,�. This completes the

proof. �

We now return to the proof of Theorem 1.
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Proof of Theorem 1. We determine explicitly a spanning set of size |X | for the
subspace of FI

q spanned by the restriction of B to I. The (�j1 , . . . , �jm)-coordinate of

the polynomial function x
i1
1 x

i2
2 . . . x

im
m is �i1

j1
�i2
j2

. . . �im
jm

. The dimension of the spanning

set is thus the rank of the |X | × |X | matrix N with Nx,y = �i1
j1

�i2
j2

. . . �im
jm

where
x = [i1, . . . , im] and y = [j1, . . . , jm]. For 0�j < i�q − 1, we write �i,j = �i − �j

and note that �i,j �= 0. Hence, from Lemma 6, det N =
∏

0� j<i �q−1

�ni

i,j �= 0. So, we

conclude that I is an information set for RFq
(�, m). �

In dealing with the field Fp, where p is prime, it is frequently convenient to describe
the elements by 0, 1, . . . , p − 1 while at the same time using 0, 1, . . . , p − 1 to denote
integers. We will use this notation ambiguously below since the context will clearly
determine whether these symbols refer to finite field elements or to integers.

In the special case where q = p is a prime we have the following corollary to
Theorem 1:

Corollary 2. If p is a prime, the code RFp
(�, m) has information set

I =
{

(i1, . . . , im) | ik ∈ Fp, 1�k�m,

m∑
k=1

ik ��

}
. (1)

Proof. The choice �i = i for the elements of Fp will produce this information set from
the theorem, recalling of course that the sum is taken in Z, not in Fp. �

Note: The theorem applies not only to the generalized Reed–Muller codes: for exam-
ple, if m = 2, q > 2, and X = {[0, 0], [0, 1], [1, 0], [1, 1]}, then C = 〈1, x1, x2, x1x2〉,
{(0, 0), (0, 1), (1, 0), (1, 1)} is an information set for C, and C is not a generalized
Reed–Muller code.

Definition 3. For RFp
(�, m), when p is a prime, we call I of Eq. (1) the standard

information set for C if �i = i ∈ Fp for all i. More generally, the information set using
the particular ordering [�0, . . . , �p−1] of Fp will be said to be based on that ordering.

4. Partial PD-sets

We now look for s-PD-sets for the generalized Reed–Muller codes, and in particular,
for those that are the codes of finite geometry designs. First we obtain a general lemma
that finds a number s such that a code C with an automorphism group G will have G
as an s-PD-set.

Lemma 7. Let C be a code with minimum distance d, I an information set, C the
corresponding check set and P = I ∪C. Let G be an automorphism group of C, and n
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the maximum of |O ∩ I|/|O|, where O is a G-orbit. If s = min(� 1
n

 − 1, � d−1

2 �), then
G is an s-PD-set for C.

Proof. For each a ∈ P , let G(a) = {g ∈ G | ag ∈ I}. Then |G(a)| = |Oa ∩I| |G|/|Oa|,
where Oa denotes the G-orbit of a.

Let a1, . . . , as be s distinct elements in P and assume that exactly t of them are in
G-orbits meeting I. We may assume that these t elements are a1, . . . , at . Then

∣∣∣∣∣∣
⋃

1� i � t

G(ai )

∣∣∣∣∣∣ � |G|
∑

1� i � s

|Oai
∩ I|/|Oa|� |G|sn < |G|,

since s < 1
n

. Hence there is an element g ∈ G\ ⋃
1� i � s G(ai). Since g /∈ G(ai), aig /∈ I

for each i. That is, aig ∈ C for each i.
Hence, for each s-tuple in P , there is an element in G mapping the s-tuple into C.

Since s�� d−1
2 �, C can correct s errors. Thus G is an s-PD-set for C with respect to

the information set I. �

Note that this lemma depends only on the size of the information set. Thus, when the
parameters satisfy the inequality, G will be an s-PD-set with respect to all information
sets. The lemma is a generalization of the observation in [Mac64] for cyclic codes for
the number of errors that the cyclic group will correct by permutation decoding.

Now turning to the generalized Reed–Muller codes, here C = RFq
(�, m) where

q = pt , p is a prime and 0���m(q − 1), P = Fm
q and an information set I

has size |I| = f�,m,q = ∑�
i=0(−1)i(

m
i
)(

m+�−iq
m

) where � = min(m, �(m + �)/q�)
(see [AK92, Theorem 5.4.1, p.154] for an expression of this number as a double
sum). Moreover, the automorphism group of RFq

(�, m) contains the translation group
Tm(Fq), whose order is qm, and the minimum distance of the code is d�,m,q =
(q − b)qm−a−1, where � = a(q − 1) + b, 0�b < q − 1 (see [AK92, Theorem 5.4.3,
Corollary 5.5.4]).

Applying Lemma 7, we have immediately:

Proposition 1. Let f�,m,q denote the dimension and d�,m,q the minimum weight of
RFq

(�, m). If s = min(�(qm − 1)/f�,m,q�, �(d�,m,q − 1)/2�, then the translation group
Tm(Fq) is an s-PD-set for RFq

(�, m).

In the special case, q = p and � = (m − r)(p − 1), RFp
((m − r)(p − 1), m) =

Cp(AGm,r(Fp)), i.e. the code of the affine geometry design of points and r-flats. If
r = m − 1, we have points and hyperplanes and |I| = (

m+p−1
m

). We have a general
construction for smaller 2-PD-sets for these designs for p�3 and m�3 (except for
p = 3 when we will need m�4).

Proposition 2. Let C = RFp
(p−1, m) where p is a prime and p�3 and let Tm(Fp) be

its translation group. For the vector z = (1, 1, . . . , 1) ∈ Fm
p let � denote the translation
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by z and let Z = 〈�〉. Using the standard information set

I =
{

(i1, . . . , im) | ik ∈ Fp, 1�k�m,

m∑
k=1

ik �p − 1

}
, (2)

Z is a 2-PD-set of size p for C for m�3 and p�5, and for m�4 when p = 3.

Proof. We need to show that any two vectors v and w can be moved by some multiple
of z into the check positions, C = {(i1, i2, . . . , im) | ik ∈ Fp,

∑m
k=1 ik > p − 1}. Notice

that if, for a given prime p, we can prove this for m = t then it will follow for m� t .
To shorten the exposition, we will omit consideration of primes �11 and prove the
result for p�13 and m = 3. This leaves m = 3 for the primes p = 5, 7 and 11
and m = 4 for p = 3. These involve a proliferation of subdivisions which need to be
considered but no essential difficulty.

We consider the various types of pairs of vectors (a, b, c) ∈ F3
p and for each

pair we write down an element k of Fp so that the corresponding element in S that
will move that pair into C. We can always translate such a pair of vectors into one
of the form (a, b, c), (0, d, e). As membership of C depends only on the sum of
the coordinates, we may assume that 0�a�b�c�p − 1 and 0�d �e�p − 1. Let
� = �p/3� + 1.

First, suppose d = e = 0. If p − 1 − a��, let k = p − 1 − a unless b = c = a + 1.
In this case, if p − 2 − a�� let k = p − 2 − a, and if p − 1 − a = � let k = 2� + 1.
If p − 1 − a < � let k = p − 1.

Next, suppose d = 0 and e �= 0. If a+b+c > p+2, let k = p−1. If a+b+c�p+2
and p�11, let k = p − 1 − a unless b = c = a + 1. In this case, let k = p − 2 − a if
p�13.

Finally, suppose a, b and c are distinct and 0, d and e are distinct. If a+b+c > p+2,
let k = p−1. Now suppose a+b+c�p+2. We may choose k = p−1−a if d �a or
if a < d and d + e�3a + 3. Now suppose additionally that a < d and d + e < 3a + 3.
If e�b let k = p − 1 − b and if b < e let k = p − e.

This completes the proof for p�13 and m�3. �

For the case m = 2 and planes of prime order, Proposition 1 does not prove that the
translation group is a 2-PD-set. However, this is easily done:

Proposition 3. Let C = RFp
(p − 1, m) where p is a prime and p�3. Using the

standard information set I of Eq. (2), the translation group is a 2-PD-set for C for
m�2 and p�5, and for m�3 when p = 3.

Proof. First take p > 5 and m�2. As in Proposition 2, if we can prove the result
for m = 2, it will follow for all m�2. We need to show that any two vectors can be
moved by some translation into the check positions C. If the vectors are already all in
C, then the identity map, corresponding to translation by (0, 0) is used. If not, we can
translate the vectors so that one of them is the zero vector. Suppose they are A = (a, b)
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p 2 2 3 5 7

m 5 6 4 3 3

s 2 3 4 5 6 2 3 4 5 6 7 2 3 4 5 2 3 4 2 3 4

size 4 8 13 19 26 3 9 10 13 15 26 6 11 17 30 21 43 11 22 478

Fig. 1. Sizes of some s-PD-sets in the translation group Tm(Fp).

and B = (0, 0). We first translate by (p − 1 − a, p − 1) to obtain (p − 1, p − 1 + b)

and (p − 1 − a, p − 1), which are in C unless (i) b = 1 or (ii) a = p − 1.
If (i), b = 1, translate A and B by (p − 1, p − 1 − b) to give (p − 1 + a, p − 1)

and (p − 1, p − 1 − b), which are in C unless a = 1. In that case the two vectors are
(1, 1) and (0, 0) and translation by (p − 2, p − 2) yields the vectors (p − 1, p − 1) and
(p − 2, p − 2), which are in C since 2(p − 2) > p − 1 for p�5.

If (ii), a = p − 1 the vectors are (p − 1, b) and (0, 0) and translation by (p − 1, p −
1 − b) gives (p − 2, p − 1) and (p − 1, p − 1 − b), which are in C unless b = 1. In
this case the vectors are (p − 1, 1) and (0, 0) and translation by (p − 2, p − 2) gives
(p − 3, p − 1) and (p − 2, p − 2), which are again in C for p�5.

For p = 3, m = 3, a direct simple computation gives the result. �

In Fig. 1 we list the sizes of some s-PD-sets for codes of points and hyperplanes
(� = p − 1) of PGm(Fp), found using Magma [BC94] and GAP [GAP]. In these
cases we used the information sets described in Definition 3, observing that different
information sets of this type for a given code produced partial PD-sets of comparable
sizes. In addition, in the affine group AGL5(F2), we found a 7-PD-set of size 51 and
an 8-PD-set of size 74.

We now show how the existence of s-PD-sets for RFq
(�, m) leads to the existence

of (s + 1)-PD-sets for RFq
(�, m + r). If Fq = {�0, . . . , �q−1}, consider the information

set for RFq
(�, m),

Im,� =
{

(�i1 , �i2 , . . . , �im) | 0� ik �q − 1, 1�k�m,

m∑
k=1

ik ��

}

based on the ordering [�0, . . . , �q−1] of Fq . If P(m) = Fm
q is embedded in P(m+r) =

Fm+r
q by v �→ (v, 0) where r �1, then clearly Im,� embeds in Im+r,� and AGLm(Fq)

embeds in AGLm+r (Fq) naturally. We use these embeddings to show how an (s + 1)-
PD-set for RFq

(�, m + r) with respect to Im+r,� can be constructed from an s-PD-set
for RFq

(�, m) with respect to Im,�.

Proposition 4. Let P be an s-PD-set in AGLm(Fq) for RFq
(�, m) with respect to Im,�.

Let P ∗ be the image of P under the natural embedding of AGLm(Fq) in AGLm+r (Fq),
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where r �1. Let U be the set of q translations of Fm+r
q which fix the first m coordinates,

and let Q = P ∗U . If � < r(q − 1), then Q is an (s + 1)-PD-set in AGLm+r (Fq) for
RFq

(�, m + r) with respect to Im+r,�.
In particular, if P ⊆ Tm(Fq) then Q ⊆ Tm+r (Fq).

Proof. Let a1, . . . , as+1 ∈ P(m+r). For each i, let a′
i be the projection of ai on the first

m coordinates. Choose g ∈ P so that a′
ig /∈ Im,� for i = 1, . . . , s. If g �→ g∗ ∈ P ∗,

then aig
∗ /∈ Im+r,� for i = 1, . . . , s. Indeed, aig

∗u /∈ Im+r,� for i = 1, . . . , s and
u ∈ U . We may choose u ∈ U so that as+1g

∗u has �q−1 as its j-th coordinate, for all
j > m. Since r(q − 1) > �, as+1g

∗u �∈ Im+r,�. �

5. Projective geometries

The codes of the projective geometries over finite fields are the non-primitive gener-
alized Reed–Muller codes (see [AK92, Chapter 5]). We can obtain some results about
these codes in the prime order case by using some of the facts we have established for
the affine case, and the usual embeddings. We can also apply Lemma 7 to the projec-
tive (non-primitive) generalized Reed–Muller codes to obtain similar results for s for
an automorphism group to be an s-PD-set, using the known facts about the dimension
and minimum weight.

Firstly, we can construct information sets for the code Cp(PGm,r(Fp)) in the follow-
ing way: represent a point of PGm(Fp) by a vector in Fm+1

p whose first non-zero coor-
dinate is 1. Let �m,r = dim(Cp(AGm,r(Fp))) and 	m,r = dim(Cp(PGm,r(Fp))). Then
	m,r = 	m−1,r + �m,r (see [AK92, Corollary 5.7.3]). Note that �m,r = |{(i1, . . . , im) |∑

1� j �m ij �(m − r)(p − 1)}| and thus 	m,r = 1 + ∑
1� i �m−r �r+i,r .

If I is an information set for Cp(AGm,m−1(Fp)), then I∗ ∪ {(0, . . . , 0, 1)} is an
information set for Cp(PGm,m−1(Fp)), where

I∗ = {(1, x1, . . . , xm) | (x1, . . . , xm) ∈ I}.

More generally, if I is an information set for Cp(AGm,r(Fp)) and J is an information
set for Cp(PGm−1,r (Fp)), then I∗ ∪ J † is an information set for Cp(PGm,r(Fp)),
where J † = {(0, x1, . . . , xm) | (x1, . . . , xm) ∈ J }.

Using this inductive construction, we see that {(0, . . . , 0, 1)} ∪ ⋃
1� i � r Ki is an

information set for Cp(PGm,r(Fp)), where Ki is the set of vectors

⎧⎪⎨
⎪⎩(0, . . . , 0︸ ︷︷ ︸

r−i

, 1, ar−i+1, . . . , am︸ ︷︷ ︸
m−r+i

) | 0�aj �p − 1, r − i + 1�j �m,

m∑
j=r−i+1

aj � i(p − 1)

⎫⎪⎬
⎪⎭ .

As a by-product of this construction of information sets for the projective geometry
designs, in the case of the design of points and hyperplanes we can use homogeneous
coordinates to obtain a set of hyperplanes whose incidence vectors will form a basis
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for the code in the prime case. This construction can be compared with the basis found
in [GK98], where a basis of hyperplanes for the affine prime case was constructed and
this then applied to the projective case.

Proposition 5. If C = Cp(PGm,m−1(Fp)), where p is a prime and m�2, then, using
homogeneous coordinates, the incidence vectors of the set

{
(1, a1, . . . , am)′ | ai ∈ Fp,

m∑
i=1

ai �p − 1

}
∪ {(0, . . . , 0, 1)′}

of hyperplanes form a basis for C.
Similarly, a basis for Cp(AGm,m−1(Fp)) for m�2, p prime, is the set of incidence

vectors of the hyperplanes with equation

m∑
i=1

aiXi = p − 1 with
m∑

i=1

ai �p − 1,

where ai ∈ Fp for 1� i�m, and not all the ai are 0, along with the hyperplane with
equation Xm = 0.

Proof. This follows from the above discussion of the progression from projective to
affine, and vice-versa, and of the dual nature of the projective case, noting that if a set
of projective points in homogeneous coordinates is an information set, then the set of
hyperplanes with these coordinates will give a basis. �

Finally we derive some partial PD-sets for these codes from partial PD-sets for the
corresponding affine geometry codes. In Proposition 2, using the information set I
of Eq. (2), we obtained a 2-PD-set R = {�i | 0� i�p − 1} for Cp(AGm,m−1(Fp)),
where �i is the translation �i : v �→ v + iz and z = (1, . . . , 1). Using the embedding of
AGm(Fp) into PGm(Fp) described above, each �i corresponds to a collineation

�̂i : (x0, x1, . . . , xm) �→ (x0, x1 + i, . . . , xm + i)

of PGm(Fp). Let Z = {�̂i | 0� i�p − 1}. We define two further collineations:

� : (x0, . . . , xm−2, xm−1, xm) �→ (x0, . . . , xm−2, xm, xm−1),

� : (x0, x1, . . . , xm−1, xm) �→ (x0, x1, . . . , xm−1 + xm, xm),

where the images are normalized further if necessary.
Using these collineations we find a ‘small’ 2-PD-set for Cp(PGm,m−1(Fp)).
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Proposition 6. For m�3, p�5, the set S = Z∪�Z∪{�} of collineations of PGm(Fp) is
a 2-PD-set of size 2p+1 of the code Cp(PGm,m−1(Fp)) with respect to the information
set I∗ ∪ {(0, . . . , 0, 1)}.

Proof. In this case, the check set

C =
⎧⎨
⎩(1, a1, . . . , am) | 0�aj �p − 1 for 1�j �m,

∑
1� j �m

aj > p − 1

⎫⎬
⎭

∪ {(0, a1, . . . , am) | 0�aj �p − 1 for 1�j �m, am not the leading entry}.

Clearly a pair of points of the form (1, a1, . . . , am) and (1, b1, . . . , bm) can be
mapped into C by an element of Z by Proposition 2. Also, since m�3, a pair of points
of the form (1, a1, . . . , am) and (0, . . . , 0, 1) can be mapped into C by an element of
�Z, again by Proposition 2.

Since Z fixes all points with first coordinate 0, a pair of points of the form (1, a1, . . . ,

am) and (0, . . . , 0, 1, aj , . . . , am) �= (0, . . . , 0, 1) can be mapped into C by an element
of Z by Proposition 2.

A pair of points of the form (0, . . . , 0, 1, aj , . . . , am) and (0, . . . , 0, 1, bk, . . . , bm),
neither equal to (0, . . . , 0, 1), can be mapped into C by the identity mapping.

A pair of points of the form (0, . . . , 0, 1, aj , . . . , am) and (0, . . . , 0, 1), where either
j �m − 1 or j = m and am �= 0, can be mapped into C by �. The pair of points
(0, . . . , 0, 1, 0) and (0, . . . , 0, 1) can be mapped into C by �. �
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