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Induction of non-specific toxicities by doxorubicin (DOX) has restricted conventional DOX-
based chemotherapy. pH-responsive dextrin nanogels (DNGs) have been fabricated in order
to incorporate and deliver DOX to specific (targeted) sites. However, adequate stability studies
of DOX-loaded DNGs are required for selection of storage conditions. The aim of this study
was therefore to evaluate the accelerated (25 °C/60% RH) and long-term (5 °C) stability of
DNGs prepared with formaldehyde (FDNGs) and glyoxal (GDNGs) as cross-linker by deter-
mining the change in their physicochemical properties. The mean diameter decreased with

Keywords: time during long-term storage. The drug content between freshly prepared (initial day) and
Stability after storage at 5 °C for 180 days of DOX-loaded FDNGs and DOX-loaded GDNGs was not
Nanogels significantly different (p > 0.05), but decreased after storage under the accelerated condi-
Dextrin tion. The release of DOX from all DNGs was pH-dependent. However, DNGs kept under the
accelerated condition showed higher amount of DOX release than those stored at 5 °C and
the freshly prepared ones. The results indicate that the stability of DNGs could be im-

proved by their storage at 5 °C.
© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Shenyang Phar-
maceutical University. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
X for cancer include surgery, radiation, and chemotherapy,

1. Introduction

Cancer is a major cause of mortality worldwide with 8.2 million
people being affected in 2012 [1]. Major clinical treatments

with chemotherapy being the major form. However, chemo-
therapy is a major form of management of cancer patients
enlisting the used drugs to kill cancer cells. Among such
drugs, the anthraquinonedoxorubicin (DOX) is a frontline

* Corresponding author. Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000,
Thailand. Tel.: +66 3425 5800; fax: +66 3425 5801.
E-mail address: sriamornsak_p@su.ac.th (P. Sriamornsak).

http://dx.doi.org/10.1016/j.ajps.2015.09.006

1818-0876/© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Shenyang Pharmaceutical University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://core.ac.uk/display/82682554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sriamornsak_p@su.ac.th
http://www.sciencedirect.com/science/journal/18180876
http://www.elsevier.com/locate/AJPS
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajps.2015.09.006&domain=pdf

ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES 11 (2016) 648-654 649

chemotherapeutic agent used for treatment of several forms
of cancer. Its mechanism of action is to inhibit DNA poly-
merases and topoisomerases and block the cell cycle, usually
resulting in the induction of apoptosis in tumor cells [2,3].
Despite its efficacy, the clinical use of unformulated (free) DOX
is limited due to development of progressive cardiomyopa-
thy with apoptosis induction in cardiomyocytes by activation
of p53 protein and reactive oxygen species leading to conges-
tive heart failure [4]. In addressing this problem, a variety of
innovative approaches to entrap this drug in nanocarriers and
hopefully achieve site-specific delivery has been developed.

Among these approaches, pH-responsive nanocarriers have
been previously exploited for targeted delivery of drugs. Due
to its biocompatibility and degradability [5], dextrin is fre-
quently chosen for nanogels formulating in order to circumvent
carrier toxicity. It is a saccharide-based polymer containing
p-glucose units linked by a-(1—4) glycosidic bonds, and con-
siderable quantities of hydroxyl groups that are readily modified.
Regarding biomedical application, dextrin is employed as a drug
delivery system [5-9] and as a scaffold material [10,11]. pH-
responsive dextrin nanogels (DNGs) are cross-linked dextrin
networks fabricated by incorporating pH-responsive bonds,
namely acetal bonds, into their structure. These bonds are used
as linkers to immobilize anti-tumor drugs within the carrier
matrix. In this system, DNGs are delivered to the tumor site
via the enhanced permeability and retention (EPR) phenom-
enon [12,13]. DNGs are stable at physiological pH but could be
destabilized and release the drug under mild acidic condi-
tions at the target neoplastic site, resulting in enhanced
therapeutic efficacy and reduced side-effects to normal tissue.
Despite DNGs providing many benefits, the challenge remains
in producing highly stable forms of encapsulated DOX and
maintaining the long-term pH-responsive behavior. Knowl-
edge of the stability helps in selecting appropriate formulation
and packaging as well as providing suitable storage condi-
tions and shelf-life, which is essential for regulatory
documentation [14].

The purpose of this research is to investigate the long-
term stability and accelerated stability of two different types
of pH-responsive DNGs, that is, FDNGs and GDNGs which were
formulated using formaldehyde and glyoxal as a cross-linker,
respectively. In addition, the effects of various types and quan-
tities of cross-linker on stability were also studied. The changes
of properties namely mean diameter, {-potential, chemical
structure, drug remaining, pH-responsive behavior and amount
of drug release in both DNGs after storage over a period of 6
months were evaluated in order to elucidate the optimal con-
ditions for DNG stability during storage for future application.

2. Materials and methods
2.1. Materials

Dextrin (molecular weight of 1400 Da) was a gift from Siam
Modified Starch Co., Ltd. (Pathumthani, Thailand). Glyoxal,
ethanol and doxorubicin hydrochloride (DOX) were obtained
from Sigma-Aldrich Chemie (Steinheim, Germany). Hydrochlo-
ric acid, formaldehyde and n-hexane were purchased from RCI
Labscan (Bangkok, Thailand). Tween® 80 and Span® 80 were pur-

chased from P.C. Drug Center Co., Ltd. (Bangkok, Thailand).
Deionized water was used throughout the study.

2.2.  Preparation of dextrin nanogels

DOX loaded-DNGs were prepared as described previously by
our group [15] with some modifications. Water-in-hexane emul-
sions were prepared, in order to form a nanoemulsion template,
using 7% (w/w) mixture of Span® 80/Tween® 80 as emulsifier.
Dextrin and DOX were dissolved in the water phase to obtain
the final concentration of 5% (w/w) and 0.2 mg/mL, respec-
tively. The water phase was added to the emulsion template
and ultrasonicated for 1 minute to form nanoemulsions. After
the nanoemulsions were obtained, different concentrations of
cross-linking agent (that is, formaldehyde or glyoxal) were added
immediately to achieve mole ratios of dextrin to cross-
linking agent of 4:1, 10:1, 15:1 and 20:1. The mixtures were
homogenized via ultrasonication (UP400S, Hielscher, Germany)
with 100% amplitude of ultrasound power (400 W, 24 KHz) for
30 min. The obtained nanoemulsions were then stirred with
a magnetic stirrer for 12 h to continue the cross-linking reac-
tion. DNGs were precipitated from the nanoemulsions by adding
99% (v/v) ethanol and washed 3 times with ethanol and finally
rinsed with deionized water. Subsequently, the DNGs were
freeze-dried for 24 h. The dried DNGs obtained from the freeze-
drying process were packaged in zip-lock bags and kept at 4 °C
until further analysis.

2.3.  Stability study

The dried DNGs were kept under two conditions - 25 °C + 2 °C/
60% + 5%RH (accelerated conditions; in stability chamber) and
5 £ 3 °C (long term condition; in refrigerator), for 6 months before
further investigation.

2.4.  Particle size and {-potential determination

Before measurement, DNGs were dispersed with phosphate
buffer (pH 7.4, 6.8 and 5) and filtered through a 0.45-uym mem-
brane. Zetasizer Nano-ZS (Malvern Instruments, UK) equipped
with a He—Ne laser beam operating at a wavelength of 633 nm
and a detector fixed at a scattering angle of 173°, was used to
determine the hydrodynamic diameter and {-potential of DNGs
at 25 °C. Measurements were performed three times.

2.5.  Morphological observation of DNGs

Morphological analysis of DNGs was carried out on a trans-
mission electron microscope (TEM; model JEM-1230, JOEL Corp.,
Japan). TEM analyses were performed by sample mounting on
a copper glider grid of 3.5 mm with a single aperture, ad-
sorbed with filter paper and dried at ambient temperature, prior
to TEM examination.

2.6. 3C nuclear magnetic resonance spectroscopy
(**C NMR)

The samples were dissolved in deuterium oxide. The *C NMR
spectra of samples were recorded on NMR spectroscopy (model
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ADVANCE 300, Bruker, Germany) with deuterium oxide as the
solvent. The chemical shifts were given in § (ppm).

2.7. Drug content determination

The DNG dispersion was mixed with 1.0 N HCl and stirred for
12 h. Subsequently, the suspensions were filtered through 0.45-
um cellulose acetate membrane. The DOX concentration in
DNGs was measured using UV absorbance at 495 nm with a
UV/vis spectrophotometer (model T60U, PG Instrument Ltd.,
England). All measurements were performed in triplicate. DOX
concentration was then calculated based on a standard curve
of known amounts of DOX in 0.1 N HCL. Drug content and drug
remaining were defined as:

Weight of loaded drug(mg)x100

D tent (%) =
rug content (%) Weight of drug —loaded nanogels(mg)

(1)

Drug content after stability test(%)x 100

D inine (%) =
Tug remaining (%) Drug content at initial day (%)

2.8. In vitro drug release study

The in vitro release of DOX-loaded DNGs were investigated using
the dialysis method [15]. Briefly, DOX-loaded DNGs were added
to a dialysis membrane bag (Cellu-Sep T2 MWCO 6-8 kDa; Mem-
brane Filtration Products Inc., Braine-1'Alleud, Belgium), and then
immersed in phosphate buffer (25 mL) and shaken horizon-
tally (100 rpm) at 37 °C using an environmental shaker incubator
(model ES-20, Orbital Shaker-Incubator, Biosan, Latvia). At certain
time points, the outer phase of the dialysis membrane bag was
harvested and replaced with fresh buffer. The concentration
of DOX in the collected samples was analyzed under UV/vis
absorbance mode at 495 nm.

2.9. Statistical analysis

Data were analyzed using SPSS version 11.5 for Windows (SPSS
Inc., USA). The results were represented as mean * standard
deviation (SD). Analysis of variance (One-way ANOVA) with
Scheffé or Games-Howell post hoc test was performed to evalu-
ate difference among the groups. The statistical significance
was set at p <0.05.

3. Results and discussion

As previously reported [16], pH-responsive DNGs were pre-
pared by an emulsion cross-linking technique using glyoxal or
formaldehyde as a cross-linker. In this method, nanogels were
formed in the nanoemulsion droplet by simultaneously cross-
linking and creating 3-dimensional structures. However, it is
known that nanogels are prone to aggregation, leading to an
increase in particle size and loss of certain properties with time
[17]. Therefore, the physicochemical properties, amount of en-
capsulated drug and drug release behavior over the process
of storage were used as indicators to evaluate the acceler-

ated and long-term stability of FDNGs and GDNGs, namely
25 °C/60% RH and 5 °C, respectively.

3.1. Changes in physicochemical properties

The ability of DOX-loaded FDNGs and GDNGs to maintain their
sizes over a long storage period was evaluated. Fig. 1 shows
that size and zeta-potential of DOX-loaded FDNGs and GDNGs
changed after storage at 25 °C/60% RH and 5 °C for 180 days.
The results indicate that the trends of mean diameter and
{-potential change were varied; they tended to decrease with
time, reflecting the different changes during different stages
in long-term storage. Minor change in the size of DNGs kept
at 5 °C was observed, whereas the size of DNGs keeping at 25 °C/
60% RH showed an apparent change over the time period
investigated. The change of size was probably due to the un-
stable linkage that could be broken during storage as a result
of exposure to moisture; however, storing at 5 °C seemed to
increase conservation of size of nanogels.

3.2. Changes in chemical structure

Figs. 2 and 3 shows the **C NMR spectra of freshly prepared
FDNGs and GDNGs and those after storage at 25 °C/60% RH and
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Fig. 1 - (a) Size and (b) {-potential of DOX-loaded FDNGs
(4:1), GDNGSs (4:1), (10:1) and (20:1) at initial day and after
storage at 25 °C/60% RH and 5 °C for 180 days.
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Fig. 2 - *C NMR spectra of GDNGs at a molar ratio of dextrin to glyoxal of 4:1 at (a) initial day, (b) after storage at 5 °C, and (c)

25 °C/60% RH, compared to (d) native dextrin.
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Fig. 3 - 3C NMR spectra of FDNGs at a molar ratio of dextrin to formaldehyde of 4:1 at (a) initial day, (b) after storage at 5 °C,

and (c) 25 °C/60% RH, compared to (d) native dextrin.
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5 °C, fabricated at a mole ratio of dextrin to formaldehyde or
glyoxal of 4:1. The chemical shifts at 99.52 ppm (C1), 76.62 ppm
(C4), 73.27-71.10 ppm (C2, C3, C5), and 60.39 ppm (C6) verified
a presence of dextrin molecule as reported previously [18-20].
The signals at 90 ppm (C7) of GDNGs (Fig. 2a) and 84 ppm (C8)
of FDNGs (Fig. 3a) were assigned to the formation of acetal
linkage [21]. After storage at 25 °C/60% RH and 5 °C, the char-
acteristic peaks of this acetal linkage of GDNGs (Fig. 2c) were
decreased when compared to freshly prepared ones, but no
signal at 84 ppm of FDNGs (Fig. 3c) was observed. The absence
of these peaks is probably due to destabilization and degra-
dation of acetal bonds after storage under the accelerated
conditions, perhaps by the moisture in the humid condition.
However, the NMR signals of GDNGs that were kept at 5 °C were
similar to freshly prepared ones, indicating that storage at 5 °C
could retain nanogel stability long-term. On the other hand,
the small signal was observed at 84 ppm for FDNGs, indicat-
ing that the acetal bonds, which were formed by formaldehyde,
were less stable than that formed by glyoxal.

3.3. Changes in encapsulated drug

The ability to retain encapsulated drug during storage is also
critical to the development of a drug carrier. The drug remain-
ing in nanogels (both FDNGs and GDNGs) was evaluated to
determine the long-term stability of these formulations. The
stability of DOX-loaded FDNGs and GDNGs is shown in Fig. 4.
There was no significant difference observed in the encapsu-
lation efficiency between freshly-prepared (initial day) DOX-
loaded FDNGs and DOX-loaded GDNGs and those after storage
at 5 °C for 180 days (p > 0.05). However, the encapsulation ef-
ficiency decreased after storage at accelerated condition, 25 °C/
60% RH (data not shown). According to the literature, DOX is
stable in the solid state at 2-8 °C (protected from light), and
the degradation rate of DOX increases with increasing tem-
perature [22-24]. Moreover, the amount of glyoxal also affected
DOX stability; DOX was less stable when the dextrin to glyoxal
ratio was increased from 4:1 to 20:1. It is possible that DOX
cannot be completely entrapped in nanogels with lower quan-

os5°C
120 4 m25°C/60%RH
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Fig. 4 - Drug remaining in DOX-loaded FDNGs (4:1), GDNGs
(4:1), (10:1) and (20:1) at initial day and after storage at
25 °C/60% RH and 5 °C for 180 days.

tities of cross-linker; therefore, DOX located at the surface of
the nanogels is easily degraded by the environment.

3.4. Changes in pH-responsive behavior and DOX release

The mechanism controlling the release of DOX incorporated
in DNGs is mainly attributed to pH-induced structural changes.
This behavior has been ascribed to the hydrolysis of acetal
bonds in the DNG structure under mildly acidic conditions, re-
sulting in destabilization of the structural integrity of DNGs
that could accelerate DOX release at pH below 7 [21]. In order
to verify the hypothesis that DOX was released due to the de-
stabilization of DNG structure, the morphology of FDNGs and
GDNGs at a mole ratio of dextrin to cross-linker of 4:1 at each
pPH, (5, 6.8 and 7.4) was examined by TEM. The TEM images
showed deformation and fracture in both FDNG and GDNG
structures; the size of DNGs decreased with decreasing pH
(Fig. 5). These results confirmed that the change of nanogel
structure by acid hydrolysis was attributed to the difference
in drug release under different pHs.

() ()

100 nm 100 nm

(b) (e)

Fig. 5 - TEM micrographs of DOX-loaded FDNGs at a mole
ratio of dextrin to formaldehyde of 4:1 in (a) pH 7.4, (b) pH
6.8, (c) pH 5 phosphate buffer, and DOX-loaded GDNGs at a
mole ratio of dextrin to glyoxal of 4:1 in (d) pH 7.4, (e) pH
6.8, (f) pH 5 phosphate buffer.
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The change in pH dependency of both FDNGs and GDNGs
after storage was investigated. Fig. 6 shows the amount of DOX
released at different pHs, within 24 h, from FDNGs at a mole
ratio of dextrin to formaldehyde of 4:1 and GDNGs at a mole
ratio of dextrin to glyoxal of 4:1 and 20:1, before and after
6-month storage. All DNGs demonstrated pH-dependent drug
release properties. Drug release was slow at physiological pH
but increased significantly in acidic medium. In addition, type
and amount of cross-linker also affected the release of drug,
similar to freshly prepared ones (Fig. 6). However, DNGs tested
under accelerated condition (25 °C/60% RH) showed higher
amount of DOX release than those kept at 5 °C and the freshly-
prepared ones. At pH 5, about 98%, 60% and 50% of DOX were
released from GDNGs at mole ratio of dextrin to glyoxal of 20:1
kept at 25 °C/60% RH, 5 °C and freshly-prepared GDNGs, re-
spectively. The results indicated that the acetal bond in DNG
structure was unstable, easily hydrolyzed in solution when
stored under the accelerated condition for 6 months. These
changes related well to the corresponding NMR spectra.
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Fig. 6 - pH-dependent release of DOX from FDNGs (4:1),
GDNGs (4:1) and (20:1) at 37 °C in (a) pH 5, (b) pH 6.8, (c) pH
7.4 phosphate buffer, after storage under the long-term

(5 °C) and accelerated (25 °C/60% RH) conditions.

4, Conclusion

The stability of both FDNGs and GDNG was examined by mea-
suring the change of their physical properties over a period of
6 months under different conditions, 5 °C and 25 °C/60% RH.
Under accelerated condition (25 °C/60% RH), both FDNGs and
GDNGs were found to be unstable; the particle size and amount
of encapsulated DOX decreased over time. In contrast, the
amount of DOX release increased at all pH conditions, com-
pared with those kept at 5 °C and the freshly prepared ones.
The results of NMR demonstrated that the destabilization and
degradation of acetal bonds occurred after storage under the
accelerated condition. In addition, the long-term stability of
DNGs is affected by type of cross-linker, with GDNGs being more
stable than FDNGs. The stability of DNGs can be manipulated
by storage at 5 °C.
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