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We investigate mappings of the form g =fA where f is a cyclically monotonous mapping of 
finite range and A is a linear mapping given by a symmetric matrix. We give some upper bounds 
on the pre-period of g, i.e. the maximum q for which all g(x),g2(x) . . . . .  gq(x) are distinct. 

Let S be a subset of  the m-dimensional Euclidean space R m and g : S ~ S  be a 
mapping of  finite range. The period and the pre-period of  g are minimal p_> 1 and 
q_> 0 such that  gt +p(y)= gt(y) for all t >_ q and y e S. A mapping f : S ~ S  is cyclically 

monotonous  (abbreviated as c.m.) if 

n 

(f(xi)--f(Xi_l))Xi>--O (1)  
i = l  

for every n _  2 and every xl, x2, . . . ,  xn =x0~ S. This notion was introduced by R.T. 
Rockafel lar  (see [10]) who proved that c.m. mappings are just subgradients of  
convex functions. Let us mention that a function f :  R ~ R  is c.m. if and only if it 
is nondecreasing. 

Let us say that  a mapping f is strongly c.m. if f ( x l ) =  . . . .  f (xn)  whenever the 
equality occurs in (1) for some xl, . . . ,xn. We proved in [7] and [8] that  the period 
o f f A  is at most 2 w h e n f i s  a strongly c.m. mapping and A is a symmetric matrix. 

In the present paper we give some upper bounds on the pre-period of  g = f A  in 
three special cases. (Z denotes the set of  integers.) 

(a) f = f l  x . . .  ×fro where f / :  Z--* { - 1, 1 } are threshold functions, 
(b) f = f l  x . . .  x f  m where f / :  Z ~ Z  are multi-threshold functions, 
(c) f =f l  x ... X fr  where f / :  zm ' -~Z  m' are strongly c.m. and ml + "" + mr = m. 

Clearly, (c) is more genaral than (b), and (b) than (a), but the more special form 
of  f enables us to give better estimates. The theorems of  the paper are formulated 
rather  to illustrate some different methods of  estimation, than to cover all possible 
variat ion of  premises. The integrality is not important  for computing bounds but 
it enables us to simplify the statements and the proofs.  
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The decomposition of f into Cartesian product f l  x- . .  Xfr has also a reasonable 
interpretation. Consider a society of  r members where each member has some initial 
opinion represented by a vector y~, i = 1, ..., r. The members change simultaniously 
their opinions in discrete steps by the rule 

Y~+I =J~ ~.=~ AjiYJt) 

where y t  y is the opinion of the i-th member at time t, Aji is a matrix of size (mi, mj) 
which represents the influence of the j-th member on the i-th one, and f~ is the 
evaluation mapping used by the i-th member to compute his new opinion from 
influences of other members. 

The discrete influence systems as described above were studied first by Harary 
[14] and French [2] (see also [9]), and similar models also appeared in study of 
neural networks [1]. First results on 'period 2' were special evaluation mappings: 
in [3] and [4] for multi-threshold functions, and in [6] for the 'choice of the most 
spread opinion'. The unifying approach with the states of an influence system 
encoded by vectors of an Euclidean space was started in [7], where the Corollary 
of Theorem 2 was proved. The important role of convex functions in discrete in- 
fluence systems was established first in [8]. The limit behaviour of discrete influence 
systems with an infinite number of states was studied in [5]. Some applications to 
social models with ranking alternatives were considered in [15]. 

We were informed by one of the referees that some results on pre-periods were 
proved in [11], [12] and [131. 

Throughout the paper we use the following notation. For a vector x E R  m, x i 

denotes the i-th component, and ~x~ = ~:im~ I x ' l  . The scalar product of vectors x 
and y is written as xy. If A is a matrix, then [IA u = ~i,j laijl. We also use A to 
denote the linear mapping x ~ A x .  If f i : X i * Y i ,  i=1,2 ,  are mappings, then 
fl  x f2 : Xl x X2--" YI x Y2 denotes their Cartesian product. 

Theorem 1. Let f :Rm-~{ - 1, 1} m be defined by f ( x  1, . . . ,  x m ) =  (y 1, ...,ym) where 
y i =  1 i f  xi>O and y i= -1  i f  xi <O. Let A =(aij) be a symmetric matrix of  size m 
with integral entries. Then the pre-period of  fA"  { - 1, 1}m--~{ -- 1, 1} m is at most 
½(~A~ + 3 s - m )  where s=l{i" Ejm~ aij is even}]. 

Proof. Define the matrix B = (bij) of size m + 1 by 

bij=aij for i,j<_m, 

f l for  ~ aij even, i_< m 
bin+ l,i= bi, m+ 1 = J 

0 for ~ aij odd, i_<m, 

bm+l,m+ 1 = ~A I + 1. 
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Define h :Rm+l--*{ - 1, 1} m+l by h(x  1, . . . , x m ,  x m + l ) = ( f ( x 1 ,  . . . , x m ) ,  1). It is easy to 

see that  the period and the pre-period of  hB and fA are the same. Let q be the pre- 

period of hB. Let an initial Y0 e { - 1, 1 } m + 1 be given. Pu t  Yt + 1 = hB(Yt) for t > 0. If  

t < q, then Yt + 2BYt + 1 = [1BYt + 1[[, and because of Yt + 2 =/=Yt it follows that  YtBYt + 1 <- 

IIBY,+ zll- 2. Thus,  

Yt + 2BYt + 1 - YtBYt + I > 2  

Set 

for t < q. (2) 

q-I 
V= E (Yt+2Byt+ 1 -YtBYt+ 1) =Yq+ IByq-YoBYl  • 

t=o 

Using (2) we get 

V>_ 2q. (3) 

On the other hand,  Yq+lByq= [[Byq[[-2UAU + 2 s +  1 and yoBy  I =Y lBYo= IlBy011 > 
U A ] - s + m + 1. Hence 

v_< IIAU + 3 s - m .  (4) 

Finally,  combining (3) and (4) we get q < ½([I A I[ + 3 s - m ) .  []  

Example .  Let A = (aiy) be the matrix defined by a~ i ÷ l = ai+ l, l = 1 for i = 1, ..., m - 1, 

am, m - - - -1 ,  and aij = 0 otherwise. Let f be as in Theorem 1, and Y0 = (1, - 1 ,  - 
1 , . . . , - 1 ) .  One can easily check that  ( fA) t+l (yo) : / : ( fA) t (yo)  for t < 2 m - 2 ,  and 

(fA) 2m- 10"0) = ( f A )  2m-20'0). Hence the pre-period of f A  is at least 2m - 2 which 

agrees with the upper bound by Theorem 1. (This example was suggested by J. 

Demel.) 

T h e o r e m  2. L e t  ml ,  . . . , m r  be pos i t ive  integers, and  A be a s ymme t r i c  matr ix  o f  

s ize  m = ~. m i with integral entries. Le t  f i :  zmi- '-~zmi,  i=  1, . . . , r ,  be s t rongly  c .m.  

mappings ,  each at taining at  mos t  p dis t inct  values. Then the pre -per iod  o f  

( f l  x ... X f r ) A  is at m o s t  2M211a ~p(4p + 1) + 2pr  where M =  max { nf/(x)ll: i = 1, ..., r, 
XEZmi}.  

Proof .  Set f = f l  x ... X f r .  For x E  Z m' x ... x Z mr, let X i denote the vector consisting 
of  those components  of  x belonging to Z mi. Thus x =  ( x l , . . . , x  r) ~ Z m' × ... x Z mr. 

Let Yo ~ z m  be a given initial vector. Set Y t + l = f ( A Y t )  for t_> 0. Let q be the pre- 

period of f A .  Set 

q 
V =  ~ (Yt+ 1 - Y t -  I)AYt =Yq+ I A y q - Y o A Y l  • 

t=l 

Clearly,  

V<_2M2~A~. (5) 
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Let d = [q/2] (the upper integer approximation). Set 

d 

Vodd = 2 (Y2t  + 1 --  Y2t- I ) A Y 2 t ,  
t=!  

and 

d 

Veven = 2 ( Y 2 t - Y 2 t - 2 ) A Y 2 t  - 1" 
t=l  

Put xt=AYt, t_>O, and set 

d 
i _ i i i 

Vodd-- (fitx ,)-fi(x t-2))xl,. 
t=l  

Clearly Vodd ~ = l  i = Vod d. To every tl, t 2, O<_tl<t2<d we assign the interval 
I= I(q, t2) = {t" tl < t_< t2}. Define 

Si(i(tl, t2)) { t~l( t l ,  t2 ) . i i = 

and denote by si(I(h, t2)) the  cardinality of the set Si. 
Fix some i = 1, ..., r. We give a lower bound on V/dd . We say that an interval 

X i X i I(tl, t2) is admissible if f/(  2t~)=f(2t,). We claim that there is a system J of pair- 
wise disjoint admissible intervals with the properties 

o¢1>- [ l si(I(O,d))] - 1 ,  (6) 

and 

I(0, d) \ 1UjIl<_2p. (7) 

As f~ attains at most p distinct values, there is some y such that the set fly = 
{ t~Si(I(1,d))  :f/(x~t) =yi} has at least u =  F(1/p)si(I(O,d))] elements. Let t l<  
tz < .'. < tu be elements of fly. Set Jl = {I(ti, ti+ l) : i= 1, ..., u - 1}. Let J2 be a system 
(possibly empty) of  pairwise disjoint admissible intervals such that 

~ ICI(O, tl) and II(O, tl) \ U Il <_p. 
l e J2 

Similarly, let ~ be a system of pairwise disjoint admissible intervals such that 

U I c  I(tu, d) and II(tu, d) \ U Il <_p. 
l~J3 

(The existence of both J2 and ~ follows from the pigeon-hole principle.) Clearly, 
J = J l U J 2 U J 3  satisfies (6) and (7). As f / i s  strongly c.m. we get 

t" 
x i  i i ]~ (9~(zt) > 1 (8) -fAx ,_ l - 

t=t '+l  

for every admissible interval I(t" t")e  J. On the other hand, 
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m i Ira 

( f i ( x i t )  i i <2M2( E E [a jl) (9) 
I=rai_t + 1 j = !  

(mo = 0). Clearly (6), (7), (8) and (9) give together 

i _ 
V o d d - -  E ( f i ( x i ~ t ) - - f i ( x l t - 2 ) ) X t  -}- E ( f i ( x i~ t ) - - f i ( x i2 t -2 ) )X t  

t ~  tE~t.J& 

+ t ¢ ~ j ( f i ( x i 2 t ) - - f i ( x 2 t - 2 ) ) X t  

>_ si(I(O,d)) - l + O - 2 p . 2 M  z 2~ ~., laol. 
I=mi_t + 1 j = l  

Thus 

Voaa>_ 1 ~ si(i(O,d))_r_4pg2llA[i" 
p i=l 

As for every t = 1, . . . ,  d there is some i such that fi(xi~t) :#f/(x~t_2),i we have 

(lO) 

si(l(O, d)) >_ d. (11) 
i=1 

Hence (10) and (11) give 

1 
Voa d >_ - -  d -  r -  4pM2HA li- 

P 

It is possible to estimate Veven in the same way. Thus 

[] 

V = Veven + Voaa>-2( 1 d - r - 4 p M 2 ~ A l l ) ,  

which together with (5) give d<_M21lAUp(4p+ 1)+pr .  

Corollary [8]. I f  f is strongly c.m. and A a symmetric matrix, then the period o f  
f A  is at most 2. [] 

Lemma.  Let f :  Z ~ Z  be a nondecreasing mapping. Then 

11 
~, (f(xi)-f(xi-l))xi>-½l{i: f ( x i )* f ( x i - l ) ,  i :  1, . . . ,n}l  
i=l 

for  every n >_ 2 and x~, .. . ,  xn = Xo ~ Z. 

Proof. By induction on n. It is trivial for n=2.  Let n > 2  and Xl,. . . ,xn=xo be 
given. We can assume that  xi~xi-~ for i= 1, . . . ,n,  and also x ,>x i  for i= 1, . . . ,n.  
Put  Yi =)(4 for i = 1, ..., n - 1, Yo = xn_ i. Then 

n n-I  
( f ( X i ) - f ( x i - l ) ) X i  = ~. ( f ( Y i ) - f O ' i - l ) ) Y i + ( f ( x n ) - f ( x n - l ) ) ( X n - X l ) .  

i=1 i= !  
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If  f (xn) =f (xn-  1), then the statement follows immediately, and if f (xn)  :/:f(xn- 1), 
then (f(xn) - f (xn- l ) ) (x , ,  - X l ) - -  > 1 and 

I{i = 1, . . . ,n : f (x i ) : / : f (x i_ l )} l< [{i= 1, .. . ,  n -  1: f (yi): /: f(Yi_l)}l  + 2. 

[]  

Theorem 3. Let m be a positive integer, A be a symmetric matrix o f  size m, 
f l ,  ...,fro be nondecreasing real functions, each attaining at most p distinct values. 
Set f =fl  x . . .  ×fro. Then the pre-period o f  g = fA  is at most 2rap + 4M21[ A [[ (2p + 1) 
where M = m a x  {If/(x)l: i= 1, . . . ,m,  x e R } .  

Proof .  We follow the proof  of  Theorem 2 with m I . . . . .  m r = 1 and m = r. We give 
i i Veven ). arbi trary i = 1, . . . ,  m. It follows from here a better bound on V~o (and Fix 

the pigeon-hole principle that  there is some system J of  pairwise disjoint admissible 
intervals such that  I{ 1, .. . ,  d} \ [_JJl_<p. us ing  the Lemma we get 

12 

E 
t=t~+! 

i -- f i (X2t- 2))X2t > l Si (I(tl, t2)) 

for every admissible interval I(tl, t2)E J. Thus 

m 

V/rid > ½ E s i ( I ) -  2pM 2 E laij[ 
I E J  j = l  

m 

>-½(s i ( I (1 ,d) ) -P)-2P M2 ~. laijl. 
j = l  

Then using sl (I(l ,  d)) +.. .  + S m (1(1,  d )) -> d, we get 

Voad >-- ½(d- mp) - 2pM2I[A ~, 

a n d  finally d<_mp+2M2~A~(2p+ 1). [ ]  

Remark.  Theorem 2 when applied to mappings in Theorem 3 gives the estimation 
2M2[]a[Ip(4p+ 1 ) +  2mp, which is weaker than the bound given by Theorem 3. 
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