and indirect (the “cost of illness” analysis), connected with patient treatment at different stage of disease treatment. Epidemiology of INN in Russia was investigated: prevalence, incidence, structure of disease depending on age, disease progression, and death rate indicators. The expert opinion of real practice of HCC treatment was collected. All methods allowed to estimate the direct and indirect costs of HCC.

RESULTS: HCC incidence rate was 2.4 patients per 100,000 population (85% in the structure of primary liver cancer). HCC incidence rate index was 8658 patients as of 2008. In the HCC, structure intermediate stage prevalence—61%, the terminal and local stages—26% and 9% correspondingly. HCC treatment costs were 2370 rubles for RUB (677.7 ml) (2008). Direct medical costs were 2208 bln RUB (663.1 ml) including inpatient care (90%), outpatient care (6.6%), and diagnostics (3.4%). Indirect costs were 0.161 bln RUB (46.6 ml) including GDP losses (26%) and payment related with temporary disability (74%). The current HCC treatment standardization is not 62.4% respond to international approaches. Very few patients with primary liver cancer get target pharmacotherapy. The analysis of actual practice of managing patients with HCC shows prevalence of drugs with no indications for usage from the point of view of the existence of targeted and standard treatment (form 35% accordingly to reimbursement). CONCLUSIONS: Developing of new standards of HCC treatment including target therapy can reduce the cost of illness by reducing off-label use and optimizing the treatment strategy.

PC54
HOSPITAL UNDERTAKING OF PATIENTS WITH A RESECTION OF TUMOR LUNG IN RUSSIA
Caracal C, Schmidt A, Banard S
SPP1, Consortium, Lyon, France
OBJECTIVES: With 30,651 new cases diagnosed in 2005, lung cancer is the fourth most frequent cancer in France and the first in terms of mortality, with 26,624 deaths per year. The survival rate at 5 years is less than 15%. The purpose of this study was to describe the 2 years hospital undertaking of patients with a resection of a lung tumor, and to estimate associated hospital costs. METHODS: The 2006 to 2008 PMSI French hospital databases were used. Patients with a resection linked to a lung cancer (ICD10 diagnoses: C33* and C34*) in 2006 were identified and followed up during 2 years. Hospital stays, chemotherapy, and radiotherapy sessions were extracted and associated costs (excluding expensive drugs) were assessed using DRG. Kaplan Meier method was applied to estimate associated costs over time, by taking into account survival probabilities. RESULTS: In 2006, 8,798 patients were hospitalized for a resection of a lung tumor, of which 75.8% were men. The mean age at inclusion was 62.4 years, and 2,243 patients (26.6%) died in hospital during follow-up. The mean number of hospitalizations for repeated surgery was 0.11 per patient, 2.00 for radiotherapy sessions, 2.99 for chemotherapy sessions, and 2.57 for other hospitalizations. Total mean hospital cost per patient was estimated at £16,904 (95% CI: £15,080–£18,728, median £14,232) for the 2 years follow-up. First surgery account for 48%, repeated surgeries for 6%, radiotherapy session for 2%, chemotherapy sessions for 8%, and other hospitalizations for 37%. First month of first year supported half of the total cost, and first year borne 86% of it. CONCLUSIONS: In France, lung resections for cancer represent a heavy charge for hospitals. During the follow-up period, major burden is dedicated to hospital stays especially for the first months. These results could be relevant to estimate the impact of coming drugs which will be associated to resection of lung tumor.

PC55
COST OF TREATMENT OF BREAST CANCER IN RUSSIA
Tsypkin E, Zhukovskaya E
Children’s Oncology Center, Chelyabinsk, Russia; State Medical Academy of Chelyabinsk, Chelyabinsk, Russia
OBJECTIVES: To carry out clinico-economic analysis of treatment of children with rhabdomyosarcomas on protocols CWS. METHODOLOGY: We followed 21 patients aged 16 years old with rhabdomyosarcomas. All patients received therapy on protocols CWS. We used following methods of clinico-economic analysis: cost of illness, cost-effectiveness analysis, and analysis of the kept years of a life. RESULTS: The sum of direct medical expenses for one patient has made US$16,904 dollars, and the total sum of direct medical expenses for treatment of 21 patients included in research, has made US$334,984. The overall survival rate was 52% that testifies to high medical efficiency of applied technology. For all groups of patients, the treatment keeps 694.4 years of a life that makes 33 years of a life on one patient. The parity of a cost-effectiveness for one patient has made US$12 dollars for 1 year of the kept life. Considering that in 2008 gross national product has made US$9.5 thousand per capita, an expense for 1 year of the kept life in 18.5 times there is less than parameter of gross national product, means that expenses are justified. Before achievement of a pension age, the surviving patients will work 422 years and will make gross national product the sum US$4009 thousand. The surviving patients provide the state with the income 11.2 times the society for their treatment. CONCLUSIONS: The clinico-economic analysis has shown high medical, economic, and social efficiency of technology of treatment of children with rhabdomyosarcomas on protocols CWS.