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This paper is concerned with the omnipresence of the formation of the sub- 
categories right (left) perpendicular to a subcategory of objects in an abelian 
category. We encounter these subcategories in various contexts: 

l the formation of quotient categories with respect to localizing subcategories 
(cf. Section 2); 

w the deletion of vertices and shrinking of arrows (see [37]) in the representa- 
tion theory of finite dimensional algebras (cf. Section 5); 

l the comparison of the representation theories of different extended Dynkin 
quivers (cf. Section 10); 

l the theory of tilting (cf. Sections 4 and 6); 
l the study of homological epimorphisms of rings (cf. Section 4); 
l the passage from graded modules to coherent sheaves on ‘a possibly weighted 

projective variety or scheme (cf. Section 7 and [21]); 
l the study of (maximal) Cohen-Macaulay modules over surface singularities 

(cf. Section 8); 
. the comparison of weighted projective lines for different weight sequences 

(cf. Section 9); 
l the formation of atline and local algebras attached to path algebras of 

extended Dynkin quivers, canonical algebras, and weighted projective lines 
(cf. Section 11 and [21] and the concept of universal localization in [40]). 

Formation of the perpendicular category has many aspects in common with 
localization and allows one to dispose of localization techniques in situations not 
accessible to any of the classical concepts of localization. This applies in particular 
to applications in the domain of finite dimensional algebras and their representa- 
tions. Several applications of the methods presented in this paper are already in 
existence, partly published, or appearing in print in the near future (see, for 
instance, [40, 39,4,45, 26,49,46]) and have show the versatility of the notion of 
a perpendicular category. 
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It seems that (right) perpendicular categories first appeared-as the subcategories 
of so-called closed objects-in the process of the formation of the quotient 
cateogory of an abelian category with respect to a localizing Serre subcategory (see 
[lS, 47, 341). Another natural occurrence is encountered in Commutative Algebra, 
forming the possibly infinitely generated modules of depth 22 (cf. Section 7). The 
concept and some of the central applications were first presented in a talk given by 
the first author at the Honnef meeting in January 1985. 

We also note that the perfectly matching nomination “perpendicular category” 
was coined by A. Schofield, who discovered independently the usefulness of this 
concept in dealing with hereditary algebras (see 1391, cf. also Section 7). The 
authors further acknowledge the support of the Deutsche Forschungsgemeinschaft 
(SPP “Darstellungstheorie von endlichen Gruppen und endhchdimensionalen 
Algebren”). 

Throughout this paper rings are associative with unit and modules are unitary 
right modules. Mod(R) (respectively mod(R)) denotes the category of all (respec- 
tively all finitely presented) right R-modules. c 1991 Academic Press, Inc 

1. DEFINITIONS AND BASIC PROPERTIES 

If 9’ denotes a system of objects in an abelian category d-usually 
viewed as full subcategory of d-the categories 9” and ‘9 right 
(resp. left) perpendicular to Y are defined as the full subcategories of & 
consisting of all objects A E A?’ satisfying the following two conditions: 

1. Hom(S, A) = 0 (resp. Hom(A, S) = 0) for all SET’, 
2. Ext’(S, A) = 0 (resp. Ext’(A, S) = 0) for all SE 9. 

Here, for objects A and B in &, Ext”(A, B) denotes the group formed by 
the equivalence classes of all n-extensions from B by A taken in the sense 
of Yoneda (cf., for instance Mitchell [31] ). We say that an object A in d 
has projective dimension dn (proj dim A <n) if Extk(A, -) = 0 for all 
k~n+l.IfprojdimS<nforallS~~wewriteprojdimY$n. 

In the following we concentrate mainly on right perpendicular categories. 
The case of left perpendicular categories is dual. 

PROPOSITION 1.1. Let Y be a system of objects in an abelian category &. 
Then the category Y” right perpendicular to Y is closed under the formation 
of kernels and extensions. 

If additionally proj dim Y < 1, 9’l is an exact subcategory of d; i.e., Y’- 
is abelian and the inclusions Y’ + zl is exact. 

Proof Let f: A + B be a morphism in 9’l and denote by K, I, and C 
the kernel, image, and cokernel of f; respectively. The corresponding 
sequences O+K--+A+Z-rO and O+Z+B+C-+O yield long exact 
sequences with S in Y: 
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(1) 0 + Hom(S, K) + Hom(S, A) + Hom(S, I) 

+ Ext’(S, K) + Ext’(S, A) + Ext’(S, I), 

(2) 0 -+ Hom(S, I) + Hom(S, B) + Hom(S, C) 

+ Ext’(S, I) + Ext’(S, B) + Ext’(S, C). 

Since A and B are in Y’, Hom(S, K) = 0 by the exactness of (1) and 
Hom(S, I) = 0 by the exactness of (2); thus Ext’(S, K) = 0 since (1) is exact 
and KE 9” follows. The fact that 9” is closed under extension also 
follows from the associated Ext-sequence. 

Now suppose proj dim 9’ < 1. Then additionally Ext ‘( S, I) = 0 due to 
the exactness of ( 1) and Hom(S, C) = 0 = Ext ‘( S, C) follows from the 
exactness of (2). Hence Z and C are in 9”. 1 

In general Yl is neither closed under cokernels nor an abelian category 
(for explicit examples we refer to Section 8). 

LEMMA 1.2. Let Y and F be systems of objects of an abelian category 
&. Then: 

(i) YcF*F’cYl; 
(ii) Y c l(Y’); 
(iii) 9’ = (‘(9’))‘. 

Proof: Properties (i) and (ii) are obvious. By applying (i) to inclusion 
(ii), we obtain (‘(9”))’ c Y I. By using the left perpendicular version of 
(ii) for 9’l we get the converse inclusion. 1 

Let d be an abelian category and 9’ be a system of objects of d. An 
object A in d is called (finitely) Y-generated if there is a (finite) index set 
Z and an epimorphism @ ie, Si + A with Si E Y for all iE I. A is called 
finitely) Y-presented if there exist (finite) index sets Z and J and an exact 
sequence Oj.JSj~Oi.,Sj-*A~Owith Si,SiEY. 

By means of the preceding notions Proposition 1.1 can be slightly 
sharpened. In view of the applications, we express the left perpendicular 
version. 

PROPOSITION 1.3. Let f: A + B be a morphism, where BE lY and A 
admits a finite filtration with ‘Y-generated factors. Then the cokernel off 
belongs to lY. 

Zf d is a Grothendieck category, then ‘Y is closed under arbitrary direct 
sums and cokernels of morphisms f: A + B, where BE ‘Y and A is the union 
of a smooth well-ordered chain (A,), whose factors A,, ,/A, are 
‘Y-generated. 
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Proof Denote by I (resp. C) the image (resp. cokernel) of J: Then 
exactness of 0 + I+ B -+ C + 0 yields Hom(C, S) = 0 and Hom(1, S) ?’ 
Ext’(C, S) for any S in 9. The assumption on A implies that 
Hom(A, S) = 0, hence Hom(Z, S) = 0 for any SE 9. This proves C E l.Y. 
The proof of the second claim is similar. 1 

We denote by cl(Y) (closure of 9) the smallest subcategory 9” of d 
which contains 9’ and is closed under extensions and under cokernels of 
morphismsf: A -+ B, where B is in 9’ and A admits a finite filtration with 
Y-generated factors. 

If d is a Grothendieck category, Cl(Y) denotes the smallest subcategory 
9” of d which contains Y and is closed under extensions, (arbitrary) 
direct sums, and cokernels of morphismsf: A + B, where B is in 9” and A 
is the union of a smooth well-ordered chain with Y-generated factors. The 
definition implies that Cl(Y) is also closed under direct limits. 

In view of Lemma 1.2 any subcategory Y’ with Y c Y’ c ‘(9”) has the 
same right perpendicular category as 9. 

PROPOSITION 1.4. Let d be an abelian category and 9’ a system of 
objects in &‘. Then ‘(9”‘) is closed d un er extensions and cokernels of 
morphisms f: A + B, where B is in ‘(9’l) and A has a finite filtration with 
‘(Y’)-generated factors. In particular, cl(Y) is contained in ‘(Ypl) and so 
is any object from d which admits a finite filtration with finitely 
Y-presented factors. Moreover 9’ = Cam. 

If moreover ~2 is a Grothendieck category, then ‘(9”) is also closed 
under arbitrary direct sums and cokernels of morphisms f: A + B, where B is 
in ‘(9”‘) and A is the union of a smooth well-ordered chain (A,) with 
Y-generated factors. In particular, Cl(Y) is contained in I($%“) and so is 
any object from d which is the union A = u A, of a smooth well-ordered 
chain with Y-presented factors A,, ,/A,. Moreover 9” = Cl(Y)‘. 

In general the inclusion cl(Y) c ‘(Yl) is strict. Let, for instance, & 
(resp. 9) denote the category of all finitely generated (resp. all finite) 
abelian groups. Then 9’l = 0 = IY, hence ‘(9”) = d but cl(Y) = 9’. 

Let 9’ be a Serre subcategory; i.e., a full subcategory closed under 
subobjects, quotient objects, and extensions. In order to determine the 
category right perpendicular to 9’ it is convenient to dispose of a “small” 
subsystem 9” of 9’ with the property (Y’)l = 9”. For that purpose we 
state several easy applications of Proposition 1.4. 

COROLLARY 1.5. Let Y be a Serre subcategory of an abelian category 
&. Further suppose that Y is a length category; i.e., every object in 9’ has 
finite length. Then: 
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(a) zf 9” is the system of all objects which are simple in 9, then 
(9’)’ = P; 

(b) if Y’ is a system of objects in 9’ such that for each simple objects 
SE Y there is an epimorphism L + S with L E Y’, then (9’)’ = Y ‘. 

COROLLARY 1.6. Let R be a right noetherian ring, d = mod(R), and 
I c R be a two-sided ideal in R. If Y is the Serre subcategory of all objects 
S in r;4 annihilated by some finite power I” (with n depending on S), then 
(R/I)’ = 9’. 

Proof Z”S = 0 for some n implies that S has a composition series with 
finitely presented R/Z-modules, and the assertion follows. 1 

We note that Corollary 1.6 has a group-graded version. In this case we 
have to replace R/Z by the system of all H-shifts R/l(h). See Section 7 for 
further details. 

COROLLARY 1.7. Let Y be a Grothendieck category and 9 the Serre 
subcategory of all artinian objects in 9. If 9” is the system of all simple 
objects in Y, then (9”)’ = 9”. 

2. LOCALIZING SUBCATEGORIES 

In this section we investigate the interrelations between perpendicular 
categories and localizing categories. 

Let d be an abelian category. Recall that a Serre subcategory Y of d 
is a subcategory closed under forming subobjects, quotients, and exten- 
sions. Moreover, we may form the quotient category &JY of d with 
respect to 9, and T: d + &‘JY denotes the quotient functor. For the 
definition and properties of quotient categories we refer to [l&47, 341. 

LEMMA 2.1. Let Y be a Serre subcategory of an abelian category d. 
For AE&’ and BEYI, the natural homomorphism T,,.: Hom,(A, B) + 
Hom,,,(TA, TB) is an isomorphism. In particular the functor T: Yl+ 
d/Y is a full embedding. 

Proof Since B has no subobject belonging to 9, TA,B is injective. Let 
cp: TA + TB be a morphism in d/9’. Then cp = (Tu)-’ Tf( Tu)-‘, where 
U: U + A is a monomorphism with cokernel in 9, v: B+ V is an 
epimorphism with kernel in Y, and f: U+ V is a morphism. Since B is in 
Y’, u is an isomorphism; thus we assume B= I? Moreover f: U -+ B can 
be extended to A. Hence T,,, is surjective. 1 
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Recall that a Serre subcategory Y of d is called localizing if the quotient 
functor T: ~4 + d/Y has a right adjoint C: &4/Y + .F4, called the section 
functor. Note that TC is isomorphic to the identity functor on .c9/Y. 

PROPOSITION 2.2. For a Serre subcategory .Y qf an abelian category .c4 
the following conditions are equivalent: 

(a) Y is a localizing subcategory. 
(b) For each object A E .d there is an exact sequence 

O+S-+A-+d 

with AE~P~ and SEY. 
(c) For each object A EZI there is an exact sequence 

O+S,+A+A+Sz+O 

with 2~9~ andS,,S,EY. 
(d) T: Y’ + &‘/.!Y is an equivalence of categories. 

Moreover, in the presence of these conditions, an object A EJX? belongs to 
9’ tf and only tf A E ZB for some object BE JzZ/~‘. Further, inclusion 
j: 9’ -+ d admits the functor ET: d + 9’ as a left adjoint. 

Proof (a) a(b): For A E& the object CT(A) is contained in 9’. 
Adjointness implies the existence of an exact sequence 0 -+ S + A -+ d with 
SEY. 

(b)+(c): For A E&’ there exists an exact sequence 0 + S, + A + 
A’ + C+ 0 with S, EY and A’ E 9”. Further there is an exact sequence 
O~S,-,C~CwithSzE~andCE~~.LetAbetheinverseimageofS, 
in A’. Then there is an exact sequence 0 + S, + A + A + S, + 0. 

It remains to show that A is contained in 9”. Since Hom(S, A’) = 0 for 
all SE Y the same holds true for 2. From the exact sequence 
0 + 2 + A’ + C/S, -+ 0 we obtain the following long exact sequence for 
SEYP: 

Hom(S, C/S,) --) Ext’(S, A) -+ Ext’(S, A’) + Ext’(S, C/S,). 

Since C/S, is contained in C, Hom(S, C/S,) =0 for all SET’; thus 
Ext’(S, A)=0 for all SEY and AEY’ follows. 

(c) =z- (d): By Lemma 2.1, TI 91 is a full embedding and it follows from 
(c) that this functor is representative. 

(d) * (a): Let Z: d/9 + 9” c J&’ be an inverse equivalence of TI 9L. 
Then for A E ~2 and BE d/Y we have functorial isomorphisms 
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Hom(A, C(B)) + Hom(T(A), TZ(B)) + Hom(T(A), B); thus Z is right 
adjoint to T. 1 

COROLLARY 2.3. Zf Y is a localizing subcategory of an abelian category 
d, then Y = ‘(9’). 

Proof Let X be an object in ‘(9’“‘). Then Hom,,,(T(X), B) = 
Horn&(X, C(B)) = 0 for all BE d/Y. Thus T(X) = 0 and XE Y follows. 1 

COROLLARY 2.4. Let Y be a localizing subcategory of d. We assume 
that there exists a subsystem 9’ of Y with proj dim 9’ < 1 and Yi = 9”; 
then the following assertions hold 

(i) For any two objects A, B in 9’ the natural homomorphism 

Ext$(A, B) + Ext$,,( TA, TB), vlHT% 
is an isomorphism. 

(ii) For each integer i>O the homomorphism 

Ki(Y) @ Ki(Y’) + Ki(d) 

for the Quillen K-groups, induced by the inclusion functors, is an 
isomorphism. 

By means of Theorem 7.5 it is not difficult to construct examples 
showing that assertion (i) does not hold for localizing subcategories in 
general. 

Proof In view of Proposition 1.1, .9’l is an exact subcategory of d 
which is closed under extensions; therefore the inclusion functor from 9” 
into d induces an isomorphism Ext&(A, B) -+ Ext$(A, B). 

With regard to assertion (ii) we note that the inclusion functor 
j: 9’ + d and the quotient functor T: S? + ,01/Y are exact, and To j is an 
equivalence. Hence composition 

K,(.+)~ Ki(d) = Ki(&/Y) 

is an isomorphism. The assertion now follows from the exactness of 
Quillen’s localization sequence 

. . .- K,(Y) = Ki(d) = Z&c&‘/y) --+ Ki- ,(y)- . . . 

(see [35, p. 1131). 1 

In the case of a Grothendieck category Corollary 2.3 can be extended to 
(see also [18, 341): 
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PROPOSITION 2.5. For a Serre subcategory 9’ of a Grothendieck category 
9 the following conditions are equivalent: 

(a) 9 is a localizing subcategory. 

(b) Y = ‘(9”). 
(c) Y is closed under arbitrary direct sums. 

Proof (a) = (b) follows from Corollary 2.3, while (c) holds for any left 
perpendicular category. 

(c) 3 (a): We show condition (b) of Proposition 2.2. Let GE 9. Then 
there exists S, c G with S, ~9’ and Hom(S, G/S,)=0 for all SEY. Let I 
be an injective envelope of G/S,. Then Hom(S, I) = 0 for all SE Y, and 
hence ZE 9’ and 0 -+ S, + G + I is the wanted sequence. i 

For later reference we include 

LEMMA 2.6. Let 9 be a locally noetherian Grothendieck category and 
dp c 59 be a localizing subcategory. Suppose there is a subsystem Y c dp with 
Y401 = 9’ and the property that Hom(S, -), SE Y, commutes with arbitrary 
direct sums. Then Y1 is closed under arbitrary directs sums in 9. In 
particular, the section functor C: 919 -+ 9 commutes with arbitrary directs 
sums. 

Proof Since 99 is locally noetherian it is easy to see also that Ext’(S, -), 
SE 9, commutes with arbitrary directs sums. Thus, for any system of 
objects Gi in Yl (i E I), we also have @ ,E, Gi E Yl. 1 

3. EXISTENCE OF LEFT ADJOINTS 

LEMMA 3.1. Let S be an object of an abelian category d with 
Ext’(S, S) = 0. For each object X in d such that Ext’(S, X) has finite length 
over End(S) there exists an exact sequence 

with Ext’(S, x) = 0. Zf additionally End(S) is a skew field, Hom(S, X) = 
Hom(S, X). 

Proof Let 1 be the length of Ext’(S, X) over End(S). If I= 0, there is 
nothing to show. If I> 0, there is a non-split exact sequence 
q: 0 + X + x’ + S + 0, and thus an exact sequence 

0 + Hom(S, X) + Hom(S, X’) + Hom(S, S) 

-+ Ext’(S, X) + Ext’(S, X’) + 0 
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of End( S)-modules. Since rl does not split, the morphism 
Hom(S, S) + Ext’(S, X) is non-zero, and thus lg Ext’(S, xl) < 1, where 
lg refers to the length. If additionally End(S) is a skew field, 
Hom(S, X) + Hom(S, X’) is an isomorphism. Now the assertion follows by 
induction. 1 

PROPOSITION 3.2. Assume that S is an object of an abelian category d 
that satisfies the following assumptions: 

(a) Ext’(S, S) = 0. 
(b) For each A in d, Hom(S, A) and Ext’(S, A) have finite length 

over the endomorphism ring End(S). 
(c) For each A in d we have Ext*(S, A) = 0. 

Then SL is an exact subcategory in & and there exists a functor 1: d + SL 
which is left adjoint to the conclusion functor i: S’ + d. 

Proof: Let M be an arbitrary object of d. Then by Lemma 3.1 there 
exists an exact sequence 

O--+M+M’+S”+O 

with Ext’(S, M’) = 0. Next, we choose a generating system fi, . . . . fm for 
Hom(S, 44’) over End(S) and define U as the image of the map 
(f,, . . . . f,): S” + M’. As is easily checked, the quotient j@ = M’/U belongs 
to sL. And, clearly, r M: M + i@, being defined as the composition 
M-r M’ + M, is the universal homomorphism from M into an object 
of Sl. 1 

The situation is depicted by the diagram 

0 

I 
u 

I 
0-M-Ml-S”-0 

\I ‘M 
iv 

I 
0 
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Under the assumptions of Proposition 3.2 we now give a different inter- 
pretation of the category SI right perpendicular to S. 

Let 1: K,(d) --) Z be a linear function on the Grothendieck group 
K,(d) of d. Then the category &‘(A) determined by I is by definition the 
full subcategory of d consisting of all objects X with the properties 

(1) 1(X)=0; 
(2) 2(X’) < 0 for every subobject X’ of X. 

&(A) is an exact subcategory of d closed under extensions. 
Let S be an object in d of finite projective dimension such that for every 

A E d the End(S)-module Ext’(S, A) is of finite length for all i 2 0. Then 
the linear form A,: K,,(d) --) Z is defined by 

I,(A) = 1 (- l)‘lg Ext’(S, A), 
i,O 

where lg denotes the length over End(S). 

PROPOSITION 3.3. Under the assumptions of Proposition 3.2 we have 
SL = d(&.). 

Proof. Let A be an object in S I. Then clearly A,(A) = 0. If A’ is a sub- 
object of A, we have Hom(S, A’)=O; hence A,(A’)= -1g Ext’(S, A’)<0 
and A E &(A,) follows. 

Conversely, let A be an object in &(A,). We suppose that Hom(S, A) 
is non-zero. Let A’ be the image of a non-zero morphism from S to A. 
Since S has projective dimension 4 1 and no self-extensions we get 
Ext’(S, A’) = 0. On the other hand 1,(A’) ~0 implies that Ext’(S, A’) # 0, 
a contradiction. Hence Hom(S, A) = 0 and Ext’(S, A) = 0 follows; thus 
AES’. 1 

LEMMA 3.4. Let d be an abelian category and Y be a system of objects 
in d. Suppose the embedding i: Yl + zz? admits a left adjoint I: d + 9’. 
Then l(M) = 0 for all ME ‘(9”). 

Proof: If ME l(9’) we have 

0 = Hom(M, ii(M)) = Hom(l(M), I(M)) 

and I(M) = 0 follows. 1 

PROPOSITION 3.5. Let & be an abelian category, where we assume all 
objects to be noetherian. Assume that S is an object of ~4 satisfying the 
following assumptions: 
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(a) Ext’(S, S) = 0. 
(b) For each A in d with Hom(S, A) = 0, Ext’(S, A) hasfinite length 

over the endomorphism ring End(S). 
(c) The endomorphism ring of S is a skew field. 

Then there exists a functor I: d + S’ which is left adjoint to the inclusion 
i:SL+d. 

Zf additionally proj dim S < 1 holds, each object in ‘(Sl) has the form S”; 
in particular cl(S) = ‘(Sl). 

Proof Here, our strategy of proof will differ from that of Proposi- 
tion 3.2. By the noetherianness of ME ~4 we first choose a subobject U of 
M which admits a finite filtration with finitely S-generated quotients and 
such that M” = M/U satisfies Hom(S, M”) = 0. Then Lemma 3.1 yields an 
exact sequence 

O+M”+W+S”+O 

with Ext’( S, &?) = 0 and Hom(S, li;i) = Hom(S, M”) = 0; hence &? belongs 
to sl. 

Finally let M belong to ‘(S ‘). In particular I(M) = 0, so the above 
construction of 1 shows that A4 admits a finite filtration, whose factors are 
finitely S-generated. Because proj dim S < 1 and Ext’(S, S) = 0 this implies 
the existence of an exact sequence 0 + K + S” + M -+ 0. Invoking the 
Horn-Ext-sequence induced by Hom( -, Y) with Y in S’ we see that 
IK= 0. By the preceding argument we thus arrive at an exact sequence 
Sb + S” + M + 0. In view of (c) this shows that M g s’ and proves the last 
assertion. 1 

The following picture reminds the reader of the scheme of thought in this 
case: 

0 

I 
O-U-M-M”-0 

0 

481/144/2-2 
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Remark. In the situation of Proposition 3.5 the subcategory SL is not 
necessarily abelian. If, however, we assume additionally that every subobject 
of S is finitely S-generated, the category cl(S), which in this case consists 
of all finitely S-presented objects, will form a Serre subcategory which will 
be localizing by the proposition just proved. So we may invoke Proposi- 
tion 2.2 to conclude that S’ is isomorphic to &/cl(Y), hence an abelian 
category. 

Next, we prove a variant of Proposition 3.5 which is important for most 
of the applications we have in view. It is possible to prove a similar variant 
of Proposition 3.2, where we leave the details to the reader. 

THEOREM 3.6. Let d be an abelian category, where we assume all objects 
to be noetherian. Further let 9’ = { Si}iG t be a subsystem of & satisfying the 
following conditions: 

(a) End(S,) is a skew fieldfor all ie I. 
(b) Extl(Si, St)=Ofor all ieZ. 
(c) Hom(Si,Sj)=Oforalli,j~Z, i#j. 
(d) Z admits an ordering such that for each i E Z the set of predecessors 

of i is finite and Ext ‘( Si, Sj) # 0 implies i < j. 
(e) For each A E d with Hom(S,, A) = 0 for all iE Z, the right 

End(S,)-module Ext’(S,, A) always has finite length and is non-zero for only 
finitely many i E I. 

Then there exists a functor 1: d + 9” which is left adjoint to the inclusion 
9’l -+ d. Further, for any obj’ect ME ~2 the adjunction homomorphism 
r,,,,: M + l(M) has a cokernel (resp. kernel) which admits a finite filtration 
whose factors belong to Y (resp. are finitely Y-generated). 

Zf we assume additionally the two conditions 

( f ) projdim Si < 1 for all i E Z and 
(g) Ext’( S;, Sj) is of finite length as a left module over End(Sj) for 

each jEJ 

then each object in ‘(Yl ) is the cokernel of a morphism X, --t X0, where X0 
and X, admit a finite filtration with factors from 9. In particular 
‘(9”‘) = cl(Y). 

Proof The proof of the first assertion is analogous to the proof 
of Proposition 3.5. So given an object ME & we first choose by 
the noetherianness of M a maximal subobject U admitting a finite 
filtration by Y-generated objects. The quotient M” = M/U now satisfies 
Hom(S,, M”) = 0 for ever iE Z. 
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Next, we prove that any object A4 E d with Hom(S,, M) = 0 for all i E I 
embeds into an object ii;i from 9” by forming successive extensions with 
objects from 9, if such extensions exist. (Here, conditions (b) and (c) are 
needed.) That the extension process stops is seen by induction on the 
cardinal number of the finite set of all predecessors of elements iE Z with 
Ext’(S,, M) #O. This proves the first assertion. 

With regard to the claim on ‘(9”‘) we need some preparation. Let J be 
any finite subset of I which is closed under predecessors. We first show that 
it is possible to replace Y;= {Si}j6J by a system FJ= { Z’j}jEJ with the 
same closure cl(9”) = cl(YJ) and satisfying moreover the conditions 

(1) Ext’(Ti, Tj)=O for all i,jEJ; 

(2) Ext’(Si, T,)=O for alljEJ and ieZ\J; 

(3) Extl(Tj, Si) has finite length over End(S,) for alljEJand iEZ\J; 
(4) Hom(T,, Si)=O for alljEJand ieZ\& 

(5) proj dim Tj < 1 for all Jo J; 

(6) each Si, je J, is finitely &-generated. 

We prove the assertion by induction on the cardinality of J. If J = { j } 
then j is a minimal element of fi further YJ := YJ= {Sj} has the same 
closure as 9” and satisfies properties (1 k(6). 

Now, let card(J) > 1, k be a maximal element of J, and J’ = J\(k). 
Further we assume that there is a system YJG = ( Ti}jEJs satisfying condi- 
tions (l)--(6) and having the same closure as YY. From the dual version of 
Lemma 3.1 we obtain for each j E J’ an exact sequence 

with Tj E ISk. We set Tk = Sk and YJ = { Tj}j.J. It is straightforward to 
check that YJ satisfies conditions (l)-(6) and further Y; and YJ have the 
same closure. 

We are now in a position to determine the structure of an object 
A E ‘(9”). Since Z(A) = 0, it follows from the preceding construction of 1 
that there exists a finite subset Jo of Z, closed under predecessors, such that 
A has a finite filtration with finitely Y’,,-generated, hence also finitely 
YJ,,-generated, factors. Since proj dim Tj d 1 and Ext’( Ti, Tj) = 0 for all 
i, j E Jo we conclude that A is already finitely &,-generated. Let 

O+K-+X,,+A+O 

be an exact sequence, where X0 is a direct sum of objects from YJ,,. 
For each B in 9” we obtain Hom(K, B) = 0, hence I(K) =O. From the 
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preceding argument we conclude that K is finitely FJ,-generated, for a 
suitable finite subset J, of J, which proves our assertion on ‘(9”‘). 1 

In view of Proposition 2.2 the proof of Theorem 3.6 yields: 

LEMMA 3.7. If in addition to the assumptions of Theorem 3.6 the objects 
Si are simple, then the Serre subcategory 97 generated by the Si, iE I, is 
localizing. 

As was shown in Proposition 1.1 for a subsystem Y of an abelian 
category d with proj dim 9’~ 1, 9” is an exact subcategory of d. This 
leads to an investigation on exact subcategories where the embedding has 
a left adjoint. We concentrate on the case of a module category over a ring. 

PROPOSITION 3.8. Let R be a ring, d = Mod(R) be the category of right 
R-modules, and ~4’ be an exact subcategory of d which is closed under 
arbitrary direct sums that the embedding functor j: d’ + & has a left adjoint 
functor 1: d + &‘. Further let R’ = End(lR). 

Then Hom(lR, -): ~4 -+ Mod(R’) is an equivalence of categories with 
inverse equivalence - @ Rs 1R: Mod( R’) + d’. 

Moreover, there exists an epimorphism of rings cp: R + R’ such that 
jo-@R,lRgqcp* and Hom(lR,-)olsq*, where ‘p* denotes the natural 
functor Mod(R’) + Mod(R) and (p* = - Q R R’ the left adjoint of cp*. 

Proof: The functor 1, as a left adjoint, is right exact and commutes with 
arbitrary direct sums. Further, since j is a full embedding, l(M) z M for all 
ME &“. If R(‘) + M is an epimorphism with ME d’, application of 1 yields 
an epimorphism l(R)“’ + M. Thus l(R) is a generator in d’. Moreover, 
by adjunction, Hom,(lR, M) z Hom,(R, M) for all ME &‘. It follows 
that l(R) is small and projective in J&“. This proves that Hom(lR, -): 
&’ -+ Mod(R’) is an equivalence. 

Let F= Hom(lR, -) and G = - Q R, 1R. We have isomorphisms 
GF(lR) z 1R and FG(R’) g R’. Since, as right exact functors, GF and FG are 
determined by their values on 1R and R’, respectively, we have GF z l&,, 
and FG g 1 ModtR,). 

Let ~0: R --+ R’ be the homomorphism 

R = End( RR) -+ End( RX) = R’, ct H l(u), 

induced by 1. By adjunction we have isomorphisms of right R-modules 

1R z Hom,(R, 1R) z Hom,(lR, IR) = R’, 

and thus cp,(R’) g j(G(R’)). Further we get F(l(R)) z R’r q*(R). Again 
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‘p.+ and jo G are determined by their values on R’ and Fo I and (p* by their 
values on IR. Hence, (p* z j 0 G and (p* g Fo 1. 

Since j is a full embedding, the same holds true for ‘p*. This implies that 
cp is an epimorphism of rings [43]. i 

COROLLARY 3.9. Let R be a right noetherian ring, d = mod(R), the 
category of finitely presented right R-modules, and d’ be an exact sub- 
category of d such that the embedding functor j: d’ -+ d has a left adjoint 
functor 1: d + d’. Further let R’ = End(lR). 

Then Hom(lR, -): d’+mod(R’) is an equivalence of categories with 
inverse equivalence - Q RC 1R: mod(R’) + d’. 

Moreover, there exists an epimorphism of rings cp: R + R’ such that 
jo - @ Rf 1R z (p* and Hom(lR, -) 0 1~ cp*, where ‘p* denotes the natural 
functor mod( R’) + mod(R) and cp* = - Q Rs R’ the left adjoint of (p*. In 
particular, R’ is right noetherian. 

For a small category d we denote by Lex(zJop, Ab) the category of all 
left-exact functors from dop to the category of abelian groups. If & is 
noetherian, Lex(&‘P, Ab) is a locally noetherian Grothendieck category 
with d as the full subcategory of all noetherian objects, where d is 
considered as a full exact subcategory of Lex(&“P, Ab) by the Yoneda 
embedding A H (-, A). If, moreover, d = mod(R) for a right noetherian 
ring R, we have Mod(R)g Lex(d“P, Ab), given by the functor 
Ml+ (-7 M)imod(R). 

Let T: d -+ $? be an additive functor. Then there exists a functor 
T: Lex(zJop, Ab) + Lex(gop, Ab), unique up to isomorphism, making the 
diagram 

I I 
Lex(sP, Ab) L Lex(6Vp, Ab) 

commutative and commuting with direct limits. If T is a full embedding, 
the same holds true for i=. If d is noetherian, T exact implies T exact. -- 
Further, if T: d + g and S: W + d is an adjoint pair of functors, T, S) 
also form an adjoint pair of functors. 

Proof of Corollary 3.9. The full exact embedding j: d’ + mod(R) 
induces a full exact embedding j: Lex((&“)OP, Ab) -+ Mod(R) with left 
adjoint f Mod(R) + Lex((&‘)OP, Ab). Let R’ = End(lR). By Proposition 3.8 
there is an equivalence Hom(lR, -): Lex( (&‘)Op, Ab) + Mod( R’) with 
inverse equivalence - OR. 1R: Mod(R’) + Lex((&‘)OP, Ab) and an 
epimorphism cp: R + R’ such that j 0 -@O.~lR~cp,andHom(lR,-)~l~:cp*. 
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All these functors map finitely presented objects to finitely presented 
objects. Since mod(R’) is a noetherian category, R’ is a right noetherian 
ring. 1 

4. HOMOLOCICAL EPIMORPHISMS OF RINGS 

In this section we study properties of ring homomorphisms cp: R + U. In 
order to simplify proofs, we start with the following abstract setting. 

Let d be an abelian category. A subcategory %’ is called thick if for each 
short-exact sequence 0 + A -+ B + C -+ 0 the fact that two terms belong to 
‘$7 implies that the third term also belongs to ‘%. 

We say that V couus (resp. finitely covers) d if the smallest thick 
subcategory 6%” of &’ containing V which is closed under the formation of 
arbitrary (resp. finite) direct sums is equal to d. 

Further we say that A E& admits a resolution by objects from V in case 
there is an exact sequence 

. . . +C,,-+ ... +C,+C,+C,+A+O. 

We say that %’ weakly couers (resp. finitely weakly covers) d if the smallest 
thick subcategory %’ of & containing all objects admitting a resolution by 
arbitrary (resp. finite) direct sums of objects from V equals d. 

For the notion of an exact connected sequence of covariant functors 
G,,:d+&‘, neZ, we refer to [12]. 

LEMMA 4.1. Let d and ?3 be abelian categories and q: (G,) + (H,) be a 
morphism of exact connected sequences of additive finctors (G,), (H,) from 
d to 99. 

(a) Suppose that &’ finitely covers d and q,,(A): G,(A) + H,(A) is 
an isomorphism for all A E d’ and all n; then ye is an isomorphism. 

(b) Suppose d’ finitely weakly covers &, G, = 0 = H, for all n < 0, 
and further for any AE&’ the morphism vo(A): G,,(A) -+ H,(A) is an 
isomorphism and G,(A) = 0 = H,(A) f or all n # 0. Then r] is an isomorphism. 

Proof: (a) Let V? be the subcategory consisting of all objects A E s#’ 
such that q,JA) is an isomorphism for all n. By assumption, &’ is con- 
tained in ‘+9 and by the Five-Lemma, V is a thick subcategory. Since CQI’ 
finitely covers ~4 we obtain % = d. 

(b) We prove that qn is an isomorphism by induction on n. We first 
deal with the case n = 0. Let A be in d and X, +X,, + A + 0 be an exact 
sequence with X0, Xi in &“. From the right exactness of G, and H,, it 
follows that q,,(A) is an isomorphism. 
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Now suppose n > 0 and q,, _ i is an isomorphism. Let A be an object in 
d and 0 + K-t X + A + 0 be exact, where X is a finite direct sum of 
objects in d’. Since Gi(X) = 0 = H,(X) for all i> 0 we get a commutative 
diagram 

O-G,(A)- G,-,(K)- Gn- I(X) 

I I I 
O-H,(A)- Hn- ,W) - He I(X) 

and by the Five-Lemma, G,(A) + H,(A) is an isomorphism. 1 

If additionally we suppose that G, and H, commute with arbitrary direct 
sums then Lemma 4.4 remains valid if we replace “finitely covers” (resp. 
“finitely weakly covers”) by “covers” (resp. “weakly covers”). 

We now discuss an analogue of Lemma 4.1 for derived categories. For 
an abelian category d, Db(&) denotes the derived category of bounded 
complexes in &. We refer to [SO, 281 for the definition and properties of 
triangulated and derived categories. We consider d as a full subcategory of 
Db(,r4), viewing A E& as a complex concentrated at 0. We note that 
Db(&) is equipped with a translation functor T given by (T(X))n = X”+l 
and (TdX)“= -d”,i’ for XE Db(&‘). 

A functor G: % + 63 from a triangulated category g to an abelian 
category d is called a (covariant) exact functor if for each triangle 
X + Y + Z -+ TX in %’ the induced sequence 

... +G(T’X)+G(T’Y)+G(T’Z)+G(T’+‘X)+ ... 

in 93 is exact. 
Let V be a triangulated category. A subcategory 9 is called thick if for 

each triangle X-P Y + Z + TX in 9? the fact that two terms belong to 9 
implies that the third term also belongs to 9. (This implies in particular 
that $3 is stable under the translation functor T.) 

We say that 9 covers (resp. finitely covers) +? if the smallest thick 
subcategory 9’ of % containing 9 which is closed under the formation of 
arbitrary (resp. finite) direct sums is equal to %?. 

Further we say that C E V? admits a resolution by objects from 9 in case 
there is a sequence of triangles Ki+, + Di + Ki, i= - 1, 0, 1, . . . . with 
K-i = C and Di E 9. Finally we say that 9 weakly covers (resp. finitely 
weakly covers) %’ if the smallest thick subcategory 9’ of %? containing all 
objects admitting a resolution by arbitrary (resp. finite) direct sums of 
objects from 9 equals %?. 

The same argument as in Lemma 4.1 yields a variant of Beilinson’s 
lemma [7]: 



290 GEIGLEAND LENZING 

LEMMA 4.2. Let W be a triangulated category, %? be an abelian category, 
and n: G -+ H be a morphism of exact functors G, H from % to 9$. Let 
G,=GoT-“, H,=HoT-“. 

(a) Suppose that W’ finitely covers V and n,(C): G,(C) -+ H,,(C) is an 
isomorphism for all C E %?I and all n; then n is an isomorphism. 

(b) Suppose that W finitely weakly covers %Y, G, = 0 = H,, for all 
n < 0, and further for any CE %?I the morphism nO( C): G,,(C) -+ H,(C) is an 
isomorphism and G,(C) = 0 = H,(C) f or all n # 0. Then n is an isomorphism. 

PROPOSITION 4.3. Let j: d’ + d be an exact embedding of abelian 
categories. Then the following conditions are equivalent: 

(1) The natural morphism 

Ext>.(A, B) + Ext:(jA,jB) 

is an isomorphism for all A, BE d’ and n 2 0. 

(2) The induced functor of derived categories 

Db(j): Db(d’) + Db(d) 

is a full embedding. 

Proof The implication (2) + (1) follows from the formula 
Ext>(A, B) = HomDbCdsl,(A, T”B). 

(1) * (2): For each A E d’ we have a morphism of exact functors 
qa : Horn pacd,,(A, -) -+ HomDbCdcg,(jA, -) 0 Db(j), which by assumption is an 
isomorphism on all objects of d’. Since d’ finitely covers Db(&‘), we 
deduce that qa is an isomorphism by Lemma 4.2. 

Now, for an object XeDb(&“) we have a morphism of exact functors 
qx: Horn ~qs&, x) + HOmgbcdol) (-, Db(j) A)0 Db(j), which by the argu- 
ment above is an isomorphism on all objects of &‘, and hence an 
isomorphism. 1 

Let cp: R --) U be a homomorphism of rings and (p* : Mod(U) --) Mod(R), 
MH M, be the functor induced by rp. If M is a U-module, we often write 
M for q,(M) and it becomes clear from the context whether M is viewed 
as a module over U or R. 

If M and M’ are right (resp. left) U-modules we have a natural 
homomorphism Hom,(M, M’) + Hom,(M, M’) of abelian groups. This 
homomorphism induces natural morphisms Ext’,(M, M’) -+ Exta(M, M’) 
for all i. 

If M is a right and N is a left U-module the morphism 
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MOR N-P MO, N induces natural morphism Torf(M, N) + Tory(M, N) 
for all i. 

THEOREM 4.4. For a homomorphism of rings cp: R + U the following 
conditions are equivalent: 

(1) The multiplication map U Qk U + U is an isomorphism and 
TorF(U, U)=O for all i> 1. 

(2) For all right U-modules M the multiplication map MBR U -+ M 
is an isomorphism and Tar: (M, U) = 0 for all i > 1. 

(2’) For all left U-modules N the multiplication map U OR N + N is 
an isomorphism and TorR (U, N) = 0 for all i >/ 1. 

(3) For all right U-modules M and all left U-modules N the natural 
map TorR (M, N) -+ Tor u (M, N) is an isomorphism for all i > 0. 

(4) For all right U-modules M the natural map Hom,( UR, MR) + 
M, is an isomorphism and Ext’,( U,, MA) = 0 for all i > 1. 

(4’) For all left U-modules N the natural map Hom.( R U, RN) + R N 
is an isomorphism and Ext k( R U, RN) = 0 for all i B 1. 

(5) For all right U-modules M and M’ the natural map 
Ext’,(M,, ML) + Ext,(M,, MX) is an isomorphism for all i b 0. 

(5’) For all left U-modules N and N’ the natural map 
Ext k ( oN, o N’) + Ext i,( R N, RN’) is an isomorphism for all i > 0. 

(6) The induced functor of derived categories 

Db(cp,): Db(Mod( U)) + Db(Mod(R)) 

is a full embedding. 

(6’) The induced functor of derived categories 

Db(cp;p): Db(Mod( VP)) -+ Db(Mod(Rop)) 

is a full embedding. 

Proof: (1) * (2): For each right U-module M we have a sequence of 
natural isomorphisms 

whose composition is just the multiplication map. The assertion now 
follows from Lemma 4.1(b). 

(2) S- (3): Let M be a right U-module and N be a left U-module. 
Consider M OR - as a functor from Mod( VP) to the category of abelian 
groups. The natural transformation M 8 R - + M 0 cI - is an isomorphism 
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on U, and hence an isomorphism since both functors are right exact. Again 
the assertion now follows from Lemma 4.1(b). 

The implication (3) * (1) is obvious. In the same way we prove 
(1)=(2’)=(3). In a manner similar to that of the proof of (2)*(3) we 
obtain (4) j (5) and (4’) => (5’) The implications (5) = (4) and (5’) = (4’) 
are obvious. 

(2’) + (4): For a right U-module M we have a sequence of 
isomorphisms 

Hom,(U, M)rHom,(U, Hom.(U, M))%Hom.(U@, U, M) 

rHom.(U, M)rM 

whose composition is just the natural map. In particular, Hom,( U, -) is 
exact on sequences of right U-modules, 

For a right U-module M we denote by DM the left U-module 
Hom,(M, Q/Z). By the duality isomorphism [12] we get 

ExtX( U, DDM) z D Tor,!‘( 7’, DM) = 0 

for all i 2 1. Since M is a submodule of DDM and Hom,( U, -) is exact on 
sequences of right U-modules, we conclude ExtX( U, M) = 0 for all right 
U-modules M. The assertion now follows by induction. 

(4) = (2’): Let N be a left U-module. Then by duality D Torf (U, N) 2 
Ext’,( U, DN) for all i 2 0. Hence, TorR( U, N) = 0 for all i > 1 and we get 

Hom,(N, Q/Z) 2 Hom,( U, Hom,(N, Q/Z)) 2 Hom,( UOR N, Q/Z). 

The latter isomorphism is induced by the multiplication, hence the multi- 
plication is itself an isomorphism. 

Analogously, we prove the equivalence of (2) and (4’). The equivalence 
of (5) and (6) (resp. (5’) and (6’)) follows from Proposition 4.3. This 
finishes the proof of the theorem. 1 

We note that the multiplication UOR U+ U is an isomorphism if and 
only if rp is an epimorphism of rings [43]. Epimorphisms of rings for finite 
dimensional algebras have been considered recently in [20]. 

We further note that the presence of condition (1) implies that it is only 
necessary to require conditions (2), (2’), and (3) for finitely presented 
U-modules. 

DEFINITION 4.5. A homomorphism cp: R + U satisfying the equivalent 
conditions of Theorem 4.4 is called a homological epimorphism of rings. 
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COROLLARY 4.6. Let q: R + U be a homological epimorphism of rings. 
Then 

(1) qop: RoP + U Op is a homological epimorphism of rings; 

(2) gl dim U < gl dim R. 

COROLLARY 4.7. (1) Let cp: R + U be an epimorphism and suppose that 
U is flat as a right R-module. Then cp is a homological epimorphism. 

(2) If R is a commutative ring and S a multiplicative subset of R, the 
natural ring homomorphism cp: R + S - ‘R is a homological epimorphism. 

Proof ( 1) Since cp is an epimorphism the multiplication U Q R U -+ U is 
an isomorphism. Since U is flat over R, TorR (U, U) = 0 for all i B 1. 

Now (2) follows from (1). 1 

COROLLARY 4.8. Let R be a ring and d be a full exact subcategory of 
Mod(R) closed under abitrary direct sums and extensions such that the 
embedding j: d + Mod(R) admits a left adjoint functor I: Mod(R) + d. 

Zf proj dim 1R < 1 then the ring homomorphism q: R + R’ = End(lR) 
induced by 1 is a homological epimorphism. 

Proof By Proposition 3.8 we have ‘p* r jo-@,, IR. Hence for all right 
R’-modules M the natural homomorphism Hom,.(R’, M) + HomR(R’, M) 
is an isomorphism since cp * is full and Ext’,(R’, M) = 0 for all i 2 1 since 
proj dim RX < 1 and Mod(R’) can be considered as a full subcategory of 
Mod(R) which is closed under extensions. 1 

We now consider the case where cp induces an embedding 
(p* : mod(U) + mod(R). 

PROPOSITION 4.9. Let R be a right coherent (for instance, right 
noetherian) ring and cp: R -+ U be a ring homomorphism such that U is 
finitely presented and offinite projective dimension as a right R-module. Then 
the following conditions are equivalent: 

(1) cp is a homological epimorphism of rings. 

(2) The natural map Hom,(U,, U,) -+ U is an isomorphism and 
Extk(lJR, U,)=O for all ia 1. 

(3) For all finitely presented right U-modules M the natural map 
Hom,( U,, U,) -+ M is an isomorphism and Exti( U,, MR) = 0 for all i> 1. 

(4) For all finitely presented right U-modules M and M’ the natural 
map Ext’,(M,, M;) + Exta(M,, MX) is an isomorphism for all i>O. 
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(5 ) The induced functor 

Db(q,): Db(mod( U)) -+ Db(mod(R)) 

is a full embedding. 

Proof: The implications ( 1) 3 (4) =z- (3) * (2) are obvious. 
Since U is finitely presented as a right R-module the functor 

HomA U,, -1 commutes with arbitrary direct sums and since R is right 
noetherian, the same holds true for the functors Exti( U,, -) for all i 3 1. 

Now, suppose proj dim U, = n. Then the functor Ext”,( U, -) is right 
exact and Ext”,(U,, U,)=O implies Ext”,(U,, MR) =0 for all U-modules 
M. In particular, the functor Ext”,- ‘( UR, -) is right exact on sequences of 
right U-modules. By induction we conclude that Ext’,( U,, M) = 0 for all 
right U-modules M and all i 3 1. Thus Hom,( U,, -) is exact on sequences 
of right U-modules M and Hom,( UR, M) r M for all right U-modules 
follows. This proves (2) * (1). 

The equivalence of (4) and (5) follows by Proposition 4.3. 1 

As in Corollary 4.8 we get: 

COROLLARY 4.10. Let R be a right noetherian ring and d be a full exact 
subcategory of mod(R) closed under extensions such that the embedding 
j: d + mod(R) admits a left adjoint functor 1: mod(R) --* d. 

If proj dim IR < 1 then the ring homomorphism cp: R + R’ = End(lR) 
induced by 1 is a homological epimorphism. 

Homological epimorphisms of rings which are also injective frequently 
occur in applications (see below and Sections 10 and 11) and are now 
studied further. 

PROPOSITION 4.11. Let R be a right noetherian ring and S a finitely 
presented right R-module satisfying the following conditions: 

(1) proj dim S,< 1. 
(2) Ext;(S, S) = 0. 
(3) Hom,(S, M) and Extk(S, M) are End (S)-modules offinite length 

for all finitely presented right R-modules M. 

(4) End(S) is a skew field. 

(5) Hom,(S, R) = 0. 

Then the embedding j: SL --) mod(R) has a left adj.oint functor 
‘: mod(R) -+ S’ and the ring homomorphism rp: R + R’ = End(lR) induced 
by I is injective and a homological epimorphism. 
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Proof The existence of a left adjoint functor I follows from Proposi- 
tion 3.5. Since R’ = IR as right R-modules, the same proposition shows the 
existence of an exact sequence 0 + R a R’ + S” + 0. In particular, cp is 
injective. Moreover, proj dim RX < 1, and hence cp is a homological 
epimorphism by Corollary 4.10. 1 

A variant of Proposition 4.11 may be proved along the same lines with 
Theorem 3.6 invoked instead of Proposition 3.5. We leave the details to the 
reader. 

For the rest of this section we assume that k is a commutative noetherian 
ring, cp: R + U is an injective homological epimorphism of k-algebras, which 
are finitely generated k-modules, and proj dim U, < 1. 

Note that we always view Mod(U), accordingly mod(U), as a full sub- 
category of Mod(R). Since U/R is an (R, R)-bimodule, left multiplication 
of R on U/R defines a ring homomorphism 

$: R + V := End(( U/R),), rH [xHr.x], 

which we call the ring homomorphism associated to cp. The exact sequence 
of (R, R)-bimodules 

O-R&U-+U/R-O (*) 

induces for each right R-module X an exact sequence 

0 - Hom,( U/R, X) - Hom,( U, X) 2 X 

z Ext f( U/R, X) - Ext;( 17, X) - 0, 

again of right R-modules, 

(**I 

PROPOSITION 4.12. For any right R-module X the following conditions 
are equivalent: 

(1) XE(U/R)~. 

(2) ox: Hom,( U, X) + X is an isomorphism and Extk( U, X) = 0. 

(3) ox: Hom,( U, X) + X is an isomorphism. 

(4) X is a right U-module. 

In particular, (UjR)’ formed in mod(R) coincides with mod(U). Also 
Hom,( U, R/R) = 0. 

Proof (1) * (2) follows from the exactness of (**), while the implica- 
tions (2)* (3) =- (4) are obvious. Finally (4)= (2) follows from 
Theorem 4.4. 1 
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PROPOSITION 4.13. The ring homomorphism $1 R -+ V associated to cp is 
a homological epimorphism and proj dim R V 6 1. Further for any right 
R-module X the following conditions are equivalent: 

(1) XEUI. 

(2) zx: X -+ Extk( UJR, X) is an isomorphism and Hom,( U/R. X) = 0. 

(3) zx: X + Exti( U/R, X) is an isomorphism. 

(4) X is a right V-module. 

In particular, the category U L formed in mod(R) coincides with mod( V). 

Proof: The equivalence (1) o (2) follows from the exactness of (**), 
while the implications (2) + (3) = (4) are obvious. 

Next, we show that ExtP,( U/R, X) E U’ for each XE Mod(R). Because cp 
is a homological epimorphism, tensoring of (*) with U, leads to the 
exactness of 

O=Torp(U, U)+Torf(U, U/R)+ U 5 UOR U+ UOR U/R-,0. 

We therefore have Torf( U, U/R) = 0 for all p and thus 

Extg( U, Hom,( U/R, Q)) = Hom,(To$( U, U/R), Q) = 0 

for any injective right R-module Q. Note that for p = 0 the above formula 
holds without any restriction for Q. Embedding X into an injective 
R-module Q yields an exact sequence 

0 -+ Hom,( U/R, X) -+ Hom,( U/R, Q) + C + 0 

with Cc Hom,( U/R, Q/X) and in turn the exactness of 

0 + Hom,( U, C) + Exti( U, Hom,( U/R, X)) -+ 0. 

Since Hom.( U, C) c Hom,( U, Hom,( U/R, Q/X)) = 0 we thus obtain 
Hom.( U/R, X) E U I. Therefore also Ext;( U/R, X) E U’ because U’ 
is an exact subcategory of Mod(R). (Alternatively, the property 
Extg( U/R, X) E UL, p > 0, may be derived from Cartan and Eilenberg’s 
associativity spectral sequence [ 12, p. 3451.) 

Since U is contained in (U/R)I, application of Hom,J U/R, -) to 
sequence (*) shows that 

V= Hom.(U/R, UfR) g Extk(U/R, R) 

as (R, V)-bimodules. In particular V, hence also mod( V), is contained in 
U l, which proves that (4) * (1). 
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Next we show that + is an epimorphism. By invoking I/ = Exti( U/R, R) 
and the right exactness of Extk( U/R, -), we obtain an equivalence 
of functors Extk( U/R, -)%-OR V, and so in view of the established 
equivalence (3) o (4), an isomorphism Vg Extk( U/R, V) z VOR I/. By 
noetherianness the isomorphy Vr I/OR V implies that the surjective multi- 
plication map VOR V -+ V is already an isomorphism, and hence $: R -+ V 
is an epimorphism of rings. In particular, the category mod( I’) may be 
regarded as a full subcategory of mod(R), which in view of the equivalence 
(l)-(4) equals Ul. 

It remains to show that II/ is also homological: By passing to 
the left derived functors of Extk( U/R, -) =-OR V and invoking 
proj dim(( U/R)R) < 1 as well as Hom,( U/R, R) =O, we deduce that 
Hom,(U/R, -)~Tor$, V) and TorF(-, V)=O for every i>2. Due to 
noetherianness this proves proj dim R I’< 1. Since T/E U L we further have 
Torf( V, V) 2 HomJ U/R, V) c Hom,( U, V) = 0. In view of Theorem 4.4 
this proves that the epimorphism I+G: R + I/ is homological. 1 

THEOREM 4.14. For a commutative noetherian ring k let cp: R -+ U be an 
injective homological epimorphism of k-algebras, which are finitely generated 
k-modules. We also suppose proj dim U, < 1. Then 

(1) T = UQ U/R is a tilting module; 

(2) (U/R)’ = mod(U) and U’ = mod( V); 
(3) the embeddings ‘p* : mod(U) + mod(R) and II/, : mod(V) + 

mod(R) induce an isomorphism 

K&-no4 U)) 0 &(mod( VI) r &(mod(R)), (cn CYl)H cxo n 

For the definition and the properties of tilting modules we refer to the 
papers of Happel and Ringel [27], Bongartz [9], and Miyashita [32]. 

Proof: (1) The sequence 0 + R + U + U/R + 0 defines a T-core- 
solution of R; further proj dim U, < 1 implies proj dim T, < 1. It thus 
remains to show that T has no self-extensions. 

First, Exti( U/R, U) = 0 because UE (U/R)‘. Since cp is a homological 
epimorphism we also have Exti(U, U) = 0, which in turn implies that 
Ext k( U, U/R) = 0 because proj dim UR G 1. The remaining assertion 
Exti( UfR, U/R) = 0 follows by application of Extk( U/R, -) to the sequence 
(*), observing that proj dim(U/R).< 1. Assertion (2) is covered by 
Propositions 4.12 and 4.13. 

(3) Inclusion i := ‘p* is exact and ,hence induces a homomorphism 
i,: &(mod( U)) + K,(mod(R)), [X] H [Xl. Since proj dim U, < 1 we 
may define a homomorphism m, . . K,(mod(R)) + &(mod( U)) on classes of 
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modules by m, = [Hom,( U, -)] - [ExtL( U, -)]. Since cp is a homological 
epimorphism we obtain m, 0 i, = 1 KoCmodCU)). 

Also j= $,: mod(V) --t mod(R) is exact and hence induces a homo- 
morphism j, : K,(mod( V)) -+ KJmod(R)), [Y] H [ Y]. Let I= ~ OR V= 
Exth(U/R, -) be the left adjoint of j. In view of proj dim(U/R), < 1, the 
functor I induces a homomorphism 1 * : K,(mod(R)) -+ K,,(mod( U)) given 
on classes of modules by 

I, = C-0, V] - [Tor$, V)] = - [Hom,( U/R, -)] + [ExtL( U/R, -)I. 

Since also $ is a homological epimorphism we obtain 1, oj* = lKOCmodCYJ). 
In order to prove the assertion on the K-groups it remains to show: 

(a) Loi, =O, (b)m,oj, =O, (cl i,om, +j*oI, = lKo~mod~R~~. 
(a) and (b) follow from (U/R)l =mod(U) and U’ =mod( V), respec- 

tively. 
From the exact sequence (**) we finally obtain that 

[Xl = CHom,(U, WI - CExtL(U, X)1 - [Hom,(U/R X)1 

+ CExt;( U/R, WI, 

and hence [x]=(i,om*+j*.I*)([x]). I 

COROLLARY 4.15. Assume that S is a right R-module satisfying the 
conditions of Proposition 4.11. If 2,: K,(R) + Z denotes the linear form 
defined by 

the sequence of abelian groups 

is exact. 

0- K,,(S’)& K,(mod(R))-% Z- 0 

ProoJ We apply Theorem 4.14 to the homological epimorphism 
cp: R --, U, U= End,(l(R)), induced by the functor I left adjoint to the 
inclusion S I c mod(R). From proj dim S, < 1 and Hom,(S, R) = 0 we 
deduce that U/R = S” for some integer n 3 1 hence ,!?I = (U/R)‘. With the 
above notations this yields an exact sequence 

0 - K,,(Sl) L K,(mod(R)) --!Q K,(mod( V)) - 0. 

Since I’= End(P) is the ring of all (n x n)-matrices over the skew field 
End(S), we may identify K,,(mod( V)) with Z, accordingly I, with 1,, 
which proves the assertion. 1 
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The situation described in the foregoing frequently occurs in the study of 
representations of finite dimensional algebras: 

THEOREM 4.16. Let A be a finite dimensional algebra over a field k and 
S~mod(A) such that 

(a) S=Sr@ . . . 0 S, with End(Si) a skew fieZd and SE mod(A) such 
that Hom(S,, S,)=O for i#j and Ext’(S,, S,)=Ofor all i andj; 

(b) proj dim S< 1; 
(c) Hom(S, A) = 0. 

Then there exists a finite dimensional algebra A’ and a homological 
epimorphism cp: A + A’ which is also injective such that 

(1) mod(A’)=Sl; 
(2) T= SO cp,(A’) is a tilting module in mod(A); 
(3) gldimA’<gldimA; 
(4) the number of (isomorphism classes of) simple A’-modules is equal 

to the number of (isomorphism classes of) simple A-modules -p. More 
precisely, ‘p* allows us to identify K,(A’) with a direct summand of K,(A) 
such that 

5. CATEGORIES PERPENDICULAR TO PROJECTIVE OR SIMPLE MODULES 

This section deals with the category right perpendicular to a system of 
projective or simple R-modules in Mod(R) or mod(R), where in the latter 
case we assume R to be right noetherian. The questions are linked to the 
study of those homological epimorphisms of rings which are surjective. In 
the same context we deal with Serre subcategories of mod(A) for an Artin 
algebra A. We start with the case of projective modules. 

Let d be a small additive category. Then the category of all (resp. all 
finitely presented) right d-modules is by definition the category (czP, Ab) 
(resp. fp(sP’, Ab)) of all (resp. all finitely presented) contravariant additive 
functors from & to the category of abelian groups and is denoted by 
Mod(d) (resp. mod(d)). 

For a full subcategory W of &, a/[991 denotes the factor category of d 
by ?8. The category &/[a] has the same objects as ZZ’, while the 
morphisms of two objects A1 and A, in &/[W] are given by 

Horn d,C&L A,)= Hom.AL A2YWL A,), 

481/144/2-3 
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where g(A, AZ) is the subgroup of all morphisms from A, to A2 factoring 
through a finite direct sum of objects of 69. Finally, composition is induced 
by the composition in ~2. Clearly, [9#] is an idempotent two-sided ideal 
of d. 

For a ring R and a right R-module A4 the truce ideal Tr(M) of M in R 
is the two-sided ideal consisting of the sum of all im(f) with 
f~ Hom(A4, R). For any projective module P the trace ideal is an idem- 
potent ideal with the property P. Tr(P) = P. If e is an idempotent in R 
then Tr(eR) = Re R. If for some two-sided ideal a the natural mapping 
cp: R + R/a is a homological epimorphism, then a is idempotent. Note 
moreover that each idempotent two-sided ideal a which is projective as a 
right R-module coincides with its trace ideal. 

PROPOSITION 5.1. Let R be a ring (resp. a right noetherian ring) and P 
be a projective right R-module. Then Pl formed in Mod(R) (resp. in 
mod(R)) consists of all modules X in Mod(R) (resp. in mod(R)) which are 
annihilated by Tr(P) and is a localizing subcategory of Mod(R) (resp. 
mod(R)). 

Zf U = End,(P), the functor Hom,( P, -) induces equivalences 

(PLY r Mod(U) and Mod( R)/Mod( R/Tr( P)) r Mod( U) 

as well as 

(P’)’ 2 mod(U) and mod( R)/mod( R/Tr( P)) r mod( U). 

If moreover Tr P is projective as a right R-module-for instance tf P is 
simple projective-the natural mapping cp: R + R/Tr(P) is a homological 
epimorphism of rings. 

Proof: Since Hom,(P, M) = 0 holds if and only if M.Tr P = 0, we may 
identify P’ with the category of all (resp. all finitely generated) R/Tr(P)- 
modules. By means of this identification, the functor M H M/M. Tr(P) 
serves as a left adjoint to the inclusion P’ c mod(R). 

Since for any idempotent ideal a of R we have Torf(R/a, R/a) = 0 the 
last assertion is a consequence of Theorem 4.4. For the remaining asser- 
tions we refer to the next proposition. 1 

In the context of functor categories a slightly different formulation for 
Proposition 5.1 is preferable. In terms of representation theory both 
propositions deal with the deletion of vertices [37]: 

PROPOSITION 5.1*. Let & be a small additive category (resp. a small 
additive category which is right noetherian) and let 93 be a full subcategory 
of ~4 which we also view as the system of all Hom,(-, B) with B in $9. 
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Then the category right perpendicular to a is the localizing subcategory of 
Mod(d) (resp. of mod(d)) consisting of all functors M which are zero on 
~43 and hence may be identif?ed with Mod (d/[93]) (resp. with 
mod( &;al[ 98-j)). Moreover, restriction to a induces equivalences 

Mod(&/[58])’ r Mod(g) and Mod(&))/Mod(Z#) r Mod@?) 

as well as 

mod(d/[9])1 7 mod(g) and mod(d)/mod(?J) 5 mod(a). 

Proof: In either case the restriction functor is exact and, using Kan 
extension, also representative. The full embedding Mod(d/[%]) c 
Mod(d) induced by the natural functor d + &/[a] allows one to 
identify Mod(d/[g]) with the full subcategory of all functors vanishing 
on all objects of CtI. Finally, the existence of a right adjoint to r, namely the 
right Kan extension, shows that r induces the claimed equivalence. 1 

A Serre subcategory Y of an abelian category d is called colocalizing 
if the quotient functor T: d + d/Y has a left adjoint. Note that Y is 
colocalizing in & if and only if Yap is localizing in &‘P. 

COROLLARY 5.2. There are equivalences 

(93”)” = Mod(d/[98])1 E Mod(g) E +I?‘) = ‘Mod d/[?+J]), 

where the perpendicular categories are formed in Mod(d). 
If additionally d is right noetherian andfor each A E ~4 the left resp. right 

B-modules Hom,(A, -)IB and Horn&(-, A)I, are finitely generated, then 

(98’)’ = mod(d/[g])’ rmod(9) E ‘(~49”) = ‘mod(d/[9]), 

with the perpendicular categories formed in mod(d). 

Note that in either case (9J’)’ will differ from ‘(,$‘). 

Proof Left and right Kan extension provide left and right adjoints 
to the kernel of the restriction functor r: Mod(d) + Mod(B) (resp. 
r: mod(d) -V mod(@)). Therefore Mod(d/[99]) (resp. mod(d/[&?])) is a 
localizing and colocalizing subcategory of Mod(d) (resp. mod(d)). By 
virtue of Proposition 2.2 both the left and the right perpendicular category 
of (Mod(d/[g]) (resp. mod(d/[9?])) are equivalent to Mod(B) (resp. 
mod(W). I 

We finish this section with a digression on Serre subcategories of mod(A) 
for an Artin algebra ,4 and those homological epimorphism cp: A + A’ 
which are surjective mappings. 
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PROPOSITION 5.3. Let A he an Artin algebra and Y be a full subcategory* 
of mod(A). Then the following assertions are equivalent: 

(i) 9’ is a Serre subcategory. 

(ii) Y is a Serre subcategory generated by simple modules S, , . . . . S,. 

(iii) 9’ is localizing and colocalizing in mod(A). 
(iv) Y= mod(A/a) for some two-sided ideal a which is idempotent 

(resp. the trace ideal of some projective right A-module). 

(v) Y=Pl, where P is a (finitely generated) projective right 
A-module. 

In this situation moreover the following properties hold true: 

(a) If P denotes the direct sum of a representative system of inde- 
composable projective right A-modules P’ satisfying Hom,( P’, Sr) = 0 
(equivalently P’a = P’) for i = 1, . . . . k, then Y’ consists of all ME mod(A) 
such that Hom,(P, M) + Hom,(rad P, M) is an isomorphism. 

(b) Let A’ = End,(P); then the functor Hom,( P, -) induces equivalen- 
ces 

mod(A)/Y z mod(A’) z ‘9’ g 9” g mod(C). 

Note that in general ‘9 differs from Yl. In terms of representation 
theory the passage from mod(A) to mod(A’) is linked to the shrinking of 
arrows (cf. [37]). 

Proof: (iii) * (i) is obvious. 
(i) = (ii): Let S,, . . . . S, be a representative system of those simple 

modules which occur as a composition factor of a module in 9; then, 
clearly, S,, . . . . Sk generate Y. 

(ii)*(v): Let Sk+i, . . . . S, be the remaining simple right A-modules 
and denote by Pk+ i, . . . . P, their projective hulls. The module 
P=Pk+,@ ... OP, satisfies Hom,(P, Si) = 0 for i = 1, . . . . k and 
Hom,(P, Si) #O for each j= k + 1, . . . . n. Hence 9’ consists of all X in 
mod(A) with the property Hom,(P, X) = 0, and Y = P’ follows. 

(v) * (iv): follows from Proposition 5.1. 
(iv) * (iii): The functor Hom,(P, -): mod(A) + mod(Z), where C = 

End,,(P), may be viewed as the quotient functor T: mod(A) + Mod(A)/Y. 
Since -Or P: mod(Z) + mod(A) (resp. Hom,(P*, -)) serves as a left (resp. 
right) adjoint to Hom,(P, -) = -OZ P*, where P* = Hom,(P, A), we see 
that Y is colocalizing and localizing in mod(A). 

The remaining assertions follow from Proposition 5.1. 1 
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By the preceding proposition mod(A) has only finitely many Serre 
subcategories; accordingly: 

COROLLARY 5.4. For an Artin algebra A with n non-isomorphic simple 
modules, there exist-up to isomorphism-at most 2” homological surjective 
epimorphisms with domain A. 

For further and non-trivial examples of homological epimorphisms 
whose domain is an Artin algebra we refer to Sections 10 and 11. 

6. PERPENDICULAR CATEGORIES UNDER TILTING 

Tilting theory has been a central theme of the representation theory of 
finite dimensional algebras for quite a number of years (see, for instance, 
[ 11,27,48, 321). The interpretation of the tilting process as providing an 
equivalence of the attached derived categories is due to Happel [25]. 
Tilting from sheaves to representations first occurred in the paper by 
Beilinson [ 71. 

LEMMA 6.1. Let d be an abelian category and (Y-, 9) be a torsion 
theory for d. Further let SE d be an object of projective dimension < 1. If, 
moreover, SE Y, then (9 n S ‘, 9 n S’) is a torsion theory for S’. 

Proof Obviously, (Y n Sl) n (9 n Sl) = 0, .Y n S’ is closed under 
quotients, and 9 n S’ is closed under subobjects in S’. Now, let A E Sl. 
By assumption there exists an exact sequence 

with Ao~Y and Ales. We have Ext’(S,A,)=O since projdimS<l 
and Hom(S,A,)=O since SEY. Thus A,EpnS’ and A,EYnS’ 
follows. 1 

Let d be a small noetherian category; i.e., we assume that the 
isomorphism classes of objects from d form a set and, moreover, all 
objects are noetherian. An object TE d is called a tilting object in & if 

(1) proj dim T< co, 
(2) Ext’(T, T)=O for all i>O, 
(3) T generates Db(&) as a triangulated category, i.e., Db(&‘) is the 

smallest triangulated subcategory of Db(-O1) containing all direct factors of 
finite direct sums of T, and 

(4) A = End(T) is a right noetherian ring of finite global dimension. 
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Let T be a tilting object and let F and G denote the functors 
(Hom( T, -): d -+ mod(A) and ~ @,, T: mod(n) -+ &‘, respectively. The 
functors F and G induce derived functors (see [28, SO]) 

RF: Db(&) -+ Db(mod(A)) 

and 

LG: Db(mod(A)) + Db(d) 

which are equivalences mutually inverse to each other (see, for instance, 
C51). 

If, generally, Hj: Db(%?) + 9? denotes the jth homology functor, then 

H’RF = R’F = Ext’( T, -), 

H-jLG=L,G=Tor,(-, T). 

IfX={(A~&‘~RRiF(A)=Ofori#j}and~={jM~mod(A)~LjG(M)=O 
for i# j}, the functors RF and LG induce equivalences 

R’F= Ext’( T, -): Xi -+ g, 

and 

L,G = Tor,(-, T): SYi --+ Xj 

mutually inverse to each other for all i > 0. 
Moreover, we have the formula 

Ext;(Ext$(T, Ai), Ext:‘,(T, Aj))=Ext;,-‘+‘(& Aj) 

for all i, j, I and all A,e Xi and A,cX (compare [21]). 
If T has projective dimension d 1 the categories X, and SVj are zero for 

ia 2. Further R’Fo L,G and LjGo R’F are zero for i# j, and (X0, Xi) and 
(%$, gob) are torsion theories for d and mod(A), respectively. If addi- 
tionally gl dim SC! S 1, the torsion theory (CVi, gO) is splitting, i.e., each Y in 
mod(A) has the form Y = Y, @ Yi with Y0 E 9e and Y, E 5$. 

THEOREM 6.2. Let T be a tilting object of projective dimension < 1 in a 
small noetherian category ZZJ, let A = End(T), and let SE d be an object of 
projective dimension < 1. If S is contained in X0, the functors RF and LG 
induce equivalences 

R*F: D’&(d) + Db,,,,(mod(A)) 
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and 

mutually inverse to each other. 

Here, DiI(&‘) (resp. D&, I(mod(n))) denotes the full triangulated sub- 
category of Db(&) (resp. Db(mod(n))) of all complexes with cohomology 
in S’ (resp. F(S)l). 

Proof (1) Let M, be a /l-module contained in $$, hence of the form 
Ext’,(T, Aj) with A,G~$. Then 

Ext’,(Hom( T, S), Ext’,(T, A,)) = Ext:j(S, Aj) = 0 

for all I& 2. Since (9Yr, @Jo) is a torsion theory for mod(n), every n-module 
is an extension of a module in ?Yr by a module in +&, This proves that 
Hom( T, S) has projective dimension at most 1. In particular, Hom(T, S)’ 
is a full exact subcategory of mod(A) which is closed under extensions. 

(2) Let Aj be an object contained in q n S’. Then the formula in (1) 
shows that Ext’,( T, Aj) is contained in Hom( T, S)l. Now, let A E S’ be an 
arbitrary object. By Lemma 6.1 there is an exact sequence 0 --) A, + A + 
A, 40 with Aj~zjnS’ forj=O, 1. Thus Hom(T, A)rHom(T, A,) and 
ExtL(T, A) g Ext$(T, A,) are contained in Hom(T, S)‘. 

(3) Consider the sequence 

T,, 2 T, “i, T, 

with cc, 0 a0 and where all Ti are direct factors of finite direct sums of T. We 
denote by Ki and Ii the kernel and the image of ai, respectively. We further 
assume that the cohomology H = K,/Zo is contained in S I. We have the 
exact sequences 

O+Ko+To-,Io+O 

and 

O+Z,-,K,+H+O. 

Application of the functor Hom( T, -) yields the exactness of 

0 + Hom( T, K,) + Hom( T, To) --, Hom( T, IO) + Ext ‘( T, K,) + 0 

and 
0 --i Hom( T, I,) + Hom( T, K,) -+ Hom( T, H) 

-+O+Ext’(T, K,)+Ext’(T, H)+O. 

Note that the condition Ext’( T, T) = 0 implies Ext’( T, Zi) = 0. 
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If I denotes the image of the map Hom( T, To) -+ Hom( T, T, ), we obtain 
the following commutative diagram with exact rows and columns: 

0 0 

I I - 
o-z - Hom( T, K, ) -H-O 

I I I I 
0 ----+ Hom( T, Z,) - Hom(T, K,) - Hom( T, H) - 0 

I I I 
Ext’(T, Ko) 0 0 

I 

We conclude that Ext’( T, K,) z Ext’( T, H) is contained in Hom( T, S)’ 
and that for the cohomology R = Hom( T, K,)/Z we have an exact sequence 
O+Ext’(T, K,)-+n+Hom(T, H)+O 

(4) Let X’ be a complex in Dil(&‘). Since T generates Db(&), X’ 
is isomorphic to a complex T’ of objects which are direct factors of finite 
direct sums of T. Then by (3), R Hom( T, -)( T’ ) = Hom( T, T’ ) is contained 
in @,,,o,,4mod(4). 

(5) Let M, be a n-module contained in C$ n Hom( T, S)I. Then we 
have that 

Ext’(S, Tor,( T, Mj)) z Ext’-j (Hom( T, S), Extj( T, Tor,( T, Mj))) 

g Ext’-j(Hom( T, S), M,) = 0; 

hence Tar, ( T, Mj) is contained in S ‘. Now, let M be an arbitrary module 
in Sl. Then there is an exact sequence 0 + M, + M-+ M, -+O with 
Mi E gj. Obviously, Hom(Hom( T, S), M,) = 0. Further, 

Ext’(Hom( T, S), M,) SC Ext2(S, Tor,( T, M,)) = 0 

since proj dim S Q 1. Hence MI and M, are contained in Hom( T, S)l. This 
shows that M@TgM,@Tand Tor,(M, T)zTor,(M,, T) are contained 
in Sl. 

(6) Any complex in Db(mod(n)) is isomorphic to a complex con- 
sisting of finitely generated projective ,4-modules. By a proof dual to (3), 
the functor L,G maps such complexes with cohomology in Hom(T, S)’ to 
complexes with cohomology in Sl. 
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We now proved that the functors R*F and L,G are properly defined. 
Since RF and LG are equivalences mutually inverse to each other the same 
holds true for the functors R*F and L,G. 1 

COROLLARY 6.3. Under the assumptions of Theorem 6.2 the following 
assertions hold true: 

(1) proj dim F(S) d 1. In particular, F(S)’ is an exact subcategory of 
mod(A) closed under extensions. 

(2) (C!!$ n F(S)‘, gon F(S)‘) is a torsion theory for F(S)l. 

(3) The functors 

Ext’( T, -): Xi n S’ + gi n F(S)’ 

and 
Tor,(-, T):grnF(S)‘+EjnSS 

are equivalences of categories mutually inverse to each other. 

(4) If S’ is contained in Xj (i = 0 or i = 1 ), then 

Ext’(T, -): S’ + F(S)’ 

is an equivalence of categories. 

COROLLARY 6.4. Let T be a tilting object of projective dimension < 1 in 
a small noetherian category d. Suppose that T z S 0 T’ with 
Hom(S, T’) = 0 and the property that Ext’(S, A) = 0 implies Ext’( T, A) = 0 
for all A E &. Then S’ z mod(End( T’)). 

Proof: If A is an object of S’ we have Ext’( T, A) = 0, and hence 
A E X0. By Corollary 6.3(4) the functor Hom( T, -): S’ --t Hom( T, S)’ 
is an equivalence of categories. Since Hom( T, S) is a projective End(T)- 
module, Hom( T, S)’ z mod(,4’), where A’ = End( T)/Tr(Hom( T, S)). Since 
Hom(Hom( T, S), Hom( T, T’)) = Hom(S, T’) = 0 we get A’ = End( T’). 1 

PROPOSITION 6.5. Let d be a small noetherian category, T be a tilting 
object in d of projective dimension < 1, and A = End(T). Further let SE d 
be an object satisfying the following properties: 

(a) ScL!&. 
(b) proj dim, S < 1. 
(c) Ext’(S, S) = 0 
(d) For all AE~ the End(S)-module Hom(S, A) and Ext’(S, A) are 

of finite length. 
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(e) End(S) is a skew field, 

(f) Hom(S, T) = 0. 

Moreover, let 1: d + S’ be the I@ adjoint to the embedding j: S’ -+ L&‘. 
If proj dims1 IT< 1 then IT is a tilting object in S’. 

Proof: Since Hom(S, T) = 0, there is an exact sequence 

O-+T-+lT-+S”+O 

(Proposition 3.5), and hence IT is contained in X0. In particular, we have 
that Ext’( T, 1T) = 0 and Ext’(lT, 1T) = 0 follows. 

By Corollary 6.3 properties (a)-(e) of the assumptions hold respectively 
for Hom(T, S) in mod(A). 

In particular, the embedding j’: Hom(T, S)’ + mod(A) has a left adjoint 
1’: mod(A) -+ Hom( T, S)‘. Property (f) translates to the property 
Hom(Hom( T, S), A) = 0. Hence there is an exact sequence 

O+A+l’A+Hom(T, S)n+O 

and proj dim,, I’A < 1 follows. Moreover, Hom( T, 1T) z I’,4 and by 
Corollary 3.9, Corollary 4.10, and Theorem 4.4 we have that End(lT) 2 
End(l’A) is right noetherian of finite global dimension. 

It remains to prove that IT generates Db(SL). For this it is sufficient to 
show that S’ is the smallest subcategory %? of S’ containing all direct 
factors of finite direct sums of IT and which is closed under kernels of 
epimorphisms, cokernels of monomorphisms, and extensions. 

Suppose first that X is contained in S L A !&. Then A4 = Hom( T, X) E gO. 
Since End(f’A) is of finite global dimension the module M has a finite 
projective resolution 

O-P,+ ... +P,-,P,+M-rO 

in Hom(T, S)‘. Since all Pi are also contained in %0, application of -On T 
yields an exact sequence 

O+lT,,+ ... -+lT,+lT,+~+0, 

where all lTi are direct factors of finite direct sums of 1T. Hence XE W. 
Now, let X be in S’n%,;, M=Ext’(T, X), and 
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be exact, where P is projective in Hom( T, S)‘. Then K is contained in Y0 
and application of -a,, T yields the exact sequence 

O+X+K@T+P@T-+O; 

hence X is contained in V. 
Now Lemma 6.1 implies V = Sl. This finishes the proof of the proposi- 

tion. 1 

Remark 6.6. We note that the exact sequence 

O-+T+lT-+S”-+O 

in the proof of Proposition 6.5 implies proj dim, IT< 1. If d = mod(R) is 
the category of finitely presented modules over a right noetherian ring R 
this yields proj dirnsl IT < 1 by Theorem 4.4 since n = Hom( T, T) + 
Hom(ZT, fT) is a homological epimorphism. Hence, in this case the 
additional assumption proj dirnsl IT < 1 is superfluous. 

Also if S is a simple sheaf on a weighted projective line (see Section 9) 
we know that Si has global dimension d 1. Hence again the additional 
assumption proj dim,1 lT< 1 is superfluous. 

Remark 6.7. We recall that a Grothendieck category JZ is locally 
noetherian if & has a set of generators consisting of noetherian objects. 

In the case where J is a locally noetherian category a noetherian object 
TE JZ is called a tilting object in J if the following conditions are satisfied: 

(1) proj dim T-C co, 
- - 

(2) Ext’(T, T)=O for all i>O, 
(3) the class of all (possibly infinite) direct sums of copies of T 

generates Db(J) as a triangulated category, 
(4) ;i = End(T) is a ring of finite global dimension. 

Similar to the noetherian case, where a tilting object induces an 
equivalence Db(~) 2 Db(mod(n)), a tilting object Tin a locally noetherian 
category J induces ab equivalence 

Db(d) -+ Db(Mod(?i)), 

il= End(T). With the obvious modifications, all the above assertions 
remain valid in this modified context. 

7. SHEAFIFICATION 

In this section we study the passage from graded modules to coherent 
sheaves over projective varieties or schemes. 
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Let H be an abelian group and R be a commutative H-graded ring. 
Thus, R has a decomposition 

R=Q R, 
htH 

with 1 ERR and R,,.R,cRh+[ for all h, 1~ H. An H-graded R-module M is 
an R-module with a decomposition M = GItH MI, where we assume 
&,.MrcMh+~. If M is an H-graded R-module we denote by 
M(h) = 63,s~ N, its h-shift, where NI = M,,,. 

In the context of graded modules, Hom,(M, N) always means the set of 
all homomorphisms of graded modules of degree zero; also the notion of 
isomorphism of graded modules always refers to degree zero maps. By 
ModH(R) and modH(R) we denote the categories of all H-graded and of 
all finitely presented H-graded R-modules, respectively. 

Additionally we consider the H-graded homomorphism groups 
HOM,(M, N) defined by 

HOM,(M, N) := @ Hom,(M, N(h)). 
heH 

HOM,(M, N) is again an H-graded R-module and obviously 
HOM,(R, N) g N. 

LEMMA 7.1. Let H be an abelian group and R be a commutative 
noetherian H-graded ring. Further let rIJ . . . . r, be an R-sequence of 
homogeneous elements, hi = deg ri, E = R/(r,, . . . . rn), n 2 2, and M be a 
finitely generated graded R-module. 

(1) Ext”(E, R(h))#O ifand only ifi=n and E,,+.,,#O. 

(2) If additionally Eh # 0 only for finitely many h E H, then 
Ext’(E(h), M) # 0 only for finitely many h E H. 

Proof: Let 

K,:O+P,-tP,_,+ ... -+P,+P,-rO 

be the Koszul complex induced by (r,, .,., r,). Thus Pk = r\” R” is the kth 
exterior power of R” and if e,, . . . . e, is a basis of R”, P, has a basis 
consisting of the system {ei, A . . . A eik ( 1 < il < . . < i, d n}. By setting 
Wei1 A ... A e,,)=hi, + ... +h,, Rk becomes a graded R-module, 
P, = accl + R( -hi, - ... -h,), and the boundary maps are 
homomorphisms of graded modules. Since (r,, . . . . r,) is an R-sequence the 
Koszul complex defines a projective resolution of E viewed as a graded 
module. 
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Since HOM,(K,, R)zK.(C hi) is isomorphic to the C hi-shift of the 
Koszul complex K. (with the ith part of HOM,(K,, R) corresponding to 
the (n - i)th part of K,(C hi)) we have 

. 
h 

The fact that (ri, . . . . r,) is an R-sequence implies H”-‘K,(C hi) = 0 for i # n 
and H’K,(C hi) = E(C hi). Hence (1) follows. 

In order to prove (2) let ME modH(R) and Q, + Qn _ 1 + . . . --f Q1 + 
Q. + M --) 0 be a graded projective resolution of M by finitely generated 
projective modules. Further let K be the kernel of the map Q, _ 2 + Qll _ 3. 
Suppose Extk(E(h), M) # 0. Since Exta(E(h), Qj) = 0 for all i # n we obtain 
Ext”,(E(h), K) # 0 by dimension shift. Then Ext”,(E(h), Q,- ,) # 0 because 
Ext”,(E(h), -) is right exact. By assumption this holds true only for finitely 
manyhEH. 1 

Let H be an abelian group. R is called graded local if R has a unique 
maximal graded ideal. An H-graded local commutative noetherian ring R 
is called graded Cohen-Macaulay if there exists a regular sequence 
fi, . . ..f. E R of homogeneous elements such that the R-module R/(f,, . . ..fn) 
is of finite graded length. The natural number n occurring equals the 
(graded Krull) dimension of R. 

In the following we assume that H is an ordered group with the addi- 
tional property that for every positive element h there exist only finitely 
many positive elements h’ with h’ < h. 

An H-graded ring R (resp. H-graded R-module M) is called positively 
graded if R, # 0 (resp. M, # 0) only if h > 0. We denote by ModH+(R) 
(resp. modH+(R)) the category of all (resp. all finitely presented) positively 
graded R-modules. 

PROPOSITION 7.2. Let R be a positively H-graded Cohen-Macaulay ring 
of dimension n > 2 with R, a field. 

Then the category mod:+(R) of all positively H-graded R-modules of 
finite length is a localizing subcategory in modH+(R). 

Proof: Since R, is a field, R is graded local with unique maximal 
graded ideal m = @ h,,, Rh. Let s[h] = (R/m)( -h) be the simple graded 
module concentrated in h > 0. We show that the system (S[h] 1 h 2 0} 
satisfies conditions (ak(e) of Theorem 3.6. 

Obviously End(S[h]) is a field and Hom(S[h], S[h’]) = 0 for all h #hf. 
Hence, conditions (a) and (c) are satisfied. 

By applying the functor Hom(-, S[h’]) to 0 + K + R( -h) + S[h] + 0, 
we obtain an epimorphism Hom(K, SC/z’]) + Ext’(S[h], S[h’]). Hence, 
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Ext’(S[h], SC/r’]) #O implies Hom(K, S[h’]) #O. Let f: K+ S[h’] be a 
non-zero homomorphism which is necessarily an epimorphism. Thus the 
natural homomorphism R( -A’) -+ S[k’] can be lifted to K and we obtain 
a non-zero morphism R( -h’) --f S[k’] can be lifted to K and we obtain a 
non-zero morphism R( -A’) -+ R( -h) which is not an isomorphism. Since 
R is positively graded, this yields h < /I’. This proves conditions (b) and (d). 

Let fr, . . ..f. be a regular sequence of homogeneous elements such that 
E[h] = R/(f,, . . ..f.,)( --A) has finite length. Since each homogeneous com- 
ponent of E[h] is finite dimensional over R, g End(S[h]), the argument of 
Lemma 7.1 shows that for all modules ME modH+(R) the module 
Ext’(E[I?], M) has finite length over End(S[h]) and is non-zero only for 
finitely many h E H,. By means of the exact sequence 

0 + K[h] --) E[h] -+ ,S[h] -+ 0 

the same assertion holds true for Ext’(S[h], M) for all those modules 
M~mod”+(R) such that Hom(S[h], M) = 0 for all h E H,. 1 

Let (H, ,< ) be a finitely generated ordered abelian group and R a 
positively H-graded local Cohen-Macaulay ring with R, a field. The 
corresponding projective scheme X is the set of all homogeneous prime 
ideals p strictly contained in m := oh, ,, R,. For f~ m homogeneous we 
define D(f) := {p E Xlf+! p}. The sets D(f), f~ m, form a basis of open 
sets (called principal open sets) for a topology on X, called the Zariski 
topology. We note that X has an interpretation as the orbit space of the 
action of the diagonalizable algebraic group Spec (Z[H]) on the alline 
spectrum Spec(R) of R. Here Z[H] denotes the group algebra of H with 
its natural structure as an Hopf algebra. For the following discussion we 
refer the reader mainly to [21], where a similar but more restricted context 
is assumed. Basically, everything that follows is modeled after Serre’s treat- 
ment of projective varieties in [42]; see also [24] with the only distinction 
being that here we use graded localization in order to define the structure 
sheaf as well as coherent and quasicoherent sheaves, whereas the tradi- 
tional treatment avoids the grading by passing directly to the zero compo- 
nent of the graded case. (Note that in the case where one deals with a 
Z-graded afline k-algebra which is generated by homogeneous elements of 
degree one, both the graded and the non-graded theory lead to equivalent 
categories of coherent sheaves.) The graded sheaf theory also marks the 
essential difference from the treatment of weighted projective varieties in 
[13, 15, 83. 

We define on X a graded structure sheaf c?, setting &(D( f )) = R, on 
principal open sets D(f). Note that R, is again H-graded, and thus 0x is 
a sheaf of H-graded algebras. Similarly an ox,,-module is a sheaf of H-graded 
ox-modules. The category of all @&-modules is denoted by Mod(&). The 
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full subcategories of quasi-coherent and coherent (graded) Ox-modules are 
denoted by Qcoh(X) and cob(X), respectively. 

Let A4 be a graded R-module. Then M induces an &-module I$? defined 
by &(0(f)) = M, on the principal open sets D(f), YE R + . ff is a quasi- 
coherent sheaf and in the case where M is finitely generated, J@ is coherent. 
For a proof of the following theorem modeled after Serre [42] we refer 
to [21]. 

THEOREM 7.3 (Serre). The sheaf$cation functor 

N : Mod”(R) --) Qcoh(X), MHlG, 

is exact and representative and induces an equivalence of categories 

ModH( R)/Mod:( R) r Qcoh(X), 

where Mod:(R) is the localizing subcategory of ModH(R) generated by all 
simple graded modules. 

The restriction N : modH(R) + cob(X) induces an equivalence 

mod”(R)/mod,H(R) r cob(X), 

where mod:(R) is the Serre subcategory of modH(R) generated by all 
simple graded modules. 

Since Mod:(R) is a localizing subcategory we have a section functof 
r,: Qcoh(X) + ModH(R) given by r,(9) = eheH Hom,(Ox, S(h)). In 
general, for a coherent sheaf 9, r,(9) will not be a finitely generated 
R-module. In particular mod:(R) usually is not a localizing subcategory of 
modH( R). 

Remark 7.4. Suppose H has rank 1 and let res: modH(R) + modH+(R) 
be the restriction functor given by res(M) = ehc H+ M,,. Since M is of 
finite length if and only if res(M) is of finite length, res induces an 
equivalence 

modH(R)/mod,H(R)rmodH+(R)/mod,H+(R). 

Thus Serre’s theorem also holds true for the shealihcation functor 
N : modH+(R) + cob(X). 

In view of the above remark Proposition 7.2 yields the following in the 
case of a grading group of rank 1: 

THEOREM 7.5. Let (H, < ) be a finitely ,generated ordered abelian group 
of rank 1 and R be a positively H-graded local Cohen-Macaulay ring of 
dimension 22 with R, a field, 
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Then mod:+(R) is a localizing subcategory qf modH+( R). In particular, 
for any coherent sheaf 9 the module 

r+ (5) = @ Hom(0, F(h)) 
heH+ 

is finitely generated over R. Moreover the section functor 

r+ : cob(X) -+ modH-(R), F k--F r+ (sq, 

induces an equivalence of cob(X) with the perpendicular category 
mod:+(R)’ viewed as a full subcategory of modH+(R). 

COROLLARY 7.6. Under the assumptions of Theorem 1.5, the module 
r,(9) is contained in modH(R) and therefore in the perpendicular category 
mod f(R)l formed in modH(R) tf and only tf there exists h,, E H such that 
rH(S), # 0 implies h 3 h,. 

Proof: The condition is obviously necessary. To prove sufficiency we 
may assume that h, = 0. Thus r,(9) = T+(S) is a finitely generated 
R-module by Theorem 7.5. m 

COROLLARY 7.7. Let H be a finitely generated abelian group of rank 1 
and R=k[X,, . . . . X,,] be the polynomial algebra in n > 2 indeterminates 
endowed with an H-grading such that all X, are homogeneous of strictly 
positive degree. Then mod:+(R) is a localizing subcategory of modH+(R). 

Let p = (pO, . . . . p,) be a sequence of non-zero natural numbers and let 
L(p) be the abelian group with generators x’,, . . . . x’, and relations pox’, = 
. . . = PIG n := C: The string group L(p) is an abelian group of rank 1 and is 
ordered by defining CyxO NZi as the set of its positive elements. Further let 
& = (A,,, . . . . A,) be a sequence of pairwise distinct elements of P,(k) nor- 
malized such that & = co, 2, = 0, and I., = 1, and consider the k-algebra 

NP, Li) = UX,, . . . . X,]/(XT -XT’ + ;liXpoO, i= 2, . . . . n) 

L(p)-graded by virtue of deg Xi = Zi. R(p, A) is called the string singularity 
of type (p, 4). The projective scheme C(p, A) corresponding to R(p, ;1) is 
one dimensional and called a weighted projective line of weight p; see [21]. 

COROLLARY 7.8. mod,L’p’+ (R(p, 4)) is a localizing subcategory of the 
category modL’p’+ (R(p, A)). 

Proof: (X0, A’,) is a homogeneous R(p, A)-sequence and R(p, A)/ 
(X0, X,) is of finite length. Hence R(p, 8) is an L(p)-graded Cohen- 
Macaulay algebra of dimension 2. 1 
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8. VECTOR BUNDLES AND COHEN-MACAULAY MODULES 

We assume that H is a finitely generated abelian group of rank 1 and R 
is a positively H-graded local ring of dimension d, where dimension refers 
to the (graded) Krull dimension, defined in terms of chains of 
homogeneous prime ideals. We recall that the graded depth of a finitely 
generated H-graded R-module M is defined as the maximal length n of a 
sequence (x1, . . . . x,) of homogeneous elements of the graded maximal ideal 
m that form a regular sequence for M. (Notation: depth(M)=n.) 
depth(M) is always bounded by the dimension of R, and in case 
depth(M) = d we call M a graded maximal Cohen-Macaulay module. By 
CMH( R) we denote the full subcategory of modH( R) consisting of all these 
modules. Also R is a graded Cohen-Macaulay ring if and only if-viewed 
as a graded R-module-R is Cohen-Macaulay. 

PROPOSITION 8.1. We assume that R is an H-graded local noetherian ring 
of dimension 22 and X = Proj(R). For a finitely generated graded R-module 
M the following assertions are equivalent: 

(i) A4 has graded depth 22. 

(ii) A4 is a section module; i.e., for some coherent graded sheaf 9 on 
X we have M= r,(F). 

(iii) M belongs to the full subcategory (mod:(R))’ of modH(R) right 
perpendicular to the family of simple graded R-modules. 

Proof. The equivalence (i) o (iii) is the graded analogue of a well- 
known characterization of depth (cf. [41]). 

(ii) o (iii): Sheafification MH &f represents Qcoh(X) as the quotient 
category of ModH(R) with respect to the localizing subcategory Mod:(R) 
generated by the simple graded R-modules. Since r,: Qcoh(X) + 
ModH(R) serves in this context as a section functor, it induces an 
equivalence 

Qcoh(X) -+ (Mod:(R))l 

which by Proposition 2.2 implies the assertion. 1 

Note that in general for a coherent sheaf 9 on X the section module 
T,(S) is not a finitely generated R-module. This will, however, be the case 
if we assume that 9 is additionally locally free, i.e., all stalks 9X, where 
x E X, are graded free over Ox,, . As usual, the locally free coherent sheaves 
on X are called vector bundles and vect(X) denotes the full subcategory of 
cob(X) consisting of all vector bundles on X. 

481/144/Z-4 
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LEMMA 8.2. We assume that depth(R) > 2; for instance, R is graded 
Cohen-Macaulay of dimension at least 2. If 9 is a vector bundle on X, then 
the module r,(F) is a finitely generated section module. 

Proof: In an obvious way, the functor 

” : vect(X) + vect(X), B t-+ 9 ” = %m,p, Ox), 

induces a duality for vect(X). With 9 ” presented by means of Serre’s 
theorem as the quotient of a finite direct sum @ &(h,) of twisted structure 
sheaves, we conclude that F embeds into @ 0x( -hi). Now left exactness 
of r(X, -) shows that T(X, F) becomes a submodule of @ R( -h,) and 
hence is finitely generated by the noetherianness of R. i 

R is called an isolated singularity if the homogeneous quotient ring R, is 
graded regular local, i.e., of finite (graded) global dimension, for any non- 
maximal graded prime ideal p of R. It is an equivalent assertion that X is 
non-singular. 

PROPOSITION 8.3. If R is a graded isolated Cohen-Macaulay singularity 
of dimension 2, the category (mod:(R))’ of all finitely generated graded 
section modules coincides with the category CMH(R) of graded maximal 
Cohen-Macaulay modules over R; moreover, by means of the corresponden- 
ces MH fi, 9 H T(X, F), this category is equivalent to the category 
vect(X) of vector bundles over X. 

Proof The first assertion follows from Proposition 8.1. With regard to 
the last assertion we observe that any localization M, of a maximal 
Cohen-Macaulay module with respect to a non-maximal graded prime 
ideal is maximal Cohen-Macaulay over R,-and hence-due to graded 
regularity of X-is R, free. This proves that M is, in fact, a vector bundle 
over X. l 

This setting in particular applies to the string singularities defined in 
[21]. Let p = (pO, . . . . p,) with pi Z 1, ;1= (&, . . . . 1,) be pairwise distinct 
elements of P,(k) normalized such that I, = co, I, =O, and A, = 1, and 
R(p, 4) be corresponding L(p)-graded algebra ([21]; see also Section 7). 

If C;=, l/p, > n - 1, we say that R(p, A) is of Dynkin type. Apart from the 
process of inserting additional ones in the weight sequence this condition 
singles out exactly the weight types (p, q), (2,2, n), (2, 3, 3), (2, 3,4), and 
(2, 3, 5) describing the Dynkin diagrams A,,,, Dnp2, E,, E,, and E,. Note 
that no parameters are necessary here; thus a string singularity of Dynkin 
type will depend only on the weight sequence (p0,pI,p2). We hence use 
the notation R(p,,p,,p,). We further recall from [21] that the Dynkin 
case is characterized by the condition that C = Proj(R(p, J)) has (virtual) 
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genus < 1. Equivalently the degree of the dualizing element (3 = (n - 1) c’- 
Cy=O x’; is strictly negative; in particular c?J is torsion free. To each string 
singularity R(p), p of Dynkin type, we attach a Z-graded algebra 
R’ = R’(p) by restriction to the subgroup 26 of L(p); thus 

The occurring algebras are-in the case of the base field of complex 
numbers-the rational surface singularities that are well known from the 
invariant theory of the binary polyhedral groups; see for instance F. Klein 
[29,44]. We emphasize that, here, R’ appears equipped with a Z-grading. 

PROPOSITION 8.4. For any Dynkin type A = (pO, p, , p2) the Z-graded 
algebra R’(p,, pl, pz) has the form 

kCx, Y, ~1 = MIX Y, .W(fAX K z)), 

where the homogeneous generators (x, y, z), their degrees under the iden- 
tiJication ZcG = Z, -6 = 1, and the relation fd(X, Y, Z) are displayed by the 
following list: 

Dynkin type Generators (x. y, z) Z-degrees Relations fd 

(P. 4) 
c&2,21) 

(2,2,21+ 1) 
(2, 3, 3) 
(2, 334) 
(2, 3, 5) 

(1, P? 4) 
(2,21,21+ 1) 

(2, 21+ 1, 21+ 2) 
(3,4,(j) 
(4,6,9) 

(6, l&15) 

xp+q- YZ 
ZZ+x(Y2+ YX') 
z2 + X( Y2 + ZX') 

z2+ y3+x*z 
z2+ Y3+x3Y 
z2+ y3+xs 

In characteristic #2-by an easy parameter change-we obtain the 
equations of the rational double points in the form in which they are 
usually listed (see F. Klein [29, 441): 

(2,3,3) x4+ y3+z2 

(2,2,n) X(Y2-XXn)+Z2. 

Proof: The proof is straightforward using the explicit form of the 
homogeneous components of R(p,,p,,p,) given in [21]. 1 

Note also that each algebra R’(p) is a Z-graded isolated Gorenstein 
singularity and hence in particular graded Cohen-Macaulay but-apart 
from the case (2, 3, 5)-not graded factorial. Here, R’ is called graded 
Gorenstein if R’ is injective as a graded R’-module. 
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PROPOSITION 8.5. For any weight sequence p= (pO, p, ,p2) of Dynkin 
type let R’ = R’(p) denote the restriction of the string singularity R = R(p) to 
the subgroup ZG, If C = Proj( R), C’ = Proj(R’) there are natural equivalen- 
ces 

cob(C) + coh(C’) 

and 

vect(C) -+ vect(C’) 

induced by restriction. 

ProoJ Restriction to U = 26 defines an exact functor 

cp: modL(R) --) modU(R’), Ml-+M’=MI(/. 

This functor is clearly exact and, by means of Kan extension, easily seen to 
be representative. Moreover, M’ has finite graded length over R’ if and 
only if M has finite graded length over R: By noetherianness it is sufficient 
to deal with the case M= (R/p)(Z), where p is a homogeneous non- 
maximal prime ideal of R. It follows from [21, Proposition 1.33 that the 
L(p)-support (h E L(p) 1 M, # 0) of M is thus of the form L+(T) or L,f (x’), 
where 

L+= i NZj and L+ = i NZ,. 
j=O j#i 

It is easy to check whether any of the sets L+(2) or L+ (x’) has an infinite 
intersection with 26. 

If we pass to the quotient categories, cp thus induces an equivalence 

modL( R)/modt( R) + mod “( R’)/modt( R’); 

thus by Serre’s theorem an equivalence cob(C) ---f coh(C’). 1 

For any of the R’(p)‘s we may pass to the completion S(p) with respect 
to the m-adic topology. Clearly, S(p) = [[X, Y, Z]]/(f(X, Y, Z)), where 
f(X, Y, Z) is the polynomial figuring in Proposition 8.4. 

In particular, S(p) is graded local. Also each ME CMZ(R’p) leads, by 
m-adic completion, to a Cohen-Macaulay module A; i.e., &? E CM(S). Our 
next theorem uses basic properties of the completion functor for Cohen- 
Macaulay modules, recently established by Auslander and Reiten [2]: 

THEOREM 8.6. Let R = R(p) and S = S(p) be the graded, resp. complete 
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rational, double point singularities for some Dynkin type p. The completion 
functor 

@: CM’(R) + CM(S), Ml-42, 

has the following properties: 

(i) @ preserves indecomposability and almost-split sequences. 

(ii) Zf M,, M, are indecomposable in CM’(R) we have @(M,) g 
@(M,) if and only if MI g M,(n) for some n E Z. 

(iii) @ is representative. 

In particular, the rational double point S(p)-viewed as an ungraded 
algebra-has finite Cohen-Macaulay type. 

Proof: Trivially any graded CM module is also a CM module in the 
ungraded sense. If we further view ME CMZ(R) as a vector bundle on 
C = Proj(R), it follows from [21] that for any indecomposable graded CM 
module M its graded endomorphism ring 

E = END.(M) = @ Hom(M, M(n)) 
nez 

is graded local, and moreover that E is bounded from below; i.e., E, = 0 for 
n < 0. Its completion ,!?= End(@(M)) is therefore also local [2], and hence 
Q(M) is indecomposable. A similar argument proves that @ preserves 
almost-split sequences (cf. [22,2]). From the classification of indecom- 
posable vector bundles on C(p), for p of Dynkin type, we know [21] that 
the number of orbits of indecomposable vector bundles under the Auslan- 
der-Reiten translation is in one-one correspondence with the vertices of 
the extended Dynkin diagram corresponding to type p and hence is finite. 
Therefore the set (of isomorphism classes) of all Q(M)-for M indecom- 
posable in CMZ(R)--is in view of (i) a finite connected component of the 
Auslander-Reiten quiver of CM(S), containing S. By a Brauer-Thrall type 
result of Auslander and Reiten [3] this implies (iii) and also proves the last 
assertion. 1 

This shows in particular that-in arbitrary characteristic-any of the 
rational double point singularities (8.4) is of finite Cohen-Macaulay 
we C171. 

In terms of covering theory [36, 19, 10,231: 

COROLLARY 8.7. Let C(p) = Proj(R(p)) and Y(p) be the punctured spec- 
trum of S = S(p) for some Dynkin type p. The category vect(C(p)) serves as 



320 GEIGLE AND LENZING 

a Galois covering of CM(S(p)) = vect(Y) with covering group Z by means of 
the functor given as the composition 

vect(C(p)) z CM’(R’(p)) 2 CM(S(p)). 

The Auslander-Reiten quiver of the rational double point of Dynkin type p 
arises from the Auslander-Reiten quiver of indecomposahle vector bundles on 
the weighted projective line C(p) as the quotient with respect to the Z-action 
given by the Auslander-Reiten translation. 

Let A(p) be the path algebra of an extended Dynkin quiver of type p. We 
recall that the derived categories Db(coh(C(p))) and Db(mod(A(p))) are 
equivalent; moreover the corresponding comparison theorem [21, 301 for 
coh(C(p)) and mod(A(p)) establishes a one-one correspondence between 
the set of (isomorphism classes of) indecomposable vector bundles on C(p) 
and the union of the sets (of isomorphism classes) of preprojective and 
preinjective indecomposable A(p)-modules, respectively. In this way the 
classification of indecomposable CM modules over S(p) may also be 
derived from the classification of indecomposable A(p)-modules. For the 
latter classification we refer to Nazarova [33], Donovan and Freislich 
[ 161, and Dlab and Ringel [ 141. 

9. REDUCTION OF WEIGHT FOR WEIGHTED PROJECTIVE LINES 

This section deals with the comparison of weighted projective lines 
C(p, 4) of different weight type (p, 4). For the present discussion it is con- 
venient to change the notation slightly. If P,(k) denotes the projective line 
over k-viewed as a k-variety-(k assumed to be algebraically closed) then 
a function w: P<,(k) + Z is called a weight function if w(A) B 1 for all 
A ~Pi(k) and, moreover, w(n) = 1 for all Iz EP,(~) outside a finite set 
(1 0, ,.., A,}. Here we may assume that the sequence & = (A,, . . . . A,) is nor- 
malized, i.e., that the Ai are pairwise distinct and further A, = co, 2, = 0, 
A2 = 1. By means of the resulting weight sequence p = (pO, . . . . p,), where 
pi = w(A,), we put 

R, = R(P, 41, L, = UP), and c, = C(P, A). 

Hence L, is an ordered group and R, is a positively L,-graded algebra. 
Note that by means of the canonical bijection 

C, + P,(k), (xc,, . . . . x,) H (x,po, 4”) 

(see [21 I), we may view w also as a weight function on C,. 
We further recall that a morphism of an H-graded algebra R into 
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an HI-graded algebra R’ consists of a pair (cp, u), where cp: R + R’ is a 
k-algebra homomorphism and u: H + H’ is a morphism of abelian groups 
such that cp(R,) c RI,,,, holds for each h E H. Accordingly, R and R’ are 
called isomorphic as graded algebras if there exists such a morphism 
(cp, u): (R, H) + (R’, H’) with cp and u being isomorphisms. 

Further we need the concept of the companion category [H, R] of an 
H-graded algebra R. 

- The objects of [H; R] are the elements of H. 

- If h,, h2E H, then Hom(h,, h2) := R,,-,,,. 

- Composition of morphisms is given by the multiplication in R. 

The companion category [H, R] of R allows us to identify H-graded 
R-modules with additive covariant functors from [H, R] to the category 
Ab of abelian groups by means of the obvious correspondence 

(CK RI, Ab) + ModH(Rh Ft-+ 0 F(h). 
heH 

With respect to this correspondence, in particular, the module R( - h) 
corresponds to representable functor Hom(h, -), sometimes abbreviated to 
(h, -1. 

To each weight function w on P,(k) we attach a finite dimensional 
algebra n ~, called the canonical algebra of weight type w. Strictly speaking 
/1, is defined as the full subcategory of [L(p); R,], whose objects form the 
so-called canonical configuration 2, of L,. By definition Zw is the finite 
subset of elements ZE L, satisfying 0 6 x’< Z Note that in view of the 
formula Hom(0c(x’), $(y’)) = (R,),-_, the algebra A,,, is equivalent to the 
full subcategory of coh(C,) consisting of all line bundles 0(x’), with ZE C,. 

Two weight functions w and v are called equivalent (notation w z v) if for 
some linear transformation cr E PSL(2, k) we have v = w 0 cr. More generally, 
we say that w dominates v (notation w 3 v) if for some 0 E PSL(2, k) the 
relation w > vorr holds, where w >v means that w(n) 2 v(1) for each 
A E P,(k). As is easily seen w and v are equivalent if and only if w 3 v and 
v + w hold true. 

The next proposition illustrates the notion of the equivalence of weight 
functions. 

PROPOSITION 9.1. For two weight functions w and v on P,(k) the 
following assertions are equivalent: 

(i) w and v are equivalent, i.e., differ only by some linear transforma- 
tion o E PSL(2, k). 

(ii) R, and R, are isomorphic as graded algebras. 
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(iii) coh(C,) and coh(C,) are equivalent as abelian categories. 

(iv) The canonical algebras A, and A, are isomorphic. 

Prooj Implications (i) * (ii), (ii) = (iii) are obvious. 
(iii)+ (iv): It suffices to show that, up to equivalence, /1, can be 

recovered from the abelian category cob (C,). To show this, we first 
observe that the category vect(C,) of vector bundles on C, consists exactly 
of those coherent sheaves on C, which do not have any simple subsheaf. 
Since, moreover, the quotient category coh(C,)/coh,(C,), where coh,(C,) 
denotes the category of all finite length coherent sheaves, is equivalent to 
the category of finite dimensional vector spaces over the rational function 
field k(X), the rank of a coherent sheaf 9 is a categorical invariant given 
as the length of 9 viewed as an object in coh(C,)/coh,(C,) = mod(k(X)). 

Now we select a rank one bundle L in coh(C,). For each A EC, there 
is a unique way to arrange the (isomorphism classes of) simple sheaves 
concentrated at i into a sequence g;, . . . . $“,, p = w(%), such that there exist 
line bundles L = L,(i), . . . . L,(A) and for any such i a non-split exact 
sequence 

Moreover, up to isomorphism the bundles L,(l), . . . . L,(A) are uniquely 
determined by L and 2. As is shown in [21] the collection of all Li(A), 
iEC,, i=O, . . . . w(n), defines a full subcategory of coh(C,) which has only 
finitely many non-isomorphic objects and is equivalent to the canonical 
algebra /i w. 

(iv)=>(i): It suffices to show that it is possible to recover from the 
canonical algebra A, the weight function w: P,(k) --) Z up to a linear trans- 
formation 0 E PSL(2, k). The morphism space n,(6, c’) is a two-dimen- 
sional vector space over k spanned by xop0, xf’ and has a system of n + 1 
distinguished one-dimensional subspaces Vi = kx?, i = 0, . . . . n. Passing to 
k*-orbits hence allows us to define w: P,(k) + Z as the function which 
takes value one except at points [Vi], where the value equals pi, 
i=o 2 ..*> n. I 

Next, we give a characterization of the localizing subcategories of 
coh(C,). 

PROPOSITION 9.2. Let %? be a Serre subcategory of coh(C,) for some 
weight function w on P,(k) and assume that V is properly contained in 
coh(C,) Then %? is the Serre subcategory generated by a set W of simple 
sheaves on C,. 

Moreover, W is localizing in coh(C,) if and only iffor each 2 E P,(k) the 
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set V’ contains at most w(L) - 1 non-isomorphic simple sheaves concentrated 
at A. 

Proof. First, assume that @’ is a Serre subcategory of coh(C,) which 
contains a non-zero vector bundle F. From a line bundle filtration of F we 
conclude that 59 contains a line bundle, necessarily of the form 8(x’) [21], 
together with all its subbundles O( y’) for j7 < x’ in L,. Passing to cokernels 
this fact implies that 59 contains all simple sheaves and thus (taking exten- 
sions) all line bundles and hence all vector bundles on C,; therefore 
%? = coh(C,). 

Therefore any proper Serre subcategory of coh(C,) is contained in 
coh,(C,), the category of finite length coherent sheaves; hence V is 
generated-as a Serre subcategory-by the system V’ of all simple sheaves 
belonging to G9. This proves the first assertion. 

Next assume that Q? is a localizing subcategory contained in coh,(C,) 
and that for some I E P,(k) every simple sheaf concentrated at I belongs to 
V. Thus 59 contains the Serre subcategory coh,(C,) of all finite length 
coherent sheaves concentrated at 1. 

Note that for a fixed A EC, and for any coherent sheaf % of rank > 1 
there exists some simple sheaf Y concentrated at 1 with the property 
Ext’(Y, %) # 0. In fact, by right exactness of Ext’(Y, -) it suflices to prove 
the assertion for the case of a line bundle %; this allows us to reduce the 
question to the case % = Co,, where it is obvious. 

In particular there does not exist an exact sequence 0 -+ 0c. + % + 
Y--f 0 with % EG$” (and YE%); hence by Proposition 2.2, V is not 
localizing in coh(C,). 1 

COROLLARY 9.3. Any localizing subcategory of coh(C,) which is 
properly contained in coh(C,) is generated (as a Serre subcategory) by 
simple sheaves, which are concentrated in points of weight > 1. In particular 
coh(C,) admits only finitely many localizing subcategories. 

As we show now the passage to the quotient category with respect to a 
proper localizing subcategory w of coh(C,), equivalently the passage to the 
full exact subcategory G$’ right perpendicular to q, leads again to a 
category of type coh(C,), where the weight function v is dominated by w. 
First, we study the degeneration and embedding functors attached to such 
a situation. For this purpose let p = (pO, pl, . . . . p,) be a weight sequence 
and & = (A,, A,, . . . . 2,) be a normalized sequence elements of P,(k). We 
suppose that p, > 1 for some 0 < j < n and put 

P’= (Pb, ...,Pk) := (PO, .*.,Pj- 1, Pj- l, Pj+ 1, *..3 Pn)* 

Let L(p) and L(p’) be the corresponding abelian groups of rank 1. We use 
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the symbols x’,, . . . . .?,, c’, for the generators and the canonical element of 
L(p) while those of L(p’) are denoted by x’b, . . . . ,?L, 7. We also use the 
abbreviations R = R(p, 3.), C = C(p, d), R’ = R(p’, A), and C’ = C(p’, 2”). 

We define a full embedding cp: [L(p’); R’] + [L(p), R] for the com- 
panion categories. Let x” = Cy= O li,?; + I? E L(p’) be in normal j&m; i.e., we 
assume 0 < Ii < p:. Then by means of 

,I 
q c li.?;+lc” ( = i l,x’,+IC 

,=O > ,=O 

we define a mapping 

cp: UP’) + UP). 

Note that cp is not a homomorphism of abelian groups. Further let 
y” = C rjx’,! + SC” E L(p’) be represented in normal form and 

f’ = (ii 
i=O 

(x:,~I) .g((Xb)Pb, . . . . (X;)p”)~ R’ 

be a polynomial of degree y”, where g is a homogeneous polynomial in 
n + 1 indeterminates of total degree S. With f’ viewed as a morphism 
2 + 2 + y” in the companion category [L(p’); R’], the correspondence 

j-‘-f= (fi x?) .g(x/p”, . ..) xF): cp(x”) + f&i’+ jr), 
i=O 

where 

if ifjor (i=jand lj+rj<pj-2) 
if i=jandlj+rj>pj-2, 

defines the wanted full embedding. Clearly the embedding q induces an 
exact functor 

(p* : ModL’p’(R) -+ ModL@“(R’) 

by restriction. Finally we define a mapping cp’: L(p) + L(p’) by the formula 

if l,<p,--1 

otherwise. 
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PROPOSITION 9.4. The functor ‘p* : ModLcp’(R) + ModL’p”(R’) has the 
following properties: 

(1) cP*(R(x’))~R’(-cp’(-x’)). 
(2) Zf MEMORY is JiniteZy presented, p,(M) is finitely 

presented in ModLcp’)( R’). 
(3) If LEMONY is offinite length, p,(L) is offinite length in 

ModL’p”(R’). 

Proof Property (2) follows from (1) and the fact that q.+ is exact; (3) 
holds true by construction. Thus, it remains to prove (1). By means of the 
identification of R(Z) with the representable functor ( -2, -), property (1) 
is equivalent to the assertion cp.+(x’, -) z (q’(Z), -). In the case where 
x’= cp(x”) with Z’E L(p’) we have cp’(x’) =x” and cp*(I, -) 2 (x”, -) since cp 
is a full functor. If x’ = ET=0 I$, + Zc’ with lj = pi - 1, the morphism 
xi: x’ + x’ + Zj in the companion category of R induces functorial 
isomorphisms xi: (x’+ Zji, q(F)) --f (x’, q(T)) for every ,?E L(p’); hence 
cp*(x’,-)~~*(x’+57,,-)~((cp’(x’+jt,),-). 1 

We note that ‘p* has a left and a right adjoint given by left and right 
Kan extension. In particular, the adjoints are induced from functors 
[L(p); R] + [L(p’); R] and commute with the respective shift operations; 
moreover these functors map finitely presented modules to finitely 
presented modules and modules of finite length to modules of linite, 
length. By passing to the respective quotient categories modulo the Serre 
subcategory of all locally finite modules (resp. finite length modules) we 
obtain: 

THEOREM 9.5. ‘p* : Mod’(p)(R) + Mod L(p”( R’) induces an exact functor 

‘p* : Qcoh(C) --) Qcoh(C’), fi H cpzi), 

with the following properties: 

(4 cp,WW g GA -cp”( -3). 
(b) Zf % E Qcoh(C) is coherent, cp,(%) is coherent. 

(c) Zf 9 ~coh(C) is a vector bundle, then (p,(9) is a vector bundle 
and rank(cp,(%)) = rank(%). 

(d) Zf Y is a simple sheaf, then cp* Y = 0 tf and only if 9 is concen- 
trated at Aj and Ext’(Oo, 9) # 0. Otherwise ‘p* 9 is simple. In particular, for 
a sheaf % offinite length, cp,(%) is again offinite length. 

(e) cp* induces equivalences of categories 

Qcoh(C)/Cl(q,J + Qcoh(C’) and coh(C)/cl(q,O) -+ coh(C’). 
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Moreover, cl(,Y&) is a localizing subcategory sf‘ cob(C) and cV,$o is 
equivalent to coh(C’). 

(f) ‘p* induces an epimorphism K,(C) -+ &(C’), [M] t, [q,(M)], 
for the Grothendieck groups of‘coh(C) and coh(C’) with kernel Z[p-~,a]. 

ProqJ: The existence of ‘p* with properties (a) and (b) follows from 
Proposition 9.4. Property (c) follows from (a) using line bundle liltrations. 

Let Y be a simple sheaf. If Y is simple concentrated at an ordinary 
point, we have an exact sequence 

.f’ “.$dO 
O--+O~---+ %(~) - <Yl---+0 

with 1# Ai for all i. Application of qp* gives the exact sequence 

thus q,(Y) is again simple and concentrated at an ordinary point of C’, 
i.e., is an ordinary simple sheaf. 

If 9’ is exceptional simple, i.e., concentrated at a point %i of weight > 1, 
then Y is one of the sheaves x,k given by the exact sequences 

0 - co,(kx’;) ‘i, &.((k + 1) Ti) - x,, - 0, 

where k = 0, . . . . pi- 1. Thus-up to an appropriate shift of cob(C)-we 
may assume that in this situation Y equals to x.0. 

By applying ‘p* we get the exactness of 

O- (“,(--cp’(-kx’,)+ Oc(-cp’(-(k+l)X’i))- ‘p*q,,-0 

and xi induces an isomorphism if and only if k = 0 and i = j. Otherwise 
(p*q,, is again simple. 

‘p* : Qcoh(C) + Qcoh(C’) (resp. ‘p* : cob(C) -+ coh(C’)) is exact and 
representative and has a right adjoint and the kernel is generated by q,O; 
therefore (e) holds. 

Finally cp* : cob(C) + coh(C’) induces an epimorphism K,(C) + &(C’); 
hence ker(K,(cp,)) is a direct factor of K,,(C) of rank one. Since Z[9Jo] is 
contained in ker(K,,(cp,)) and is itself a direct factor in K,(C), assertion (f) 
follows. 1 

For the next proposition the notations of Theorem 9.5 remain in force. 
By cp*: coh(C’) -+ cob(C) we denote the functor which is right adjoint to 
pp*. The following assertions are obvious consequences of Theorem 9.5 and 
Proposition 9.4: 
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PROPOSITION 9.6. The functor cp*: coh(C’) --) cob(C) is a full exact 
embedding whose image is closed under extensions. Moreover cp* has the 
following properties: 

(a) cp* is rank preserving and maps bundles (resp. ,finite length 
sheaves) to bundles (resp. finite length sheaves). 

(b) ~*(%G’)) = QAcpG’)). 
(c) cp*(F(Z’)) = cp*(P)(c’) for any coherent sheaf 9 on C’. 

(d) Zf we identzfy C and C’ as point sets, cp*(coh,(C’)) c cob,(C) with 
equality for I # Aj. In the case where J. = 3Lj, cp*(coh,(C’)) becomes the Serre 
subcategory of coh(C’) generated by {q,, , . . . . q, p,~ 1 }. 

Remark 9.7. (1) Let 5$,k be an arbitrary simple sheaf concentrated in 
Aj. Then by slight modification of the maps cp and cp’ we obtain an exact 
functor ‘p*: Qcoh(C) + Qcoh(C’) (resp. ‘p*: cob(C) + coh(C’)) with the 
kernel being the localizing subcategory generated by q,k. Theorem 9.5 and 
Proposition 9.6 hold respectively. 

(2) Let p = (p,, . . . . p,) and q = (q,,, . . . . q,,) be weight sequences with 
pi 2 qi for all i= 0, . . . . n and let C, =C(p, A) and &=C(q, J.). Then 
successive application of the above construction yields an exact functor 
II/,:Qcoh(C,)+Qcoh(C,) (resp. t,k,:coh(C,)-+coh(C,)) and a full 
embedding $*: Qcoh(C,) + Qcoh(C,) (resp. tj*: coh(C,) --) coh(C,)). 
Theorem 9.5 and Proposition 9.6 hold respectively. The kernel of $* is the 
localizing subcategory of Qcoh(C,) (resp. coh(C,)) generated by pi - qi 
simple sheaves over each exceptional point Ai of Ci. In particular there are 
such functors for any choice of pi - qi simple sheaves over each &. 

(3) In the case where q = (1, . . . . 1) we have C, =P,(k). Hence, any 
choice of pi - 1 simple sheaves over each 1, E C, leads to an exact functor 
+*: Qcoh(C,) + Qcoh(P,(k)) (resp. $,: coh(C,) + coh(P,(k))) with the 
kernel being the localizing subcategory generated by these sheafs and to full 
exact embeddings $*: Qcoh(P,(k)) --* Qcoh(C,) (resp. 1(1*: coh(P,(k)) -+ 
coh(C,)). In particular there are pO, . . . . pn such pairs of functors. 

THEOREM 9.8. Let v and w be weight functions on P,(k). Then the follow- 
ing assertions are equivalent: 

6) w dominates v; i.e., w B v up to composition with some linear 
transformation o E PSL(2, k). 

(ii) coh(C,) is equivalent to a quotient category coh(C,)/%? with 
respect to a Serre (resp. a localizing) subcategory W of coh(C,). 

(iii) coh(C,) is equivalent to a full (exact) subcategory of coh(C,) 
which is closed under extensions. 
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Moreover, each exact functor Y/: coh(C,) + coh(C,) inducing an 
equivalence coh(C,)/% z coh(C,),f or a Serre (resp. a localizing) subcategory 
%? of coh(C,) (resp. each,full exact embedding coh(C,) -+ coh(C,)) has the 
,form Ic/, (resp. $*) described in 9.7(2). 

Proof: Implication (i) = (ii) is covered by Theorem 9.5, while (i) = (iii) 
follows from Proposition 9.6. 

(ii) =+ (i): From Proposition 9.2 it follows that a localizing Serre 
subcategory W of coh(C,) is generated by a finite number of simple 
exceptional sheaves; hence in virtue of Theorem 9.5 and Proposition 9.1, 
coh(C,) r coh(C,)/Ce is equivalent to a category coh(C,,) of weight w’ z v 
dominated by w. Moreover, if % is a Serre subcategory of coh(C,) and 
coh(C,)/V is again a category of coherent sheaves on a weighted projective 
line, it follows that W is localizing in coh(C,): By Proposition 9.2 it suffices 
to show that there does not exist an element 1”~ C, such that %? contains 
the category Wj. of finite length sheaves concentrated at 1.. If we anticipate 
results from the last section it follows that the endomorphism ring of &., 
viewed as an object in coh(C,)/%?l., has infinite k-dimension. This allows us 
to deduce the corresponding assertion for coh(C,)/g, contradicting the fact 
that coh(C,) has finite dimensional Horn-spaces. 

(iii) * (i): Let @: coh(C,) -+ coh(C,) be a full exact embedding whose 
image is closed under extensions. By virtue of Proposition 9.1 the claim 
immediately follows from the following properties: 

(a) @ is rank preserving and maps bundles on C, to bundles 
on C,. 

(b) Up to an equivalence of coh(C,), the functor @ maps the 
canonical configuration A, into /i, with ocV (resp. oco,,(Z)) going to Q-l 
(rev. G.J3). 

To prove (a) we first show that @ maps vector bundles to vector 
bundles: If for some line bundle L on C, the (indecomposable) sheaf D(L) 
has finite length, each @(L’) with Hom(L, L’) # 0 will also have finite 
length and the support of @(L’) will agree with the support 1 of a(L). 
Since there are only finitely many non-isomorphic indecomposable sheaves 
on C, with endomorphism ring k and support i this leads to a contra- 
diction. 

If Y is an ordinary simple sheaf on C, there exists a sequence of line 
bundles Li, ie Z, together with short exact sequences 0 + Lj -+ L,, 1 + 
Y + 0. Since the rank of a coherent sheaf must be an integer 20, we 
conclude from the exactness of @ that G(Y) has rank zero and hence is an 
indecomposable sheaf of finite length with endomorphism ring k. Because 
there are only finitely many finite length sheaves which are not ordinary 
simple having that property, we deduce that for some ordinary simple sheaf 
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9’ on C, the sheaf @J(Y) is an ordinary simple sheaf on C,. Since the rank 
of a vector bundle F agrees with the k-dimension of Hom(F, Y), we 
conclude that @ is rank preserving. 

We may therefore assume that @(0,-J = Co,-+. Note that Q.,(Z) is the 
unique bundle L in the canonical configuration Z,, where Hom(6&, L) has 
k-dimension 2. Further since the line bundles in the canonical configura- 
tion C, are-up to isomorphism-given by the conditions 

Hom(Ocv, L) # 0 and Ext’(Co, L) = 0 

(see [21]), assertion (b) follows. 1 

COROLLARY 9.9. Up to equivalence of functors there are exactly p,, . . .p, 
full exact embedding CD,, t = 0, . . . . pO.. .p,, from coh(P,(k)) to coh(C(p, A)) 
whose image is closed under extensions. Each of these functors commutes 
with the shift operations with respect to the canonical element and reaches all 
ordinary simple sheaves on C(p, A). Moreover, any line bundle on C(p, 2) lies 
in the image of exactly one of these embeddings. Further an indecomposable 
torsion sheaf P’, concentrated at 2, is in the image of one of the functors Qi, 
if and only tf the weight of A divides the length of Y. 

Let w and v be two weight functions and suppose w&v. Moreover, we 
suppose that the kernel of the induced functor (p* : coh(C,) + coh(C,) is the 
localizing subcategory generated by one simple sheaf Y in an exceptional 
point of C,. 

By Proposition 3.3 we have that coh(C,)= &(A,), where &(A,) is 
the subcategory determined by the linear form l,=dimk Hom(Y, -)- 
dim, Ext’(9’, -). Since Hom(Y, F) = 0 for all vector bundles F in coh(C,), 
a vector bundle F is contained in &(A,) if and only if A,(F) = 0. 

The following picture visualizes how the indecomposable vector bundles 
on C(p’) for p’ = (2,2,2) are contained in the category of indecomposable 
vector bundles on C(p) in the case where p = (2,2,3): 

This picture shows the Aulander-Reiten quiver of indvect(C(p)) and the 
values of the function dim,(Ext’(&, -). The category indvect(C(p’)) of 
indecomposable vector bundles on C(p’) is the full subcategory of all 
indecomposable vector bundles F on C(p) with dim, Extl(YI,,, F) = 0. 
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10. TAME HEREDITARY AND CANONICAL ALGEBRAS 

In this section we study homological epimorphisms q: A + A’, A a tame 
hereditary or a canonical algebra, where cp is induced by the selection of 
non-homogeneous simple regular modules. 

First, let A be a tame hereditary algebra. For the representation theory 
of these algebras and the notions involved we refer to [ 14, 61. For finite 
dimensional A-modules we use the notion of rank, defined by 

rk = -dim, Hom(R, -) + dim, Ext’(R, -), 

where R is a homogeneous simple regular A-module. The rank does 
not depend on the choice of R; moreover, it is invariant under the 
@slander-Reiten transformation. We note that 6 = -rk is usually [ 141 
called the defect. 

If S is a non-homogeneous simple regular module then End(S) is a skew 
field, Ext ‘(S, S) g 0, and Hom(S, A) = 0. Thus Theorem 4.16 applies and, 
by forming the subcategory of mod(A) right perpendicular to S, we obtain 
a finite dimensional algebra A’ together with a homological epimorphism 
cp: A + A’. We recall that for the case of an algebraically closed base field 
any tame hereditary connected algebra A is given as the path algebra of a 
quiver, whose underlying graph is an extended Dynkin diagram d”. 
Contrary to usual practice, we call A the Dynkin type of A. Further, 
reg(A) denotes the category of all finite dimensional regular A-modules. 
In the hereditary case it is possible to provide the following additional 
information: 

THEOREM 10.1. Let k be a field, A be a finite dimensional tame 
hereditary k-algebra, S be a non-homogeneous simple regular A-module, and 
cp: A + A’ be the corresponding homological epimorphism. Then: 

(1) A’ is tame hereditary. 

(2) If A is connected, the same holds true for A’. 

(3) Suppose k is algebraically closed and A is Morita equivalent to the 
path algebra of an extended Dynkin quiver d”, where A = (p, q, r). Further let 
p > 1 and S belong to a tube of rank p. Then A’ is Morita equivalent to the 
path algebra of an extended Dynkin quiver of Dynkin type (p - 1, q, r). 

(4) The inducedfunctors rp*: mod(A’) + mod(A) and rp*: mod(A) + 
mod(A’) map preprojective (resp. regular, preinjective) modules to pre- 
projective (resp. regular, preinjective) modules; moreover ‘p* preserves the 
rank, while rk(cp*M) = rk(M) (rk(cp*M) > rk(M)) holds for each preprojec- 
tive or regular (resp. each preinjective module). 
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(5) cp*: reg(n) + reg(n’) is an exact functor inducing an equivalence 

reg(A)/9 -+ WA’), 

where B is the localizing subcategory of reg(A) generated by S. 

Proof: (1) According to Theorem 4.16 we have only to show that A’ 
is of infinite representation type. This follows from the fact that for each 
regular module R not belonging to the component containing S we have 
Hom(S, R) = 0 = Ext’(S, R), and thus RE S’. 

(2) Let /i be connected and R be a simple regular homogeneous 
n-module. Then Hom,(P, R) # 0 for all preprojective n-modules. Since 
R E S’ and every projective A’-module is a preprojective n-module via ‘p* 
(see (4)), A’ is connected. 

(3) If /i is Morita equivalent to a path algebra of extended Dynkin 
type (p, q, r), mod(n) has exceptional tubes of rank p, q, and r, respec- 
tively. Then A’ has exceptional tubes of rank p - 1, q, r and the assertion 
follows. 

(4) There exists a homogeneous simple regular A’-module R such 
that q,(R) is homogeneous simple regular. Since by means of cp.,., mod(/i’) 
becomes a full subcategory of mod(n), closed under extensions, we obtain 

rk(cp,M)= -dimHom,(cp,R, ‘p*M)+dimExt!,(cp,R, cp*M) 

= -d’,” Horn,, (R, M) + dim Exti( R, M) = rk(M). 

Since ‘p* preserves indecomposability, the assertion follows. 
Let P be a preprojective n-module. Then there exists an exact sequence 

It follows from [6, Lemma 2.23 that (p*(p*P is preprojective and 
rk ‘p*P = rk ‘p* (p*P = rk P. The cases of regular and preinjective modules 
are similar. 

(5) For each regular n-module R there is an exact sequence 

O+S”-+R+rp,cp*R+S”+O. 

This proves that the Serre subcategory 9 E reg(n) generated by S is 
localizing. Since S’ G reg(/i) is equivalent to reg(n’), (5) follows. 1 

Remark. Let S be an indecomposable regular module with 
Ext’(S, S)=O, let O=S,cS1c ... c S, = S be a finite filtration of S, 
whose factors Ti = S,/S,- , are simple regular, and put Sp = {T,, . . . . T,}. 
Then Y consists of non-homogeneous simple regular modules and 9” can 

481/144/2-S 
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be obtained by the successive formation of the perpendicular categories 
with respect to T,, T,, . . . . T, (in that order). This means that Theorem 10.1 
also applies to this more general situation, with virtually no changes 
necessary. Note further that according to [46] the two categories S1 and 
9” differ only by a module category over a representation-finite hereditary 
algebra C. More precisely C has type A,. , and S’ = 9’ LI mod(Z). 

PROPOSITION 10.2. Let A and A’ be tame hereditary k-algebras Morita 
equivalent to path algebras of extended Dynkin type p= (pO, pl, pz) and 
4 = (q,,, ql, q2), respectively. Zf there exists an epimorphism cp: A + A’, then 
p dominates Q, i.e. the weight function corresponding to p dominates the 
weight function corresponding to 9. 

Proof: cp induces a full exact embedding ‘p* : mod(A’) + mod(A). Let R 
be an indecomposable regular A’-module. Then the functors HomJR, -) 
and Hom,,(-, R) are non-zero on infinitely many pairwise non-isomorphic 
indecomposable A-modules. 

Clearly, the functors Hom,(q,R,-) and Hom,(-, cp.+R) have the 
corresponding properties, and consequently cp * R is a regular A-module. In 
particular, different regular components are mapped to different regular 
components by means of cp *. 

Let 9’ be a regular tube of rank p in mod(A’) and %’ be the regular 
component in mod(A) such that cp,R~.% for all R ES??. 

If R E 9” is indecomposable of regular length p, then End(R) = k. Thus 
‘p.+ R is indecomposable, End( (p* R) = k, and (p.+ R has regular length >p. 
Hence the rank of the tube W is >p and the assertion follows. 1 

As specified by Theorem 10.1 and Proposition 10.2, the existence of 
homological epimorphisms between algebras, Morita equivalent to path 
algebras of extended Dynkin type, is therefore given by the Fig. 1. Note 
that Fig. 1 agrees with the degeneration scheme for the simple singularities 
of differentiable maps (cf., for instance, [l, p. 761). 

The situation for the canonical algebras is similar but no longer 
restricted to weight sequences of Dynkin type. Recall that for given 
sequences p = (pO, . . . . p,), 4 = (A,, . . . . A,,), the canonical algebra A(p, 4) in 
terms of quivers and relations is given by the quiver 

To--, 2x’,- 

/ 

. ..----* (po-2)x’,- (po-1)x’, 

\ 
a-,-,-2x’,-...~(p,-2)x’,-(p,-l)x’,-Yi: 

\ / 
\ / 

x’,- 2x’,- . ..- (P,-2)x’,- (P*- 1)x’, 
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I 
Al.5 
I 

Ax.4 

I 

Al.3 

I 
Al,2 

I 
Al,1 

-l- 
A2,4 - A394 - A4,4 

,429 - A3,3 

I/ 
A2.2 

FIG. 1. Domination for algebras of extended Dynkin type. 

with relations 

X~=X,p-~.XP’ 
I 1, for i= 2, . . . . n. 

For the properties of modules over canonical algebras we refer to [38,21]. 
Note that also in this case we have a rank function, defined in the same 
way as is the hereditary case but allowing the more accessible alternative 
definition 

rk M = dim (M,) - dim (Mr,). 
k 

A n-module R is called regular if R is a direct sum of indecomposable 
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A-modules of rank 0. The category reg(A) of regular modules is an abelian 
length category and decomposes into a coproduct 

w(A)= Ll 9;., 
iEC(P,i) 

where each ~j, is a unserial length category with w(i) simple modules. Here 
w denotes the weight function corresponding to (p, &). If pi > 1 and SE BA, 
is simple, we have End(S) = k, Ext’(S, S) = 0, proj dim S = 1, and 
Hom(S, A) = 0. Again, due to Theorem 4.16, we obtain a finite dimensional 
algebra A’ and a homological epimorphism cp: A + A’. 

Extending the terminology used for the hereditary case, we call a finite 
dimensional A-module M preprojective (preinjective, regular) if any 
indecomposable direct factor has rank >O ( ~0, respectively, = 0). 

THEOREM 10.3. Let A = A(p, 4) be a canonical algebra. We fix some 
pi > 1 and some SE 9At and denote by cp: A -+ A’ the corresponding homologi- 
cal epimorphism. Then the following assertions hold true: 

(1) A’ is Morita equivalent to the canonical algebra A(p’, J), where 
p’ = (PO, . . . . Pi-l,Pi-l,Pi+1,...,Pn). 

(2) The inducedfunctors ‘p.+: mod(A’) + mod(A) and cp*: mod(A) + 
mod(A’) map preprojective (preinjective, resp., regular) modules to modules 
with the same property. In particular cp*: reg(A) + reg(A’) is an exact 
functor, inducing an equivalence 

r&A J/z -, MA’), 

where 9 denotes the localizing subcategory of mod(A) generated by S. 

Proof: (1) As was shown in [21] the indecomposable A-modules of 
rank 1 may be parametrized by the elements of L(p)+, notation P(Z). 
The modules P(kZj) with 0 < j< n, 0 <k < pi, are just the projective 
A-modules. We have Ext’(S, P(kZi)) # 0 for exactly one k E { 0, . . . . pi - 1 } 
and in this case the dimension is 1. If k #O, Ext’(S, P(IZ,C)) =0 for all 
O<j<n, i#j, and O<l<pj. Thus q*(A) has the form 

Pm 0 . . . @P((k-1)x’i)@P((k+1).?i)2 

0 . .* OP(c’)@ & fi$ P(Hj). 
j=O /=I 
if j 
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If k=O, dimExt’(S,P(lZj))=l for all O<j<n, i#j, and OGlGPj and 
cp*(,4) has the form 

P( ziy 0 P( 2&) 0 * . . @P(z)@P(c’+x’,)@ & “i3l P(12j+x’i). 
j=O I=1 
i#i 

In both cases A’ is Morita equivalent to A(p’, A). 
The proof of assertion (2) is identical to the proof of assertions (4) and 

(5) of Theorem 10.1. 1 

11. AFFINE AND LOCAL ALGEBRAS FOR WEIGHTED PROJECTIVE 
LINES AND CANONICAL AND TAME HEREDITARY ALGEBRAS 

Let C = C(p, ;1) be a weighted projective line and UC C be a subset. We 
denote by 9; the system of all simple sheaves concentrated in a point of 
C\U and by YU the localizing subcategory of Qcoh(C) generated by 9”. 
Further let R, be the homogeneous quotient ring of R with respect to the 
multiplicative subset generated by all elements fn, A E C\U, where 

f). = { 2’ - w? if il#li,i=O,...,n 

I if I=&. 

Then the functor 

a,: Qcoh(C) + Mod”p’(R,), 93 H & Y( 0 

where Vz? U is open in C, has kernel ~3~ and induces an equivalence 

Qcoh(C)/YU + ModL’p’(RU). 

Thus, the perpendicular category 9’; is equivalent to the category of all 
L(p)-graded modules over R,. Since the module ‘P,= @oszsF R,(z) 
is always a small projective generator in ModL’p’(R,), Sh is equivalent 
to Mod(A”), where A, = End(P,). Note that A,, in general, is non- 
commutative and not Morita equivalent to any commutative algebra. 

If u= C\{pLI, . ..) p,} is an afline open subset, R, = Rfp ,,,,., ,. is an afline 
algebra and @” becomes the restriction to the affine open s&set U, while 
in the case U= {A}, R”=Co,,, and DU becomes the passage to the stalk 
at A. 

In the following we give a more explicit description of an algebra A with 
Mod(A) N ModL’p’(R,) in the cases U= C\{A> and U= {A}. 

We start with the a&e case. Thus let 1 E P,(k) and U= C\{ A}. By 
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applying a transformation c = SL(2, C) with a(n) = a3 we may assume that 
I = co; hence f;. = X, and R,, is the L(p)-graded algebra 

R,, = k[Xc,, X, ‘3 x, ) . ..) X,,]/(X~ - Xf’ + 3.,x,“o, i = 2, . . . . n). 

Let R, denote the algebra 

it, = k[X,) . ..) x,]/(xr~ - xp’ + A;, i = 2, . . . . n). 

Further let the abelian group H = H(p,, . . . . p,) be defined by generators 
A 1 

Xl 3 . . . . x, and relations p,l, = ... = p,in = 0. We note that H is 
isomorphic to Z,, x .. . x Zpn and R, is H-graded by deg X,= ii for 
i = 1, . . . . n. 

We define a homomorphism of abelian groups cp: L(p) -+ H by I, H 0 
and Ziwii for i= 1, . . . . II and a homomorphism of algebras U: R, --t R, by 
X0-l andXi++Xifor i=l,...,n. 

One easily checks that U: (Ru)i+ (R,),,,-, is an isomorphism for all 
ie L(p). The morphism of graded algebras (u, cp): R, -+ RU induces an 
equivalence of categories 

(u, cp), : ModH(R,) + ModL’p’(R,), @ H;i,b @ Mit 
heH is L.(P) 

where MT is defined by MT= kX,,i,. 
R, is a L(p)-graded factorial, where the complete list of primes is given 

by fAs, A’ E k. The elements u( fA,), 2’ E k, form a complete list of primes in 
R,. Moreover i?, is an H-graded principal ideal domain. 

The modules R,(h) (h E H) are projective and form a system of 
generators for ModH(R,). Hence there is (pl . , .pn x p, . . .p,)-matrix 
algebra A such that Mod A is equivalent to ModL’p’(R,) and the indecom- 
posable projective A-modules correspond to the elements of H. 

Now we deal with the local case. Let U= (1) and without loss of 
generality we assume that A= 0. Now R, = RcfO, = S -‘R is the localization 
with respect to the multiplicative subset S generated by all fi with 1 E P,(k) 
and il#O. 

Let R (foJ = k[ Y],,, be the localization of k[ Y] in the prime ideal (Y). If 
H = Z,, with generator i,, Rcro, is H-graded by deg Y = ~?i. 

Let cp: L(p) -+ H be defined by x’, H ii-, and Xtiw 0 for all i# 1. Further 
we define v: R -+ l? (fo) by X, I-+ Y and Xi H 1 for all i # 1. Since for all A# 0 
the element u(f,J is invertible in &), the morphism v induces a 
homomorphtsm of algebras U: R,,, + R,,,. Again, the morphism of graded 
algebras (u, cp): R,,, -+ Rm induces an equivalence of categories 

(u, cp), : Mod”&,,) + ModL’p’(R,/,,). 
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The modules R, Fn,(h) (h E H) are projective and form a system of gener- 
atom for ModH(R,,,). 

Let A denote the matrix algebra 

R, R, ... i& Rp-l 

where R,= Ykk[YPlcyP). Then Mod(A) is equivalent to ModL’p’(R,f,,). 
Now let U c C be arbitrary. Since proj dim 9u = 1, Yh is an exact sub- 

category and the section functor Z,: Qcoh(C)/yu+ Qcoh(C) is exact. 
Further C, commutes with arbitrary direct sums because Hom(S, -) has 
this property for all SE 9” (Lemma 2.6). Since 9” is closed under twists, 
the same holds true for Y h. 

The following describes the sheaves belonging to 9;. 

PROPOSITION 11.1. Let 29 be a quasi-coherent sheaf, 1 EC and 9’ the 
direct sum of all simple sheaves concentrated in A. Then Y E 9” if and only 
if the stalk 2JA is injective and Hom(yi, %J = 0. 

Proof: Since 9’ is concentrated in 2, Hom,(Y, 9) = 0 if and only if 
Hom,Jqq,, qu) = 0 for all afline open neighborhoods U of I and this is 
equivalent to Horn 0,..(x, 4) = 0. Analogously, Extk(Y, ‘9) = 0 if and only 
if Ext&,(x., %A) =O. 

Using reduction of weight, we may assume that ;1 is an ordinary point. 
Then &., j. is a graded valuation ring and Ext&.( yA, %J = 0 if and only if 
59 is injective. 1 

Let n = n(p, 4) be a canonical algebra and Y be a system of simple 
objects in B. We compute the perpendicular category 9’l using, via tilting, 
the corresponding results for the categories of coherent sheaves on 
weighted projective lines and the results from Section 6. 

In [21], a coherent sheaf y over C = C(p, 4) was called a tilting sheaf 
if 

(1) Ext’(F, y-)=0, 
(2) y generates Db(coh(C)), and 
(3) gl dim(End(5)) < co. 

Note that with the definition given in Section 6 the sheaf y is just a 
tilting object in cob(C). 

A tilting sheaf 9 in Qcoh(C) is by definition a tilting object in Qcoh(C). 
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THEOREM 11.2. Let C = C(p, A) b e a weighted projective line and 
FE cob(C) be a tilting sheaf: Then F is a tilting sheaf in Qcoh(C). 

Proof: Since 5 is a tilting sheaf in cob(C) it remains to prove that .y 
generates Db(Qcoh(C)). For this it is sufficient to show that Qcoh(C) is the 
smallest subcategory & of Qcoh(C) which contains all direct factors of r 
and is closed under arbitrary direct sums, kernels of epimorphisms, coker- 
nels of monomorphisms, and extensions. 

Since F is a tilting sheaf in cob(C), we have cob(C) c JXZ; hence also 
arbitrary direct sums of coherent sheaves are contained in d. We prove by 
induction on p = n:= 0 pi that this implies & = Qcoh(C). 

If p = 1, C(p, A) = P,(k) and since k[X, Y] is of finite global dimension, 
every quasi-coherent sheaf has a finite resolution by direct sums of line 
bundles. Now, let p > 1. Then by reduction of weight there exists a full 
exact embedding 

QcWC(p’> 4)) -+ Qcoh(C(p, &)I 

with p’ = nr=opi < p, Since this embedding maps coherent sheaves to 
coherent sheaves and commutes with arbitrary direct sums we have 
Qcoh(C(p’, A)) t d by the induction hypothesis. Moreover, for 
BE Qcoh(C) there is an exact sequence 

where g-~ Qcoh(C(p’, J)) and 9& 9i are contained in the localizing sub- 
category generated by a simple sheaf 9’ concentrated in an exceptional 
point of C. Since Ext’(Y, 9’) =O, 9$,, fi are semi simple and thus 
contained in d. Hence YE d and d = Qcoh(C) follows. 1 

LEMMA 11.3. Let Fecob(C) be a vector bundle and 3~9’h. Then we 
have Ext’(9, 3) = 0. 

Proof: By means of a line filtration for 9 we have only to show that 
Ext’(O(x’), 9) =0 for all ZE L(p). Let eisl Lo(y’,) + 9 be an epimorphism. 
Since the section functor C,: Qcoh(C)/yU + Qcoh(C) is exact and 
commutes with arbitrary direct sums, we obtain an epimorphism 
@is,A ZuT”O(y’i) + ZuT,‘S z 9, where T,: Qcoh(C) -+ Qcoh(C)/dp, 
denotes the quotient functor. Since the category Qcoh(C) has global 
dimension 1, Ext’(O(x’), ‘9) = 0 follows from 

Ext’ 0(x’), @ C,T,O(y’,) 
( 

E @ Ext’(O(x’), C,T,O(y’,)) =O. 
isl > isl 

Thus, it remains to show that Ext’(O(x’), 2’,T,B(y’))=O for all 
5 3E UP). 
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Let 0 + O(g) + Z,T,Co(y’) + 9 + 0 be exact with 9 E YU. If Y c 9 is 
a simple subsheaf, the inverse image of Y in Z,T,O(y’) has the form 
0( y’ + y”) with y’ = Zi or y’ = c’ and C, T,O( y’)/O( y + jr’) E 9”. This shows 
that Z,T,(O(y’)) = Z,T,(O(y’+ nZ)) for all integers n and we may assume 
that x’+c3 c g, where 6 denotes. the dualizing element. Then 
Ext’(O(.?), 0(g)) = 0 by Serre duality and Ext’(O(.?), Z,T,Co(y’)) = 0 
follows. 1 

THEOREM 11.4. Let .Y E cob(C) be a tilting sheaf and a vector bundle 
and let A = End(Y). Further let Yh be the system of all A-modules of the 
form Hom,(Y, S) with SE Yo. 

Then Hom(Y, -): 9’; + (Y’o)’ is an equivalence of categories and the 
embedding (9”“)’ + Mod(A) has a left adjoint. In particular, there exists an 
algebra A Morita equivalent to A, and a homological epimorphism cp: A + A 
inducing this embedding. 

Proof: By Lemma 11.3, 9’; is contained in !&b; hence by Corollary 6.3, 
Hom(Y, -): 9; + (YU)’ is an equivalence. 

Let Go=-@,, Y and FO = Hom(Y, -). We define 1: Mod(A) + (9’)’ 
as the composition I= FJ,T,Go. Let ME Mod(A), M = M, 0 M, with 
M,, E gO, M, E 9Y1, and NE (s’)‘. Then we have functorial isomorphisms 

Hom,(M, N) z Hom,(M,, N) 2 Hom,(G,M, G,N) 

z Hom,(C,T,G,M, G,N) 

2 Hom,(F,G,T,G,,M, FOGON) z Hom(lM, N). 

Thus I is left adjoint to the embedding (,!?)I + Mod(A). Since Y is 
coherent, l/i is a small projective generator of Mod’(p)(R,); thus 
ModL’p’(R,) r Mod(End,(lA)) and the embedding is induced by a 
homological epimorphism cp: A + End,(lA,). 1 

By applying this theorem to canonical algebras we obtain: 

COROLLARY 11.5. Let A= A(p, A) be a canonical algebra, UcC = 
C(p, &) a subset, and 3’sP; the system of all simple objects in $2” = LIlleC,” BP. 
Then (.Y;i)l is a full exact subcategory closed under arbitrary direct 
sums and equivalent to Mod(A,). In particular, there exists a homological 
epimorphism cp: A + A, inducing this embedding. 

Proof: Y= @a4f<t . . Co(Z) is a tilting sheaf consisting of line bundles 
with End(Y) = A and 9’; corresponds to 9” by means of the functor 
Hom,(Y, -). Further End(lA) z End( T,G,A) z End( T,r) g End(P,) = 
A I U. 
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A similar result holds true for tame hereditary algebras over algebraically 
closed fields: 

COROLLARY 11.6. Let A be tame hereditary algebra over an algebraically 
closed field of Dynkin type p, let U be a subset of C = C(p, A), and let Y”;, 
be the system of all simple regular modules in W, = UiEcl,o gi. 

Then (9’;)’ is a fill exact subcategory of Mod(A), closed under arbitrary 
direct sums and equivalent to Mod(A “). In particular, there exists an algebra 
A, Morita equivalent to A, and a homological epimorphism cp: A -+ A, 
inducing this embedding. 

Proof: There exists a tilting sheaf r l coh(C) consisting of vector 
bundles with End(Y) g A. 

So far, we computed the perpendicular category (Y’,)’ c Mod(A), A 
tame hereditary, only in the case where A is an algebra over an algebrai- 
cally closed field. In order to extend this result to arbitrary tame hereditary 
algebras, we use the same strategy, replacing the category Qcoh(C) by the 
category 99 = (9, Ab)/(P, Ab),. Here, .P denotes the category of all pre- 
projective right A-modules of finite length, (9, Ab) the category of all 
abelian group valued additive functors on 9, and (9, Ab)o the localizing 
subcategory generated by all simple functors. If F: 9 -+ Ab is a covariant 
functor, its image in 9 is denoted by F 

$9 is a locally noetherian Grothendieck category with the objects 
9(P, -1-3 P preprojective, forming a set of small noetherian generators. 
The structure of the category 9 of noetherian objects in $9 was determined 
in [30]; see also [21]. 

If T= Hom,(A,, -), then F is a tilting object in 9, and hence: 

(1) Ext’(F, F)=O for all i>O, 

(2) T generates Db(‘3), 

(3) gl dim(End(F)) < co. 

(1) follows from gl dim 9 = 1 and Ext’(F, F) = 0; (2) follows from the 
fact that (8, Ab) has global dimension 2, with Auslander-Reiten theory 
and End(F) z A invoked. Now, Theorem 11.2 applies. In particular, the 
category of finite length objects in 9 and the category of regular right 
n-modules are equivalent. 

Let C be the set of all regular Auslander-Reiten components and U c C 
a subset. Further let 9’“; be the system of all simple objects in 
%Y= ~AEC\U 9)., 9” the corresponding system of simple objects in Y, and 
PU the localizing subcategory generated by YU. Analogously to 
Lemma 11.3, Extb(T, G) = 0 for all GE 9; and Theorem 11.4 applies. 
Thus Hom(p, -): 9’; + (~7”;)’ is an equivalence and the embedding 
(9&)’ + Mod(A) has a left adjoint. 
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It remains to describe the structure of Y/YU. For that purpose, let C, 
denote the set of all monomorphisms in 9 with cokernel in W, and C;‘P 
be the category of all (left) fractions of 9’ with respect to C,; see [6] for 
details. Then the kernel of the localizing functor 

Z;‘: (9, Ab)+ (C;‘P, Ab) 

is the localizing subcategory of Mod(A) generated by Y; and the simple 
functors [6, Lemma 6.31. Thus the perpendicular subcategory Y$ in 9 is 
equivalent to (X;‘P?, Ab). Finally, if ZZ(.4) is the preprojective algebra of 
preprojective right A-modules [6, Lemma 6.31 and 2; the set of all 
monomorphisms f: A + (Tr D)” A with cokernel in W,, (C;‘P’, Ab) is 
equivalent to the category Mod’+ (((CL)-’ n(A))Op) of Z.-graded left 
CL- ‘U(A)-modules. 

In summarizing the preceding we obtain 

THEOREM 11.7. Let A be a tame hereditary Artin algebra, U be a set of 
regular Auslander-Reiten components of mod(A), and 9’; be the system of 
ail simple regular right A-modules in 9, = LI,, ,-,” gA. Then (YsP;)l is a 
full exact subcategory of Mod(A) closed under arbitrary direct sums and 
equivalent to the category ModZ+((z;))’ IT(A) of all Z+-graded IT(A)- 
modules. In particular, there is a noetherian algebra A, Morita equivalent to 
the Z.-graded algebra (Co))’ ZZ(A)OP and a homological epimorphism 
cp: A -+ A inducing this embedding (up to equivalence). 
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