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a b s t r a c t

Sincmethods consist of a family of one dimensional approximation
procedures for approximating nearly every operation of calculus.
These approximation procedures are obtainable via operations on
Sinc interpolation formulas. Nearly all of these approximations –
except that of differentiation – yield exceptional accuracy. The
exception: when differentiating a Sinc interpolation formula that
gives an approximation over an interval with a finite end-point.
In such cases, we obtain poor accuracy in the neighborhood of
the finite end-point. In this paper we derive novel polynomial-
like procedures for differentiating a function that is known at Sinc
points, to obtain an approximation of the derivative of the function
that is uniformly accurate on the whole interval, finite or infinite,
in the case when the function itself has a derivative on the closed
interval.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and summary

To date, all Sinc methods, i.e., one dimensional formulas for approximating operations of calculus
on functions defined on an arc Γ , have been obtained by applying the operation of calculus to the Sinc
interpolation formula,

f (x) ≈
N∑

k=−M

f (zk)ωk(x), x ∈ Γ , (1.1)

where the zk are Sinc points onΓ , andwhere theωk are basis functions to be describedmore explicitly
in Section 2.
While such Sincmethods are generally accurate, they are inaccurate for approximating derivatives

in the neighborhood of a finite Sinc end-point, where these derivative approximations are obtained
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by differentiating the right hand side of (1.1), i.e., via the use of the formula

f ′(x) ≈
N∑

k=−M

f (zk)(ωk)′(x). (1.2)

Derivatives of Sinc approximations are nevertheless necessary at times, for many problems of
applications.
It turns out that the formula (1.2) is uniformly accurate whenever the (open) interval Γ of

approximation is fully infinite, i.e., if neither of the end-points of Γ is finite. Indeed, the formula (1.2)
is known to converge uniformly on all compact subsets of the open interval Γ , even when Γ has a
finite end-point. However, the approximation (1.2) does not converge uniformly on all of Γ if Γ has a
finite end-point, i.e., the accuracy of (1.2) gets progressively worse as we approach a finite end-point
of Γ , even when f ′ exists at such end-points.
For example, in his excellent thesis, Hohn (see [1]) recently applied directly, the formula (1.2), but

in doing so, he had to go to considerable experimental efforts along the lines of parameter selections
ofM , N , and h (see below) to get his results.
In the hope of alleviating these approximation problems, we study in this paper the use

of ‘‘polynomials’’ to approximate functions defined at Sinc points, and the resulting derivative
approximations obtainable via differentiating such polynomials. This intuitive approach is based
on the fact that polynomials as well as their derivatives converge rapidly for functions that are
analytic in a region containing a closed interval, and that is the setting under which we derive our
approximations.
Initially, we obtain our results for the interval Γ = (0, 1), and we then also describe in detail how

to extend the results to other intervals or arcs Γ .

2. Sinc notations

It is convenient to recall some Sinc notations (see [2,3]).
Let Z denote the set of all integers, let R = (−∞,∞) denote the real line, and let C denote the

complex plane {x + iy : x ∈ R, y ∈ R}. Let h denote a positive parameter, let k ∈ Z, x ∈ C, and let
sinc(x) and S(k, h)(x) be defined by

sinc(x) =
sin(πx)
πx

S(k, h)(x) = sinc
( x
h
− k

)
.

(2.1)

Let d denote a positive number, and letϕ denote a conformalmap of a simply connected regionD ⊂ C
onto the strip

Dd = {z ∈ C : |=z| < d} , (2.2)
let Γ = ϕ−1(R) and let a = ϕ−1(−∞) and b = ϕ−1(∞) denote the end-points of Γ . We consider
Γ to be an open arc. We also define a set of Sinc points xk ∈ Γ by xk = ϕ−1(kh), and we set
ρ = exp(ϕ). For example, for the case of Γ = (0, 1), it convenient to take ϕ(x) = log(x/(1 − x)),
so that xk = exp(kh)/(1+ exp(kh)), ρ(x) = x/(1− x), and ρ(xk) = exp(kh).
Corresponding to positive integers M and N , we can now define a set of Sinc basis functions

{ωj}
N
j=−M by

γj(x) = S(j, h) ◦ (ϕ(x)), j = −M, . . . ,N,
ωj(x) = γj(x), j = −M + 1, . . . ,N − 1,

ω−M(x) =
1

1+ ρ(x)
−

N∑
j=−M+1

γj(x)
1+ ejh

,

ωN(x) =
ρ(x)
1+ ρ(x)

−

N−1∑
j=−M

ejhγj(x)
1+ ejh

.

(2.3)
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Finally, let α ∈ (0, 1] and β ∈ (0, 1] denote fixed positive numbers, and let us restrict the number d
introduced above to the interval (0, π). Let Lα,β(D) denote the family of all functions that are analytic
inD , such that for all z ∈ D , we have

|f (z)| ≤ c1
|ρ(z)|α

[1+ |ρ(z)|]α+β
. (2.4)

The space of functionsMα,β(D) denotes the set of all functions g defined onD that have finite limits
g(a) = limz→a g(z) and g(b) = limz→b g(z), where the limits are taken fromwithinD , and such that
f ∈ Lα,β(D), where

f = g −
g(a)+ ρg(b)
1+ ρ

. (2.5)

3. ‘‘Polynomial’’ approximation on (0, 1)

For the sake of simplicity, we take Γ = Γ2 = (0, 1) as our initial arc, which is mapped via ϕ2 onto
R, where ϕ2(x) = log(x/(1 − x)). We wish to approximate derivatives of a function belonging to a
space of functions Y(ϕ2). Here we define Y(ϕ2) as the family of all functions f defined on Γ2, such that
f not only belongs toMα,β(D), but such that f is also analytic and uniformly bounded byM(f ) in the
larger region

D2 = D
⋃
t∈(0,1)

B(t, r). (3.1)

Here r > 0, and B(t, r) = {z ∈ C : |z − t| < r}. We remark here, that while neither the regionD nor
the space Mα,β(D) is necessary for our derivations of the formulas of this paper, we have included
these notations here, since we assume that the most important applications of these formulas will
occur during Sinc approximation procedures. The region D2 is an open region containing the closed
interval [0, 1], and hence functions that are analytic on D2 are differentiable at all points of [0, 1].
We shall approximate such functions via the use of polynomials in the variable x.

3.1. The Lagrange polynomial

We shall assume that we are given the m = M + N + 1 data values {(xk, f (xk))}Nk=−M , where the
xk are Sinc points of Γ2, i.e., the points ϕ−12 (kh) = exp(kh)/(1+ exp(kh)). Thus, setting

g(x) =
N∏

`=−M

(x− x`) (3.2)

we immediately get the Lagrange polynomial

p(x) =
N∑

k=−M

bk(x)f (xk), (3.3)

where

bk(x) =
g(x)

(x− xk)g ′(xk)
. (3.4)

This polynomial p is of degree at mostm− 1 in x, and it interpolates the function f ∈ Y(ϕ2) at them
Sinc points {xk}Nk=−M .

3.2. The derivative of p(x)

Let us differentiate the formula (3.3) with respect to x, and let us then form an m × m matrix
A = [aj,k], j, k = −M, . . . , N with the property that
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f ′(xj) ≈ p′(xj) =
m∑
k=1

aj,kf (xk). (3.5)

Then (3.3) immediately yields for k 6= j, that aj,k = b′k(xj) = g
′(xj)/((xj−xk)g ′(xk)), whereas for k = j,

we find that aj,j =
∑

`6=j 1/(xj − x`). That is,

aj,k =


g ′(xj)

(xj − xk)g ′(xk)
if k 6= j∑

`∈[−M,N],`6=j

1
xj − x`

if k = j.
(3.6)

3.3. Errors of the approximations

We shall obtain an estimate of the error of approximation of f (x) by p(x) on [0, 1], and we shall
also obtain a bound on the error of approximation of f ′(xj) by the sum on the right hand side of (3.5).
We shall takeM = N for the sake of achieving simplicity of our results.

Theorem 3.1. Let f , r , D2, M(f ), g , and p(x) be defined as above, let M = N, take h = c/
√
N with

c a positive constant independent of N, and let {xj}N−N denote the Sinc points, as above. Then there exist
constants A and B, independent of N, such that:
(i) An estimate of a bound on the error, f (x)− p(x), for x ∈ [0, 1] is given by

|f (x)− p(x)| ≤ A
N1/2

(2r)2N
exp

(
−
π2N1/2

2c

)
; (3.7)

and
(ii) The difference, f ′(xj)− p′(xj), is bounded by∣∣f ′(xj)− p′(xj)∣∣ ≤ B N

(2r)2N
exp

(
−
π2N1/2

2c

)
. (3.8)

We note, at the outset, that the error of approximation of f via p on [0, 1] can be expressed as a contour
integral,

Em(f , x) =
g(x)
2π i

∫
∂D2

f (z)
(z − x)g(z)

dz. (3.9)

Also, by differentiating this expression, we get

f ′(xj)− p′(xj) =
g ′(xj)
2π i

∫
∂D2

f (z)
(z − x)g(z)

dz. (3.10)

By our definition of D2, we have |z − x| ≥ r for x ∈ [0, 1], and also, |z − xj| ≥ r , for z ∈ ∂D2 for
j = −N, . . . , N . Hence the denominator of the integrand in (3.9) is at least as large as rm+1. (This is
probably a gross overestimate for most problems of applications, but we shall stick to it for now, with
a charge to the researcher, that if necessary, she/hemay be able to get amuch better estimate formost
specific applications.) By assumption, f is uniformly bounded in D2, byM(f ). Hence

|Em(f , x)| ≤
M(f )
rm+1

max
x∈[0,1]

|g(x)|
L(∂D2)
2π

, (3.11)

where L(∂D2) = 2+ 2πr is the length of the boundary of D2.
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Setting x = z/(1+ z), which transforms the interval z ∈ (0,∞) to the interval x ∈ (0, 1), we get∣∣∣∣g ( z
z + 1

)∣∣∣∣ = N∏
j=−N

∣∣∣∣ z − ejh

(1+ z)(1+ ejh)

∣∣∣∣
=

zN+1

(1+ z)2N+1

N∏
j=1

(
1− ze−jh

1+ ejh

)2 ∣∣1− ze−Nh∣∣
≤

zN+1

(1+ z)2N+1

N∏
j=1

(
1− ze−jh

1+ ejh

)2
. (3.12)

In obtaining the right hand side of (3.7), we estimated the bound of g(x) on [0, 1] as occurring at
x = z/(1+ z), with z = exp(h/2). This value of x is not the exact maximum value of |g(x)| on [0, 1],
but is close to the maximum, and this is why we stated our result as being an estimate.
It is convenient for purposes of presenting the ideas of the proof of Theorem 3.1 to first prove the

(ii)-Part of this theorem. To this end, it is furthermore convenient to split the proof into the proofs of
some lemmas.

Lemma 3.2. Let g be defined as in (3.2). Then

max
j∈{−N,...N}∩Z

|g ′(xj)| = |g ′(x0)|. (3.13)

Proof of Lemma 3.2. We skip our lengthy proof of Lemma 3.2, based, in part, on the easily verifiable
fact that the function

w(ξ) =

∫ xN+1/2

x−N−1/2
log |x− ξ |

dx
x(1− x)

(3.14)

with xN+1/2 = ϕ−1((N + 1/2)h) and similarly for x−N−1/2, and where w(ξ) takes on its maximum
value on [0, 1] at ξ = 1/2, and also, because:

1. Our proof uses the methods of the proof of Lemmas 3.3 and 3.4 below, as well as the result of
Lemma 3.4; and

2. The result of Lemma 3.2 can easily be verified directly, since all of the values of g ′(xj) are required
for the application of Theorem 3.1 above. �

Lemma 3.3. Let g be defined as in (3.2), and let h > 0. Then

|g ′(x0)| =
1
22N

N∏
k=1

(
1− e−kh

1+ e−kh

)2
. (3.15)

Proof of Lemma 3.3. Since xk = ekh/(1+ ekh), since x0 = 1/2, and since x−k = 1− xk, we have∣∣g ′(x0)∣∣ = N∏
k=1

|x0 − xk| |x0 − x−k|

=

N∏
k=1

∣∣∣∣(12 − ekh

1+ ekh

)(
1
2
−

1
1+ ekh

)∣∣∣∣ (3.16)

from which (3.15) follows. �
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Lemma 3.4. Let the conditions of Lemma 3.3 be satisfied. Then
N∑
k=1

log
(
1− e−kh

1+ e−kh

)

≤ −
π2

4h
+ 1/2+ (1/2)

(
log

(
2
h

)
− log(tanh(h/4))+

2
h sinh(Nh)

)
. (3.17)

Proof of Lemma 3.4. Since log((1−e−z)/(1+e−z)) is concave on (0,∞), we have, recalling the sign
of the error of midordinate quadrature,

h
N∑
k=1

log
(
1− e−kh

1+ e−kh

)
≤

∫ (N+1/2)h

h/2
log

(
1− e−x

1+ e−x

)
dx

≤ I1 − I2 − I3 (3.18)

where

I1 =
∫
∞

0
log

(
1− e−z

1+ e−z

)
dz

I2 =
∫ h/2

0
log

(
1− e−z

1+ e−z

)
dz

I3 =
∫
∞

(N+1/2)h
log

(
1− e−z

1+ e−z

)
dz.

(3.19)

Now, by expanding log
(
(1− e−z)/(1+ e−z)

)
in powers of e−z and performing term-wise integration,

we get

I1 = −
∞∑
k=1

2
(2k+ 1)2

= −
π2

4
. (3.20)

Next, since (1− e−z)/(1+ e−z) ≥ z tanh(h/4) on (0, h/2), we get

I2 ≥
∫ h/2

0
log(z tanh(h/2))dz = h/2 (log(h/2)− 1+ log(tanh(h/4))) . (3.21)

Finally, by again expanding log
(
(1− e−z)/(1+ e−z)

)
in powers of e−z and performing term-wise

integration, we get

I3 = −
∞∑
k=0

e−(2k+1)(N+1/2)

(2k+ 1)2

≥ −
e−(N+1/2)h

1− e−2(N+1/2)h

= −
2

sinh((N + 1/2)h)

≥ −
2

sinh(Nh)
. (3.22)

This completes the proof of Lemma 3.4. �

Completion of Proof of Theorem 3.1. By multiplying the right hand sides of Lemma 3.4 by 2 and
dividing by h, and then setting h = c/

√
N , we get the results of Theorem 3.1(ii). �
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The proof of the (i)-Part is similar, and we omit it.

Remark 3.5. Wemay note that our error bounds do not converge to zero as N →∞, unless r ≥ 1/2.
If however, we replace x by Ty and then perform Sinc approximation of the same function f but
now on the interval y ∈ [0, 1] rather than as before, on the interval x ∈ [0, 1] (in effect, doing
Sinc approximation for x ∈ [0, T ]), we get an additional factor T 4N+4 in the errors of the above
approximations. Thus, convergence of the above approximations as N → ∞ occurs whenever
2r/T 2 > 1. On the other hand, shortening the length of the interval from (0, 1) to (0, T ) does
not enable accurate uniform approximation of the derivative when we use the derivative of a Sinc
approximation based on using (1.2), even when T is very small, due to the fact that the derivative of
the map ϕ2(x) = log(x/(T − x)) is unbounded at the end-points of (0, T ).

4. ‘‘Polynomial’’ approx. on Γ = ϕ−1(R)

Examination of the transformation ϕ2(x) = log(x/(1 − x)) shows that x = ρ2/(1 + ρ2), where
ρ2(x) = exp(ϕ2(x)) = x/(1−x). It is easy to see that the space of functions Y(ϕ2) defined in the above
subsection is a subspace of every spaceMα,β,d(ϕ2), with 0 < α ≤ 1, 0 < β ≤ 1, and 0 < d < π (see
[2]). It thus follows that if f ∈ Y(ϕ2), and if ϕ is any other transformation that satisfies the conditions
stated at the outset of this paper, then F = f ◦ ϕ−12 ◦ ϕ ∈ Y(ϕ), where this is the space of all functions
F with the property that F ◦ ϕ−1 ◦ ϕ2 ∈ Y(ϕ2).

4.1. Approximating F via a polynomial in ρ/(1+ ρ)

Note, from above, that if F ∈ Y(ϕ), and if g is defined as in the above subsection, if we define G
by G(t) = g(ρ(t)/(1 + ρ(t))), where ρ = eϕ , and if we let tk = ϕ−1(kh) denote the Sinc points
of this map with respect to the arc Γ = ϕ−1(R), then we can achieve the exact same accuracy in
approximating F via the ‘‘polynomial’’

P(t) =
m∑
k=1

G(t)
(t − tk)G′(tk)

F(tk) (4.1)

as we did above, in approximating f via the use of the polynomial p defined as in Section 3.1. The
above formula for p(x) is thus readily extended to any arc Γ . Note: if we set x = ρ(t)/(1 + ρ(t))
in (3.3), then

P(t) = p(x) =
m∑
k=1

bk(x)F(tk). (4.2)

The transformations of Examples 2.1–2.6 of [4] thus immediately yield several ‘‘polynomial’’
approximationmethods of functions defined on arcs.We illustrate properties of these approximations
for the case of Γ = (0, 1) in the next section.

4.2. ‘‘Polynomial’’ deriv. approx. on Γ = ϕ−1(R)

Upon differentiating the formula (4.2) with respect to t , we can determine a matrix B = [bj,k]
such that

P ′(tj) =
m∑
k=1

bj,kF(tk). (4.3)

Let us now derive the expressions for bj,k. To this end, we readily arrive at the formula

bj,k =


G′(tj)

(tj − tk)G′(tk)
if k 6= j,

G′′(tj)
2G′(tj)

if k = j.
(4.4)
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Fig. 1. Exact and (1.2)-approx. deriv. at Sinc pts.

Since

G′(t) = g ′(x)
dx
dt

G′′(t) = g ′′(x)
(
dx
dt

)2
+ g ′(x)

d2x
(dt)2

,

(4.5)

we find that

dx
dt
=

ρ(t)ϕ′(t)
(1+ ρ(t))2

d2x
(dt)2

=
ρ(t)

(1+ ρ(t))2

(
ϕ′′(t)−

ρ(t)− 1
ρ(t)+ 1

ϕ′(t)2
)
,

(4.6)

and these expressions readily enable us to compute values for bk,j.
We thus again get a family of matrices for approximating derivatives on arcs Γ as defined in the

transformations of Examples 2.1–2.6 of [4].

5. Examples

We illustrate here some examples of applications of the above results, for approximating the
function f (x) = sin(x) and its derivative, cos(x), on the interval [0, 1]. Here we use N = 7, i.e., 15
point approximations, and h = π/

√
N .

It is interesting to note that the Sinc-polynomial basis method of this paper yields more accurate
results for approximation at Sinc points than Sinc basis approximation, for approximation of functions
that are analytic in an open region containing the interval [0, 1].
The following points are to be noted regarding the plots in this paper:

1. Fig. 1 contains plots of cos(x) and the derivative of sin(x) as obtained via the use of (1.2), at the Sinc
points {zj}N−N ;

2. Fig. 2 is a plot of the difference of the two approximations in Fig. 1.
Note the distortion in accuracy at the end-points of the interval, illustrated in Figs. 1 and 2. Since
plots are at Sinc points, these plots do not show that the derivative obtained via the series (1.2)
does, in fact, become unbounded at the end-points of the interval;
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Fig. 2. Exact minus (1.2)-approx. deriv. at Sinc pts.

Fig. 3. Exact minus Sinc (1.1)-approx. of sin(x) at fine mesh.

3. Fig. 3 is a plot of the difference between sin(x) and its interpolation, obtained via the use of (1.1),
at 200 equi-spaced points on (0, 1);

4. Fig. 4 is a plot of the difference between sin(x) and its polynomial interpolation, obtained via the
use of (3.3), at 200 equi-spaced points on (0, 1);
Note with reference to Figs. 3 and 4, that interpolation via the use of the polynomial (3.3)
is considerably more accurate than interpolation via the use of (1.1). Note, in particular, the
maximum error of (1.1) is about 2.5 × 10−4, whereas the maximum error of (3.3) is less than
6× 10−6.
However, the Sinc interpolant (1.1) has other advantages not shared by (3.3) (see [3, Chapter 4]);
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Fig. 4. Exact minus (3.3)-poly approx. of sin(x) at fine mesh.

Fig. 5. Exact minus (1.2) formula deriv. of sin(x) at fine mesh.

5. Fig. 5 is a plot of the difference between cos(x) and its Sinc derivative interpolation, where the
latter is obtained via the use of evaluation of the derivative formula (1.2) at 200 equi-spaced points
on (0, 1);

6. Fig. 6 is a plot of the difference between cos(x) and its polynomial approximation, obtained via the
use of the polynomial p(x) in (3.3).
Figs. 5 and 6 also illustrate the remarkable accuracy of the formulas derived in this paper.
Note also, the large errors in Figs. 3 and 5 due to roundoff: The actual errors may be shown to be
considerably smaller, via the use of quadruple precision.
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Fig. 6. Exact minus Sinc_ poly derivative of sin(x) at fine mesh.
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