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Abstract

We investigate the decoupling limit in the DGP model of gravity by studying its non-linear equations of motion. We show that, unlike 4D
massive gravity, the limiting theory does not reduce to a sigma model of a single scalar field: Non-linear mixing terms of the scalar with a tensor
also survive. Because of these terms physics of DGP is different from that of the scalar sigma model. We show that the static spherically-symmetric
solution of the scalar model found in [A. Nicolis, R. Rattazzi, JHEP 0406 (2004) 059, hep-th/0404159], is not a solution of the full set of non-
linear equations. As a consequence of this, the interesting result on hidden superluminality uncovered recently in the scalar model in [A. Adams,
N. Arkani-Hamed, S. Dubovsky, A. Nicolis, R. Rattazzi, hep-th/0602178], is not applicable to the DGP model of gravity. While the sigma model
violates positivity constraints imposed by analyticity and the Froissart bound, the latter cannot be applied here because of the long-range tensor
interactions that survive in the decoupling limit. We discuss further the properties of the Schwarzschild solution that exhibits the gravitational
mass-screening phenomenon.
© 2006 Elsevier B.V. Open access under CC BY license.
1. Introduction and summary

In a simplest perturbative expansion non-linear interactions
in the DGP model [1] become strong at a certain scale de-
termined by the graviton mass, coupling constant and physi-
cal parameters of a problem at hand (e.g., mass/energy of the
source) [2]. The strong interactions and its scale can be seen in
a breakdown of the classical perturbation theory around a sta-
tic source (in analogy with a similar phenomenon observed in
Ref. [3] in the context of massive Fierz–Pauli gravity (FP) [4]).
More generically, this can be understood in terms of non-linear
Feynman diagrams that are enhanced by inverse powers on
the graviton mass [2]. This perturbative breakdown, and clas-
sical resummation of the corresponding large diagrams, is what
makes the model agreable with predictions of general relativity
[2,5–9], and yields tiny but potentially measurable deviations
from it [10–14].

It is instructive to consider the decoupling limit of the DGP
model, as it was done in Refs. [15] and [16], motivated by the
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original studies of the decoupling limit of massive gravity in
Ref. [17]. It was argued that in this limit the DGP model re-
duces to a non-linear scalar model, while the self-interactions
of a tensor mode vanish [15,16]. The remaining equation for
the scalar field reads:

(1)3�π = (�π)2 − (∂μ∂νπ)2

Λ3
,

where Λ ≡ MPlm
2
c is held fixed while MPl → ∞,mc → 0, and

mc plays the role of the graviton mass (the above equation is
given here in a source-free region). Although, the results of [15,
16] are similar in spirit to those found in [17] in the context of
massive gravity, there are also important differences between
the scalar models of Refs. [17] and [15,16]. These differences
were shown to reproduce [18,19] the known non-linear ghost-
like instability in the FP theory [20,21], and were argued to be
responsible for its absence in (1) [18,19].

In spite of all the above, the formal similarity between the
two theories seems somewhat surprising because of fundamen-
tal differences in their Lagrangians (see more on this in Sec-
tion 6). Most importantly, however, there exist an expression
for the metric [13] such that: (a) It is an exact solution of the
non-linear DGP equations on and near the brane; (b) It is a per-
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fectly regular solution in the decoupling limit (see Section 5);
(c) Yet, it does not satisfy Eq. (1).

The above observation motivated us to re-examine the de-
coupling limit of the DGP model in the present work. By ana-
lyzing the full set of non-linear equations we will show below
that one of the equations that survives in the decoupling limit is
more general than (1), and looks as follows:

3�π + R̃ = (�π)2 − (∂μ∂νπ)2

Λ3
+ R̃2 − 3R̃2

μν

3Λ3

(2)+ R̃�π − 2R̃μν∂μ∂νπ

Λ3
.

Here R̃ ≡ MPlR and R̃μν ≡ MPlRμν , where R and Rμν are
the Ricci scalar and tensor of a spin-2 field. Eq. (2) reduces
to Eq. (1) if, e.g., both Ricci tensor and scalar vanish. However,
this does not have to be the case, as will be discussed below.
For instance, the Schwarzschild solution of [13,14] gives R̃ and
components of R̃μν that are non-zero even in the decoupling
limit, and satisfies (2), but not (1).

The issue of small fluctuations about classical backgrounds
is different in (1) and (2). Eq. (1) implies that the fluctuations
of the π field are decoupled from those of the tensor and carry
an independent physical meaning. On the other hand, Eq. (2)
shows that the fluctuations of the π field mix with those of a ten-
sor. In fact, as we will see below, the π field can be completely
absorbed into a tensor field, which survives as a non-linearly
interacting mode and propagates five physical polarizations.

More importantly, however, there exist yet another non-
linear equation that survives in the decoupling limit. The latter
is somewhat involved to be presented here without lengthy ex-
planations (see Eq. (18)). Consistent solutions should satisfy
that equation too. We will show that the spherically-symmetric
solution of Eq. (1) found in Ref. [16], although obeys (2), does
not satisfy Eq. (18). Hence, it is not a solution of the DGP
model.1 On the other hand, the solution of [13] satisfies both
(2) and (18).

As was recently shown in Ref. [22], the scalar model (1)
presents a very interesting field-theoretic example: In spite of
its appearance as a local, Lorentz-invariant effective field the-
ory, it exhibits certain hidden non-locality [22]. The latter can
manifest itself in superluminal propagation of perturbations on
the background defined by the spherically-symmetric solution
of [16]. If the DGP model were to reduce in the decoupling
limit to the scalar theory (1), then, any experimental test of this
model would present a window of opportunity for discovering
small effects of an O(1) superluminality in gravitation [22].

While this intriguing possibility can exist in the scalar sigma
model [22], our results show that it is not offered by DGP. The
solution of [16], and its fluctuations that manifest superlumi-
nal propagation, are not consistent solutions of the DGP model.

1 The solution of [16], in our nomenclature, is a solution of the equations of
motion that are obtained from the sigma model Lagrangian in which the π field
is decoupled from the tensor field (i.e., there are no mixings between them) [15,
16]. In the solution discussed in [6] the π and tensor fields are sourcing each
other.
More generally, the scalar model violates positivity constraints
[22] imposed by analyticity and the Froissart bound, however,
the latter cannot be applied to the present model of gravity be-
cause of the long-range tensor interactions that survive in the
decoupling limit.

The Letter is organized as follows. In Section 2 we discuss
the ADM formalism for DGP and write down explicitly some
of the key non-linear equations. In Section 3 we take the decou-
pling limit of those equations and derive Eq. (2). In Section 4
we deal with the remaining non-linear equations of the model
and find their decoupling limit. We also show that the solution
of Ref. [16] does not satisfy these equations. In Section 5 we
discuss the physical interpretation of the Schwarzschild solu-
tion of Refs. [13,14] in the decoupling limit. We emphasize that
this solution, although naively seems counterintuitive, actually
has a clear physical interpretation in terms of the screening ef-
fects. In Section 6, we discuss some interesting open questions.

2. DGP in the ADM formalism

Let us start with the action of the DGP model [1] in the ADM
formalism [23] (see, e.g., [24,25]):

S = M2
Pl

2

∫
d4x dy

√
g

(
Rδ(y)

(3)+ mc

2
N

(
R + K2 − KμνK

μν
))

.

Here, the (4 + 1) coordinates are xM = (xμ, y), μ = 0, . . . ,3;
g and R are the determinant and 4D curvature for the 4D com-
ponents gμν(x, y) of the 5D metric gAB(x, y). K = gμνKμν is
the trace of the extrinsic curvature tensor defined as follows:

(4)Kμν = 1

2N
(∂ygμν − ∇μNν − ∇νNμ),

and ∇μ is a covariant derivative w.r.t. the metric gμν . We in-
troduced the lapse scalar field N , and the shift vector field Nμ

according to the standard rules:

(5)gμy ≡ Nμ = gμνN
ν, gyy ≡ N2 + gμνN

μNν.

Equations of motion of the theory are obtained by varying the
action (3) w.r.t. gμν , N and Nμ. Here we start with a subset of
two equations, the junction condition across the brane, and the
{yy} equation that can be obtained by varying the action w.r.t.
N . The former reads as follows:

(6)Gμν − mc(Kμν − gμνK) = Tμν/M
2
Pl,

where Gμν is the 4D Einstein tensor of the induced metric gμν

and Tμν is the matter stress tensor. The {yy} equation takes the
form

(7)R = K2 − K2
μν.

Note that (6) is valid only at y = 0+ while (7) should be fulfilled
for arbitrary y. The terms with the extrinsic curvature contain
derivatives w.r.t. the extra coordinate as well as the yy and μy

components of the metric. Nevertheless, one can deduce a sin-
gle equation that contains the 4D induced metric only! This is
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done by expressing from (6) K and Kμν in terms of R and Rμν

outside of the source

(8)Kμν = Rμν − gμνR/6

mc

, K = R

3mc

,

and substituting these expressions into (7). The result at y =
0+ is:

(9)R = R2 − 3R2
μν

3m2
c

.

We will study the decoupling limit of this equation below.

3. (De)coupling limit

The purpose of this section is to show that the non-linear in-
teractions of the tensor field in the DGP model do not disappear
in the decoupling limit.

The decoupling limit in DGP is defined as follows [15]:

(10)MPl → ∞, mc → 0, M → ∞,

where M is a mass of a source entering the stress-tensor T and
the following quantities are held finite and fixed

(11)Λ ≡ (
MPlm

2
c

)1/3
,

M

MPl
.

To take this limit in (9), we multiply both sides of that equation
by MPl and obtain

(12)R̄ = R̄2 − 3R̄2
μν

3Λ3
,

where we defined R̄ ≡ MPlR and R̄μν ≡ MPlRμν . Now we are
ready to proceed to (10), (11). Before doing so, it is instruc-
tive to make parallels with FP gravity. The analog of the mass
term in the DGP action (3) is the one containing squares of the
extrinsic curvature. Looking at the expression for the extrin-
sic curvature (4) one can think of gμν in DGP to be an analog
of the tensor field of FP gravity in which the Stückelberg field
is manifestly exposed in the mass term [17]. Then, Nμ is an
analog of the vector-like Stückelberg field as far as the repara-
metrizations with the gauge-function ζA(x, y) = (ζμ(x, y),0)

are concerned. The longitudinal component of Nμ should play
the role similar to that of the longitudinal component of the
vector-like Stückelberg field of FP gravity (note that there is an
additional Stückelberg field N in DGP, the important role of
which will be discussed in Section 6).

Eq. (12), on the other hand, does not contain any of the
Stückelberg fields but the tensor gμν which in the decoupling
limit has a conventional scaling.2 That is why it is straightfor-
ward to take the limit directly in (12). For this we recall that

R̄ = �h̄ − ∂μ∂νh̄μν +O
(

h̄�h̄

MPl

)
,

2 If we were to do perturbative calculations, this would imply the gauge
choice for which the Stückelberg fields are manifestly present.
R̄μν = 1

2

(
�h̄μν − ∂μ∂αh̄αν − ∂ν∂

αh̄αμ + ∂μ∂νh̄
)

(13)+O
(

h̄�h̄

MPl

)
,

where we defined a field h̄μν ≡ MPl(gμν − ημν), which has the
canonical dimensionality and is held fixed in the limit.3

Note that we have not done any small field approximation,
but merely expanded the non-linear expressions for R̄ and R̄μν

in powers of h̄ and took the decoupling limit. Because all the
non-linear terms in R̄ and R̄μν are suppressed by extra powers
of MPl, the curvatures reduce to their linearized form.

The expressions in (13), should be substituted into (12). To
make closer contact with the π language of Section 1 we per-
form the following shift of the h̄μν field

(14)h̄μν = h̃μν + ημνπ,

where the π field has a canonical dimensionality and is held
fixed in the decoupling limit. With this substitution Eq. (12)
turns into (2) which we repeat here for convenience

3�π + R̃ = (�π)2 − (∂μ∂νπ)2

Λ3
+ R̃2 − 3R̃2

μν

3Λ3

(15)+ R̃�π − 2R̃μν∂μ∂νπ

Λ3
.

R̃ and R̃μν denote the linear terms on the right-hand sides
of (13) where h̄μν is replaced by h̃μν .

Eq. (15) shows that a tensor field would have non-linear
interactions in the decoupling limit as long as there are no ad-
ditional equations constraining all the components of R̃μν to be
zero. We will turn to the remaining equations in the next sec-
tion and show that they do not necessarily imply vanishing R̃μν .
Before that we would like to make a comment on small fluc-
tuations about classical solutions. The π field in (15) can be
reabsorbed back into the tensor field h̄μν using (14). Small per-
turbations on any background in the decoupling limit are those
of h̄μν . The given background is what defines the light-cone,
and there are no additional degrees of freedom that could prop-
agate outside of that light-cone.

4. More bulk equations

Some of the bulk equations have not been considered in our
discussions so far. These are the {μy} and bulk {μν} equations
(the {μν} equation on the brane (6) has already been taken into
account). We will discuss them in the present section.

We start with the {μy} equation which for arbitrary y reads
as follows:

(16)∇μK = ∇νKμν.

The covariant derivative in the above equation is the one for
gμν . At y = 0 Eq. (16) is trivially satisfied due to (8). For y �= 0,

3 The signs in the expressions (13) and the definition of h̄μν given above
determine our convention for the sign of the curvature tensor.
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(16) sets the relation between Nμ, N and gμν . Hence, (16) gives
a relation between these quantities for both y = 0 and y �= 0.

One can use the bulk {yy} equation (7) to determine N in
terms of Nμ and gμν , and then use (16) in order to express Nμ

in terms of gμν . If so, there must exist one more equation which
should allow to determine the bulk gμν itself. This is the bulk
{μν} equation, to which we turn now. The latter can be written
in a few different ways. For the case at hand, the formalism by
Shiromizu, Maeda and Sasaki [26] is most convenient. In this
approach, the bulk {μν} equation and the junction condition can
be combined to yield a {μν} equation at y → 0+. This gives a
“projection” of the bulk {μν} equation onto the brane. Since the
bulk itself is empty in our case, this is the most restrictive form
one can work with. The equation reads as follows [26]:

(17)Gμν = KKμν − Kρ
μKνρ − 1

2
gμν

(
K2 − K2

μν

) − Eμν,

where all the quantities are taken at y = 0+. Gμν denotes the
4D Einstein tensor of the metric gμν , Eμν denotes the electric
part of the bulk Weyl tensor, projected onto the brane. An im-
portant property of the Weyl tensor is that it is invariant under
the conformal transformations. Moreover, Eμν is traceless.

We now turn to the decoupling limit in this equation. For
this we multiply both sides of (17) by MPl, exclude K and Kμν

using (8), and take the limit (10), (11) holding the canonically
normalized components of gμν fixed. The resulting equation
reads:

(18)Ḡμν = B̄μν

Λ3
− Ēμν,

where

(19)

B̄μν ≡ −ḠμαḠα
ν + 1

3
Ḡα

αḠμν + 1

2
ημνḠαβḠαβ − 1

6
ημν

(
Ḡα

α

)2
,

and Ḡμν ≡ MPlGμν , Ēμν ≡ MPlEμν . This is the equation that
has to be satisfied by any consistent solution.

It is straightforward to check that the trace of the above equa-
tion is nothing but (12). Moreover, as in Eq. (12), there are
non-linear interactions of the tensor field that survive in the de-
coupling limit in (18). This is true irrespective of the explicit
form of Ē, as long as it’s traceless. Once the values of N and
Nν are determined, as described at the beginning of this section,
one can calculate Eμν in terms of gμν . Thus, Eq. (18) turns into
a single equation for the determination of gμν .

The above considerations show that the DGP model in gen-
eral does not reduce to the scalar theory (1) in the limit (10),
(11). This can also be deduced by looking at the solutions of
the scalar model (1) which are not solutions of (18). One ex-
ample of this is the spherically-symmetric static solution of (1)
found in [16]. We will discuss this solution in the remaining
part of this section. The ansatz corresponding to the solution of
[16] reads:

R̃μν(h̃) = 0, Ḡμν(h̄) = ∂μ∂νπ − ημν�π,

(20)Kμν = mc

Λ3
∂μ∂νπ.
One can calculate the expression for Ēμν on the ansatz (20)
(Ēμν comes out to be non-zero), and use that expression in
(18). The resulting equation, after substitution (1), reduces to
Eq. (24) presented below. These calculations are tedious, and
instead of them, we present here relatively easier calculations
that produce the same result (24) (this also serves as a self-
consistency check of our result).

Since the solution (20) is written in terms of the extrinsic
curvature, it is easier to check its compatibility with the bulk
{μν} equation also written in terms of this quantity. This equa-
tion takes the form [25]4:

Gμν = 1

2
gμν

(
K2 − K2

αβ

) + 2
(
Kα

μKνα − KKμν

)

− 2

N

(
∇ν(NμK) − ∇α

(
Kα

ν Nμ

)

− 1

2
gμν∇α(KNα) + 1

2
∇α(NαKμν)

)

− ∇μ∇νN − gμν∇2N

N

(21)+ gμαgνβ

∂y(
√

g(Kαβ − Kgαβ))

N
√

g
.

To check whether the solution of [16] is consistent with (21), we
take the decoupling limit in the above equation with the substi-
tution [15,16]

hμy = −mc

Λ3
∂μΠ, hyy = −2mc

Λ3
∂yΠ,

(22)Π(x,y) = e−y
√−�π(x).

This can be expressed in terms of the lapse scalar and shift vec-
tor in the decoupling limit

(23)Nμ = hμy, N2 = gyy + m2
c

Λ6
(∂μΠ)2.

The decoupling limit for gyy has been specified in Ref. [16]
only in the leading approximation gyy = 1 − 2mc∂yΠ/Λ3.
However, for consistency, the subleading term in (21) is also
needed, otherwise the ansatz itself would be inconsistent as
it would violate some sacred properties of the bulk equation
(21) (for instance, a non-linearly incomplete ansatz, after sub-
stitution into the bulk equation, does not respect the Bianchi
identities and would not reproduce correctly the trace equa-
tion). On the other hand, in the next-to-leading order there
is a unique non-linear completion for gyy that is consistent
with the Bianchi identities and trace equation. The latter reads
gyy = 1 − 2mc∂yΠ/Λ3 + m2

c(∂yΠ)2/Λ6. For this ansatz, the
expression for N in the decoupling limit reads as follows:
N 	 1 − mc∂yΠ/Λ3 + m2

c(∂μΠ)2/2Λ6. The latter combined
with the other components above gives a consistent ansatz on

4 Note that our curvature sign conventions are different from those of Ref.
[25].
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which Eq. (21) looks as follows:

∂μ∂νπ − ημν�π = −ημν

(�π)2 − (∂α∂βπ)2

2Λ3

(24)+ (�π)∂μ∂νπ − ∂μ∂απ∂ν∂
απ

Λ3
.

As before, trace of (24) gives precisely (1), i.e., the former equa-
tion is more general than (1). Hence, not all the solutions of
(1) satisfy (24). For instance, consider the {00} component of
Eq. (24) and look at a static spherically-symmetric solution.
Eq. (24) reduces to

(25)
π = (
π)2 − (∂i∂jπ)2

2Λ3
,

where 
 denotes a 3D Laplacian and i, j = 1,2,3. The above
equations is incompatible with the time independent part of (1),
unless both left and right-hand sides of (1) and (25) are zero.
The solution found in [16] does not satisfy this constraint, and,
therefore, it does not satisfy the {00} component of Eq. (24).

Likewise, one can show that the solution of [16] does not
satisfy the {ij} components of (24) either. To demonstrate this,
we consider the μ �= ν part of Eq. (24) and look at a spherically-
symmetric static solution. Using the notations of [16], Ej =
∂jπ ≡ rjE/r , where j = 1,2,3, Eq. (24) with i �= j gives

(26)

(
dE

dr
− E

r

)(
1 − E

rΛ3

)
= 0.

The only non-trivial solution of (26) reads: E = cr , where c can
be an arbitrary constant (including c = Λ3), which is not the
solution of [16]. This is because the ansatz (22) is a pure gauge
in the bulk only in the linearized approximation, but not in a
full non-linear theory. In the next section we discuss a solution
that exactly satisfies the above equations on and near the brane
[13,14].

5. Schwarzschild solution

The Schwarzschild solution found in [13] satisfies all the
above non-linear equations on and near the brane. Here, we will
discuss some of the main features of this solution in the decou-
pling limit and give its further physical interpretation.

For a static point-like source, T00 = −Mδ3(
x) with Tij = 0.
A new physical scale emerges in this problem as a combination
of rc and rM [2] (rM ≡ 2GNM is the Schwarzschild radius and
GN the Newton constant)

(27)r∗ ≡ (
rMr2

c

)1/3
.

(This is similar to the Vainshtein scale in massive gravity [3].)
It is straightforward to check that this scale is finite and fixed in
the decoupling limit (10), (11).

The metric on/near the brane was found exactly in Refs. [13,
14]. Here, for our purposes it suffices to concentrate on the
Newton potential alone φ(r) = h00/2. In the notations adopted
in the previous sections

(28)g00 = −1 + h00 = −1 + h̄00/MPl.
The exact expression for h̄00 [13] is a solution of (9). Further-
more, (17) can be used to determine the off-diagonal and {yy}
components of the metric near the brane, as was done in [13,
14]. Below we will check directly that the terms containing
curvatures in (2) are not zero on this solution. Hence, it is phys-
ically different from the solution of [16].

For simplicity we concentrate on the r � r∗ region and do
the following: we split h̄ into two parts according to (14), and
for comparison with [16] insist that π has the form obtained in
[16]. Using the results of [13], for scales r � r∗, we get:

(29)
h̃00

MPl
= rM

r
− √

2m2
cr

2
(

r∗
r

)3/2[
α√
2

(
r

r∗

)β

− 1

]
,

where β = 3/2 − 2(
√

3 − 1) 	 0.04, and α 	 ±0.84. While the
π field takes the form:

(30)
π

MPl
= √

2m2
cr

2
(

r∗
r

)3/2

.

Note that both h̃00 and π given above are finite in the limit (10),
(11). It is the non-trivial part (29) that differentiates the solution
of [13,14] from that of [16]. In particular, the curvatures R̃ in
Eq. (2) are non-zero on this solution.

The solution of [13,14] has a number of interesting physi-
cal properties. Here we would like to emphasize the effect of
the gravitational mass screening [13,14]. In the region r � r∗
the solution recovers the results of the Einstein theory with tiny,
but potentially measurable deviations [10,11,14]. Gravitational
screening, on the other hand, manifests itself for r � r∗. In this
region, the solution (Newton’s potential) scales as ∼ r∗rM/r2.
Naively this seems counterintuitive, since it contradicts the
1/r scaling expected from perturbation theory in the region
r∗ � r � rc [1]. However, as was explained in [13,14], there
is no actual contradiction since the perturbative approach does
not take into account the effect of gravitational mass screen-
ing of the source. Unlike in conventional GR, a static source in
this theory produces a non-zero scalar curvature even outside of
the source [13]. This curvature extends to scales ∼ r∗. Hence,
the source is surrounded by a huge halo of scalar curvature.
This halo screens the bare mass of the source. It is easy to esti-
mate that the screening mass should be of the order of the bare
mass itself [14]: A deviation from the conventional GR metric
at r � r∗ scales as mc

√
rMr (we ignore small β here.) This can

give rise to the scalar curvature that scales as mc
√

rMr−3/2. The
curvature extends approximately to distances r ∼ r∗. Because
of this the integrated curvature scales as mc

√
rMr

3/2∗ ∼ rM , and
the “effective mass” due to this curvature can be estimated to
be rMM2

Pl ∼ M , i.e., of the order of the bare mass M itself!
Given the above estimate, there could be either complete or

almost complete “gravitational mass screening” for the problem
at hand. Which one is realized in DGP? As we will argue below,
the solution found in [13,14] suggests that the screening is com-
plete from the 4D point of view and is incomplete from the 5D
perspective. Let us discuss this in more detail. From a 4D per-
spective (i.e., from the point of view of the induced metric on
the brane) the solution behaves as a spherically-symmetric dis-
tributions of mass/energy of radius r ∼ r∗, with the bare mass
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M placed in the center, and the screening halo surrounding
it. The solution [13] shows that the potential at r � r∗ has no
“monopole moment”, i.e., it has no 1/r scaling. Instead, it has
the “dipole moment” that scales as ∼ r∗rM/r2, which fits the
interpretation of a potential due to a 4D spherically-symmetric
mass distribution of size ∼ r∗ and zero net mass.5 Hence, the
4D screening should be complete. The picture is slightly differ-
ent from the 5D perspective. In the definition of the 5D ADM
mass the off-diagonal component of the 5D metric of [13,14]
is also entering (this component vanishes on the brane and that
is why it does not contribute to the 4D ADM mass). Because
of this component, there is no complete screening of the 5D
ADM mass, and the potential has the 5D “monopole” com-
ponent which scales as ∼ r∗rM/r2 and yields the 5D ADM
mass ∼ M(rM/rc)

1/3 [13]. The potential due to an incom-
pletely screened 5D “monopole” smoothly matches onto the 4D
potential due to a 4D “dipole”.

6. Discussions and outlook

It looks like the present model works in subtle ways. Yet,
there are a number of issues that still need to be understood. We
will outline some of them below.

(1) DGP vs. massive gravity. The results of the present work
show that in the decoupling limit massive gravity and the DGP
model behave very differently. It would be instructive to un-
derstand this in terms of the Lagrangians of the two theories.
It is useful to start by recalling some details of the decoupling
limit in 4D massive gravity [17]. The most convenient way is to
use the Stükelberg method and complete the FP mass term to a
reparametrization invariant form [17]. This can be done order-
by-order in powers of the fields. Let us call the 4D massive
gravitational field fμν , the corresponding Stückelberg vector
field Aμ and its longitudinal part φ. Due to the mass term the
φ field acquires a kinetic mixing term with the f field. The
quadratic part of the action can be diagonalized by a conformal
transformation fμν = f̃μν + ημνφ. As a result, the φ field ac-
quires its own kinetic term as well as coupling to the trace of
the stress-tensor. The only non-linear interactions that survive
in the decoupling limit are those of φ, all the non-linear terms
containing f̃ vanish [17]. The analog of the fμν field in DGP
is gμν , and the analog of Aμ is Nμ, as it can be read off (3).
Besides these fields there is an additional field N . In the lin-
earized theory it enters the action (3) as a Lagrange multiplier
and enforces a constraint that is consistent with the linearized
Bianchi identities. A linear combination of this field with the
longitudinal component of Nμ is an analog of the longitudinal
component of the Aμ field of massive gravity—these modes
acquire their own kinetic terms through mixing with the ten-
sor fields. However, the similarities end here. At the non-linear
level the N field ceases to be a Lagrange multiplier, but enters
(3) algebraically. Hence, it can be integrated out explicitly. The

5 We thank Gia Dvali for pointing out the dipole analogy to us. Notice, also
that there is no 4D Birkhoff’s theorem in this case.
resulting action is a functional of gμν and Nμ only, however, it
is very different from the action of massive gravity expressed
in terms of fμν and Aμ. The former contains non-local inter-
actions between gμν and Nμ. Moreover, if expanded on a flat
background, it stays non-local and does not produce quadratic
mixing terms between them. Under the circumstances, a way
to proceed is to solve first equations for a non-trivial back-
ground, then expand the non-local action in perturbations about
the background, and only then take the limit. This is, essentially,
what we have done in the present work, but in easier terms of
the equations of motion.

(2) Analyticity and the unitarity bound. The tree-level one-
particle exchange amplitude in DGP is non-local from 4D point
of view as it contains terms (� + mc

√−� )−1 [27]. The am-
plitude has a branch-cut because of the square root. As a result,
there is a way do define a contour in the complex plane so that
the pole in the amplitude ends up being on the second Riemann
sheet (see, e.g., [28]). The usual 4D dispersion relation can be
written for this amplitude, and it does respect 4D analyticity.
Having this established, one can consistently take mc → 0, as it
is done in the decoupling limit. How about the non-linear am-
plitudes? Generically, those contain terms that are singular in
the mc → 0 limit (e.g., different powers of 1/mc

√−� ) [2].
These are the terms that make the perturbative expansion to
break down at the scale r∗. The results of the present work sug-
gest that it is unlikely that the limiting theory below r∗ can be
thought of a local 4D theory of massless helicity-2, helicity-
1 and helicity-0 states. However, in the regions and/or in the
backgrounds where the conventional perturbative expansion is
valid (i.e., where the above singular terms can be ignored), it is
reasonable to expect that 4D analyticity is respected.
What is more certain, however, is that the Froissart bound can-
not be assumed to hold even for the limiting theory. The reason
being that in the decoupling limit there are long-range ten-
sor interactions present, and the Froissart saturation can only
be taking place if such interactions were absent. Clearly, the
present theory of gravity has no mass-gap.

(3) (Important) miscellanea. The issue of the UV comple-
tion and quantum consistency of the model need more detailed
studies (see, e.g., [29]). In this respect, it would be interesting
to pursue furtherer the issue of the string theory realization of
brane induced gravity, perhaps, along the lines of Refs. [30–32].
Finally, in the present work we have not discussed the self-
accelerated universe [33,34]. On issues of consistency of this
approach will be reported in [35].
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