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ABSTRACT A mathematical model of the electrical properties of a myelinated
nerve fiber is given, consisting of the Hodgkin-Huxley ordinary differential
equations to represent the membrane at the nodes of Ranvier, and a partial
differential cable equation to represent the internodes. Digital computer solutions
of these equations show an impulse arising at a stimulating electrode and being
propagated away, approaching a constant velocity. Action potential curves
plotted against distance show discontinuities in slope, proportional to the nodal
action currents, at the nodes. Action potential curves plotted against time, at the
nodes and in the internodes, show a marked difference in steepness of the rising
phase, but little difference in peak height. These results and computed action
current curves agree fairly accurately with published experimental data from
frog and toad fibers.

INTRODUCTION

Hodgkin and Huxley's set of ordinary differential equations for the squid giant
nerve fiber membrane has previously been solved for the case of a space clamp, in
which the potential, current, and other variables of state of the membrane vary with
time but not with distance along the fiber (Hodgkin and Huxley, 1952; Cole,
Antosiewicz, and Rabinowitz, 1955; FitzHugh and Antosiewicz, 1959; FitzHugh,
1960; George, 1960; FitzHugh, 1961). Cases in which these variables vary with
distance as well as with time are described by the partial differential equation of
Hodgkin and Huxley, which is a cable equation with a distributed Hodgkin-Huxley
(HH) membrane instead of the usual passive resistive layer. By assuming propaga-
tion of fixed wave forms for all state variables at a constant velocity along the fiber,
Hodgldn and Huxley reduced this partial differential equation to an ordinary differ-
ential equation, solutions of which are given in several of the above references (also
Huxley, 1959a, 1959b). The mathematical description of the growth of an impulse
and its subsequent propagation away from a stimulating electrode, however, still
requires the solution of the full partial differential equation.
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The estimated time required to solve the HH partial differential equation with an
IBM 704 digital computer was too high to make such solutions practical, because for
each instant of time the HH ordinary equations must be solved at a large number
of points along the fiber (using the usual difference equation approximation to the
differential equation, with small enough distance increments for reasonable ac-
curacy). The case of a myelinated fiber is better suited to computation. The nodes
of Ranvier can be represented as active point sources of current evenly spaced along
a one-dimensional x-axis and separated by sections of passive electrical cable repre-
senting the internodes (Huxley and Staimpffi, 1949). This case requires that the
active membrane equations be solved at far fewer points along the fiber (at the
nodes only) than does the case of a continuous axon.
The HH equations were considered adequate to represent the membranes at the

nodes, at least qualitatively, because of the resemblance between the nodal currents
recorded under potential clamp by Dodge and Frankenhaeuser (1958) and those
in squid. The model used here may actually deliver rather more current than the
frog node (see below). Different equations are now available, designed for the frog
node by Dodge (1961), and they would be better for future computations of this
sort than the equations used here. Nevertheless, these computations establish the
existence of a pair of impulses which arise at the stimulating electrode and are propa-
gated away at a constant velocity in both directions, agreeing fairly well with experi-
mental measurements on frog and toad myelinated axons.

EQUATIONS

Fig. 1 shows the equivalent circuit of the fiber. There is a Ranvier node at the
origin (x = 0), and the others are evenly spaced at an internodal distance of 2 mm.
By assuming symmetry about the origin in x, only non-negative values of x need be
considered. Stimulating current flows to the axon at the origin through an electrode.
The electrical circuit is completed by electrodes at plus and minus infinity in x.

stimulating electrode
(x-O only)

le(t)t node spacing

outsidelt X ,CX w E X

A A At \ A h inside

FIGuRE 1 Equivalent circuit of myelinated axon in lumped form, showing nodes 0
and 1 with increments ax as used in difference equation solved by computer. HH
indicates Hodgkin-Huxley membrane model at nodes of Ranvier. Myelin between
nodes is represented by passive RC circuits to approximate a distributed leaky cable.
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The equations are shown below. (1) is the cable differential equation for the
potential across the myelin layer in the internodes. (2) to (5) are theHH differential
equations for the membrane potential and the three conductance variables at the
jth node (j = 0, 1, 2, 3,... ), at x = 2j mm. (6) expresses the continuity of poten-
tial at the nodes. (7) and (8) are the boundary conditions at the nodes for equations
(1). (9) gives the initial conditions (uniform resting state). (10) or (11) describes
the wave form (brief pulse or step) of the stimulating electrode current. The 2 in
equation (7) results from adding the left and right derivatives of V at x = 0, which
are equal in magnitude because of symmetry.

TABLE I

Variables
t = time (msec.)
x = distance along axon (mm)
jth node: x = 2j mm, j = 0, 1, 2, 3.......
jth internode: 2(j - 1) mm < x < 2j mm

V(x, t) -potential difference across myelin sheath in internodes, inside minus outside (mv)
I(x, t) = outward current density across myelin (sa/mm)
V,(t) = membrane potential difference at jth node (mv)
mt(t), hj(t), ng(t) = HH conductance variables atjth node (dimensionless)
Is(t) = outward membrane current at jth node (jua)
I.(t) = stimulating current through electrode at x = 0 (jua)
Ip = amplitude of rectangular pulse (0.01 msec. duration), or step, of I.(t)
Constants
ri + r2 = total longitudinal resistance = 15 Megohm/mm (Tasaki and Frank, 1955, p. 573)
c =myelin capacitance = 1.6 I,Af/mm (Tasaki, 1955, p. 648)
r = myelin resistance = 290 Megohm mm (Tasaki, 1955, p. 643)
CN = nodal membrane capacitance = 1.5 ,u,uf (Tasaki, 1955, p. 645)
A -area of HH membrane at each node = 0.003 mm' (see text)
L = node spacing = 2 mm

Table I gives definitions of the symbols and values of the constants, with literature
references to the sources used.

c a V/at = (a2 V/ax2)/(r1 + r2) - Vlr (1)

CNd Vi/dt = I - A[9N"m'3hi( V - VN,)

+ gKn (V VB) + 9L( Vj VL)] (2)

dmi/dt = (1 - m)aCmf(-Vs)- mifi(- V,) (3)

dh,/dt = (1 - hi)ah(- Vj)- hih(- V) (4)

dn,/dt = (1 - nj)cx.(- V) -nfi(-V) (5)

lim V(x,t) = Vj(t); j= 0,1,2,3,** (6)
z--jL

IO = (rnI. + 2 lim a V/ax)/(r, + r2) (7)
2-O
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I, -( lim 0 V/Ox - lim 0 V/Ox)/(ri + r2) (8)
x-jL+O x-jL-O

Vi(O) = V(x, 0) = 0; all x 1

m,(O) = mo(O) = a.m()/[acm() + 63m(0)] L (9)

hi (0) = hoI(O) = a£h(O)/[ah(O) + 1.h(0)]

n,(O) = n.(O) = aR(0)/[al(0) + #n(O)] J

I,(t) = II,; 0 < t < 0.01 msec. (10)
O; 0.01 msec. < t

I.(t) =I,p; O < t (I11)
To agree with present practice, the variables for potential and current have been

taken with the signs reversed from those used by Hodgkin and Huxley (1952). V
and V1 represent potential difference-inside minus outside-and currents I and
Ii are positive outward. Hence the minus signs before the arguments of the a and ,8
functions. These functions are given by Hodgkin and Huxley (1952).

Since in the HH equations membrane current and conductance are expressed per
cm2 of membrane area, a suitable area A of theoretical HH membrane must be
chosen to give nodal currents of proper magnitude. At the start of these computa-
tions, experimental measurements of nodal membrane capacitance and resting con-
ductance were available for this purpose. Since the node has a much smaller capaci-
tance relative to its resting conductance than the squid axon, it was decided to match
the conductance and to decrease the HH capacitance value. This was the only modi-
fication of the HH equations made.

The area A of theoretical HH membrane was chosen to be 0.003 mm2, in order
to provide the correct resting conductance. This value, when multiplied by the HH
resting conductance of 6.77 pmho/mm2, gives 0.02 /Amho, which is the resting con-
ductance of the node as measured by Tasaki and Freygang (1955, p. 216) and
Tasaki (1955, p. 645). Notice that A is not intended to be the actual area of the
nodal membrane (which may be quite different), but is only a scale factor to adjust
the nodal currents.

In a paper which appeared after the present computations were begun, Dodge and
Frankenhaeuser (1958) measured maximum peak nodal current under potential
clamp in frog nodes which had been made more potent by a previous hyperpolarizing
pulse. Their value appears to be about equal to those to be expected from the present
equations. (However, their currents are expressed in ma/cm2, with only approximate
data on the actual area for the node.) A node without previous hyperpolarization,
as used in normal propagation experiments, gives maximum peak currents only about
half their value (Dodge, personal communication).
The nodal membrane capacitance CN is taken as 1.5 puf, as measured by Tasaki
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(1955). This is only one-twentieth of the capacitance of an area A of the original
HH membrane, which has a capacitance of 1.0 gf/cm2.

Hodgkin and Huxley's standard temperature of 6.3°C was used.
In equation (7), the stimulating current appears in the term rJ1e/(r1 + r2),

which may be thought of as the "effective stimulating current." The corresponding
amplitudes rllJ/(r, + r2), which were specified in the computations, are given in
Table II. Only the value of r1 + r2 was specified in the computations (Table I).
However, r1 was assumed to be small relative to r2, and r1 + r2 was therefore taken
to be equal to the experimentally measured value of axoplasmic resistance (Table I).
Using this value and any assumed small value of rl, one could calculate Ip from the
values in the table. All values of stimulating current are positive and therefore
outward or cathodal.

COMPUTING METHOD

The partial differential equations were replaced in the usual way by difference
equations (Milne, 1953; Scarborough, 1958) with space and time increments
Sx = 0.25 mm and St = 0.00075 msec. The results were printed out at intervals of
Sx and 328t (= 0.024 msec.) The smallness of Sx and the size of the (x, t) domain
of integration are limited by the time and expense of computer runs. For a given Ax,
St must be chosen small enough to insure computational stability. The principle in-
volved in insuring stability is similar to that for the one-dimensional heat flow
equation as described by Milne (1953). Each computer solution took 1I/½ hours on
the IBM 704 for the following domain of integration: x = 0 to 26.75 mm, t = 0 to
1.392 msec. This domain was too small to permit the computation of complete action
potential curves; the longest ones stop after the peak, less than half way down the
descending phase (Figs. 2, 3).

Although the fiber goes to infinity in x, the computation was necessarily performed
over a finite x interval. Since the computation of the dependent variables at t + St
and x depends on their values at t and x ± Sx, the x interval of computation had to
be shortened by Sx at its right end for each advance in t, and the starting x interval
at t = 0 had to be much longer than the above mentioned figure of 26.75 mm. On
the other hand, some computation time was saved by the fact that the first departure
of the dependent variables from their initial resting values progressed along the x
axis at a finite velocity equal to Sx/8t. At any x > 0, therefore, no values needed to
be computed for t < x(St/Sx). The actual domain of computation in the (x, t)
plane was a quadrilateral determined by these conditions, but values were printed
out only for the rectangular region mentioned above.
To check the effect of increment size, one run was made with Sx = 0.20 mm and

St = 0.00048 msec. The domain of integration in t had to be decreased to 1.032
msec. The conduction velocity was unchanged. The values of membrane potential V
at the nodes at corresponding times differed by only 0.004 mv at the peak of a tem-
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poral action potential curve, but by as much as 2 mv elsewhere. However, the two
plotted curves could be brought into close agreement by shifting one of them along
the time axis by about 0.005 msec., which shows that the principal result of decreas-
ing the increment size was to increase the latency slightly, leaving the form of the
action potential otherwise unchanged. Since extreme accuracy was not required, no
further tests of changing increment size were made.

RESULTS
Fig. 2 shows computed spatial action potential curves (V plotted against x) at
different instants of time as the impulse travels away from the onrgin. Each curve has
a cusp at each node. The discontinuity in slope at each cusp is proportional to the

100

m X7(mm)

FiouiR 2 Spatial action potential curves following stimulation by a 30,000 ,ua pulse
of 0.01 msec. duration beginning at * = 0. Each curve corresponds to one value of t
as labeled. The impulse arises at x = 0 (location of stimulating electrode) and is
propagated away at a constant velocity. Solutions are symmetric about the origin;
therefore the negative x-axis is not shown. Vertical lines indicate node positions. Each
curve is drawn through the computed points, 8 per internode (0.25 mm spacing).

nodal membrane current according to equation (8). A similar curve was recon-
structed by Huxley and Staimpffi (1949, Fig. 13) by integration of experimentally
measured longitudinal currents. Because of the cusps, the action potential is propa-
gated along the axon with a slight cyclic change of shape, depending on the instan-
taneous position of the impulse relative to the nodes. Since the values of t used in
plotting Fig. 2 were not synchronized with the advance of thie impulse past successive
nodes, each curve has a slightly different shape.

Fig. 3 shows the same computed data plotted as temporal action potential curves
(V against t) at various points along the fiber. At the left are plotted curves for the
node positions only. The wave form becomes nearly uniform 3 or 4 nodes away
from the site of stimulation. At the right, to show how the action potential shape
changes cyclically in the internodal regions, curves are plotted for points a quarter
of an internode apart, on an expanded time scale. The changes of shape will be
discussed in the next section.
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As the action potential travels away from the origin, its peak height at the nodes
approaches a constant value of 106.58 mv. If the times of peak values in V, are
plotted against node position in an (x, t) plane, these points lie on a straight line
from node 1 to the last node reached by the peak before computation stopped-this
is (with one exception, see below) node 3 to 6, depending on the stimulus strength.
The conduction velocity, calculated from the slope of this line, is the same in all
cases: 11.9048 m/sec. Since results are printed out for t increments of 0.024 msec.,
this velocity represents a conduction time of the peak from node to node equal to
exactly 7 of these t increments. A better method of calculating velocity, with a finer
time resolution, is obtained by first interpolating linearly to find the time at which
V = 50 mv during the rising phase at each node, and then calculating the conduction

0 05 .X 05 1 12
t(mw

FIGURE 3 Same stimulus as in Fig. 2.
Left: Temporal action potential curves at nodes only, with x values as labeled.
Right: Same, but shown for several positions between two nodes. Steepness of rising
phase is less in internodal region, and separate humps due to the two adjacent action
potential peaks are visible.

time between each neighboring pair of nodes. The velocity calculated in this way
converges, with increasing node number, to a value of 11.90 + 0.01 m/sec. The
close agreement of this value with the figure obtained from the slope in the (x, t)
plane is probably accidental; a different choice of values of time to print out might
have made it worse.

This value of conduction velocity computed for 6.3°C compares reasonably well
with the experimental measurement by Tasaki and Fujita (1948) who obtained
about 10 m/sec. for toad axons at 6°C.

Table II shows the stimulus amplitudes (I,) tried and the corresponding latencies.
The latency was taken as defined by the intersection of the above mentioned straight
line through the peaks in the (x, t) plane with the line x = 0. (This did not always
coincide with the actual time of the peak at node 0, where the impulse arose.)
The approach to constant values of spike height and conduction velocity occurs

as follows. For 0.01 msec. pulses, the final value of the spike height is approached
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from below for the 30,000 tjAa stimulus, but from above for 60,000 and 200,000
,ppa. The velocity at the 50 mv level of the rising phase is approached from above
for 30,000 and from below for 60,000 and 200,000 A/Aa. Thus the larger action
potentials have smaller velocities. (A similar result occurs for the step stimulus.)
This relation is the opposite to that observed experimentally in decremental conduc-
tion, in which the spike height and conduction velocity, instead of approaching
constant limits, both decrease together until the impulse is extinguished (Lorente de

TABLE II

Effective stimulus
Wave form amplitude Latency

711,

ri + T2

,u,ua msec.

0.01 msec. 1,000
pulse 10,000

30,000 0.528
60,000 0.336

200,000 0.240

Step 200
500 (1.200)

1,000 0.696
5,000 0.384

20,000 0.264

N6 and Condouris, 1959). For the 200,000 ,/q.a, 0.01 msec., stimulus pulse, which
was at least 7 times threshold, the spike height was increased by only 0.24 per cent
at node 1 (2 mm away from the electrode); for the 20,000 pjua step (at least 40
times threshold) by only 0.075 per cent. The corresponding decreases in velocity
below normal were 12.9 per cent and 15.0 per cent between nodes 1 and 2 and
only 1.7 per cent and 1.95 per cent between nodes 2 and 3.
A dash in the last column of Table II indicates that the stimulus was below

threshold. The latency value in parentheses belongs to the exceptional case referred
to above, in which the stimulus was very near threshold and the latency so long that
the peak had reached only node 1 by the end of the run. In this case a line with the
same slope as used for all the other cases was drawn through the point at node 1 to
obtain the latency. This case shows that if the latencies become too long, the duration
and cost of the computer runs required to measure threshold accurately can be
greatly increased.
From the values given in Table II can be plotted strength-latency curves having

the same general shape as the experimental curves of Tasaki and Fujita (1948) in
toad and of Hodler, Stiimpfli, and Tasaki (1952) in frog axons.
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COMPARISON WITH SALTATORY
CONDUCTION EVIDENCE

These computations agree in many details with the experimental data accumulated
during the controversy, a decade ago, over saltatory conduction in myelinated axons.
As summarized by Stampfli (1954), these data show "discontinuities" in longi-
tudinal action currents and in action potentials, which will be described in more
detail below.
The longitudinal external current in the equivalent circuit is equal to (dV/dx)/

(r1 + r2). Equation (8) shows that there is a discontinuity in this current at each
node, equal to the nodal membrane current; within each internode the longitudinal
current is continuous. Experimental measurements by Huxley and Stiimpfli (1949,
Fig. 7) of longitudinal current at different points along frog axons at 18-20°C show
that the time of occurrence of the peak of the longitudinal action current increases
only slightly within each internode (about 0.02 msec., with a considerable scatter of
points), but jumps to a new value in crossing the node. The new peak time is of
course greater than the peak time at the beginning of the previous node by the node-
to-node conduction time of the impulse (about 0.1 msec.). The peak longitudinal
current value, on the other hand, falls nearly linearly from 2.5 to 1.5 m,ua along the
internode in the direction of conduction; then, as the node is crossed, jumps back to
the higher value.

In comparison, computed curves of longitudinal current for a uniformly propa-
gated impulse, in which the partial derivative aV/ax is approximated by a difference
ratio, resemble the experimental curves of Huxley and Staimpffi in shape. The peak
time increases only 0.015 msec. along one internode, while the node-to-node con-
duction time is 0.168 msec. (These times should be divided by 2 or 2.5 to correct
for the difference of temperature.) The peak value of longitudinal current falls from
2.6 to 1.5 m,ua along one internode. These computed figures are thus in reasonably
good agreement with experiment.
The experimental measurements which most nearly resemble the computed tem-

poral action potential curves of Fig. 3 (right) are those of Hodler, Stiimpffi, and
Tasaki (1952; see also Laporte, 1951, and Stimpffi and Zotterman, 1951). They
recorded the potential at the point on the outside of a single fiber where it emerged
from a Ringer-filled glass capillary, moving the fiber in the capillary to record at
different points. Their reference potential was at the other end of the capillary, and
an injured end lay within the capillary. They assumed that the recorded potential
was a constant fraction of the potential between the outside medium and the axo-
plasm; i.e., of V. Their peak potentials did "not vary appreciably as a function of
distance along the fiber." In comparison, the computed peak potentials fall from
106.58 mv at the nodes to 102.86 mv midway between two adjacent nodes. Such a
decrease of only 3.5 per cent would probably be indistinguishable experimentally
from the effects of non-uniformity of the fiber.
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The "steepness" or maximum rate of rise of the action potential recorded experi-
mentally by these authors in the middle of an internode was only about one-half
that at the nodes. The computed values change from 461.2 v/sec. at the nodes to
292.2 v/sec. at a point five-eights of the way from one node to the next in the direc-
tion of propagation, a ratio of 1/1.6.
An examination of the curves in Fig. 3 (right) shows that there are two local

maxima in slope, and the point of the absolute maximum slope jumps from one of
these points to the other as x increases. The internodal action potential curve may be
thought of as a superposition of two action potentials picked up at the point of re-
cording by electrotonic spread from the adjacent nodes. This interpretation of the
apparently irregular shape of the internodal temporal action potentials can be seen
rather more clearly in the computed curves than in the experimental curves cited
above, perhaps because of axon non-uniformity and the somewhat different condi-
tions of measurement in the latter.

Dr. K. S. Cole suggested making these computations. Dr. Walter Gautschi, formerly of the
National Bureau of Standards, worked out the numerical method for solving the equations on
the computer. Mr. Alfred Beam of NBS wrote the program and carried out the computations
there. Dr. F. A. Dodge made several constructive criticisms of the manuscript.
Received for publication, August 29, 1961
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