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Abstract The main aim of the present paper was to present a user friendly approach based on

homotopy analysis transform method to solve a time-fractional nonlinear shock wave equation

arising in the flow of gases. The proposed technique presents a procedure of constructing the set

of base functions and gives the high-order deformation equations in a simple form. The auxiliary

parameter ⁄ in the homotopy analysis transform method solutions has provided a convenient

way of controlling the convergence region of series solutions. The method is not limited to the small

parameter, such as in the classical perturbation method. The technique gives an analytical solution

in the form of a convergent series with easily computable components, requiring no linearization or

small perturbation. The numerical solutions obtained by the proposed approach indicate that the

approach is easy to implement and computationally very attractive.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The mathematical model of shock waves arose in connection
with problems of the motion of gases and compressible fluids
around the second half of the 19th century. The pioneering

work in this area was conducted by Earnshaw [1], Riemann
[2], Rankine [3] and Hugoniot [4]. The common features of
individual theories of continuum physics include conservation
laws. The laws are supplemented by constitutive relations

which characterize the particular medium in question by relat-
ing the values of the main vector field u to the flux, f. The laws
are supplemented by constitutive relations which characterize

the particular medium in question by relating the values of
the main vector field u to the flux f.

Here we assume that these relations are represented by

smooth forms, and as a result the conservation laws lead to
nonlinear hyperbolic partial differential equations, which are
given in simplest form as
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utðx; tÞ þ fðuðx; tÞÞx ¼ 0; x 2 R; t > 0 ð1Þ

with the initial condition

uðx; 0Þ ¼ u0ðxÞ; x 2 R: ð2Þ

Eq. (1) occurs in a model for a diverse range of physical phe-

nomena from shock waves to three-phase flow in porous
media. Shock waves find their applications in explosions, traf-
fic flow, glacier waves, airplanes breaking the sound barrier

and so on. They are formulated by nonlinear hyperbolic par-
tial differential equations [5–7]. The shock wave and wave
equations have been studied using Adomian decomposition

method (ADM) [8] and homotopy perturbation method
(HPM) [9]. The classical shock wave and wave equations are
very handy predictive equations, since solutions are easily
obtained. In this article, we present a fractional generalization

of shock wave Eq. (1), which can be written in the following
form

Da
t uðx; tÞ þ fðuðx; tÞÞx ¼ 0; x 2 R; t > 0 ð3Þ

where a is a parameter describing the order of time-derivative.
The derivative is considered in the Caputo sense. The general
response expression contains a parameter describing the order

of fractional shock wave equation that can be varied to obtain
various responses. In the case of a = 1, the fractional shock
wave equation reduces to the classical shock wave equation.

The most important advantage of using fractional differential
equations in mathematical modeling is their non-local prop-
erty. It is well known that the integer order differential opera-

tor is a local operator but the fractional order differential
operator is non-local. This means that the next state of a sys-
tem depends not only upon its current state but also upon all

of its historical states. This is more realistic and it is one reason
why fractional calculus has become more and more popular
[10–18]. There are several methods to solve the fractional
shock wave and wave equations, such as the HPM [19]. In

2014, Singh et al. [20] considered the fractional models of
shock wave and wave equations and proposed an analytical
algorithm based on homotopy perturbation transform method

(HPTM). The homotopy analysis method (HAM) was first
proposed and developed by Liao [22–25] based on homotopy,
a fundamental concept in topology and differential geometry.

The HAM has been successfully applied by many research
workers to study the physical problems [26–31]. The Laplace
transform is a powerful technique for solving various linear
partial differential equations having considerable significance

in various fields such as engineering and applied sciences. Cou-
pling of semi-analytical methods with Laplace transform giv-
ing time consuming consequences and less C.P.U time

(Processor 2.65 GHz or more and RAM-1 GB or more) for
solving nonlinear problems. Recently, many researchers have
paid attention for solving the linear and nonlinear partial dif-

ferential equations using various methods combined with the
Laplace transform. Among these are Laplace decomposition
method (LDM) [32–34], homotopy perturbation transform

method [35–37] and homotopy analysis transform method
[38–40].

In this article, we implement the HATM to find the analyt-
ical and numerical solutions of the nonlinear fractional shock

wave and wave equations with time-fractional derivatives. The
proposed technique solves the nonlinear problems without
using Adomian polynomials and He’s polynomials which can
be considered as a clear advantage of this algorithm over
decomposition and the homotopy perturbation transform
methods. The plan of our paper is as follows: The basic defini-

tions of fractional calculus are given in Section 2. The basic
idea of HATM is presented in Section 3. In Section 4, numer-
ical examples is given to illustrate the applicability of the con-

sidered method. Section 5 is dedicated to numerical results and
discussion. Conclusions are presented in Section 6.

2. Basic definitions of fractional calculus

In this section, we mention the following basic definitions of
fractional calculus.

Definition 1.1. The Laplace transform of the function f(t) is

defined by

FðsÞ ¼ L½ fðtÞ� ¼
Z 1

0

e�stfðtÞdt: ð4Þ

Definition 1.2. The Laplace transform of the Riemann–Liou-
ville fractional integral is defined as [12]:

L Iat uðx; tÞ
� �

¼ s�aL½uðx; tÞ�: ð5Þ

Definition 1.3. The Laplace transform of the Caputo fractional
derivative is defined as [12]:

L Da
t uðx;tÞ

� �
¼ saL½uðx; tÞ��

Xn�1
k¼0

sða�k�1ÞuðkÞðx;0Þ; n�1< a6 n:

ð6Þ
3. Analysis of the method

The HAM was first proposed by Liao [21] based on homotopy,
a fundamental concept in topology. The HAM is based on
construction of homotopy which continuously deform an ini-

tial guess approximation to the exact solution of the given
problem. An auxiliary linear operator is chosen to construct
the homotopy and an auxiliary linear parameter is used to con-
trol the region of convergence of the solution series. The

HATM is a combined form of the Laplace transform method
and the HAM. We apply the HATM to the following general
fractional nonlinear nonhomogeneous partial differential

equation of the form:

Da
t uðx; tÞ þ Ruðx; tÞ þNuðx; tÞ ¼ gðx; tÞ; n� 1 < a 6 n ð7Þ

where Da
t uðx; tÞ is the Caputo fractional derivative of the func-

tion uðx; tÞ;R is the linear differential operator, N represents
the general nonlinear differential operator and gðx; tÞ, is the
source term.

Applying the Laplace transform on both sides of Eq. (7),
we get

L Da
t u

� �
þ L½Ru� þ L½Nu� ¼ L½gðx; tÞ�: ð8Þ

Using the differentiation property of the Laplace transform,
we have

saL½u� �
Xn�1
k¼0

sa�k�1uðkÞðx; 0Þ þ L½Ru� þ L½Nu� ¼ L½gðx; tÞ�: ð9Þ
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On simplifying

L½u�� 1

sa

Xn�1
k¼0

sa�k�1uðkÞðx;0Þþ 1

sa
½L½Ru�þL½Nu��L½gðx;tÞ�� ¼ 0:

ð10Þ
We define the nonlinear operator

N½/ðx; t;qÞ� ¼L½/ðx; t;qÞ�� 1

sa

Xn�1
k¼0

sa�k�1/ðkÞðx;0;qÞþ 1

sa

�½L½R/ðx; t;qÞ�þL½N/ðx; t;qÞ��L½gðx; tÞ��; ð11Þ
where q 2 ½0; 1� and /ðx; t; qÞ are real functions of x, t and q.
We construct a homotopy as follows

ð1� qÞL½/ðx; t; qÞ � u0ðx; tÞ� ¼ �hqHðx; tÞN½uðx; tÞ�; ð12Þ

where L denotes the Laplace transform, q 2 ½0; 1� is the
embedding parameter, H(x, t) denotes a nonzero auxiliary
function, �h „ 0 is an auxiliary parameter, u0(x, t) is an initial
guess of u(x, t) and /ðx; t; qÞ is an unknown function. Obvi-

ously, when the embedding parameter q= 0 or q= 1, it holds

/ðx; t; 0Þ ¼ u0ðx; tÞ; /ðx; t; 1Þ ¼ uðx; tÞ; ð13Þ

respectively. Thus, as q increases from 0 to 1, the solution
/ðx; t; qÞ varies from the initial guess u0(x, t) to the solution

u(x, t). Expanding /ðx; t; qÞ in Taylor series with respect to
q, we have

/ðx; t; qÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm; ð14Þ

where

umðx; tÞ ¼
1

m!

@m/ðx; t; qÞ
@qm

jq¼0: ð15Þ

If the auxiliary linear operator, the initial guess, the auxiliary

parameter ⁄, and the auxiliary function are properly chosen,
the series (14) converges at q = 1, then we have

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ; ð16Þ

which must be one of the solutions of the original nonlinear
equations. According to the definition (16), the governing
equation can be deduced from the zero-order deformation

(12).
Define the vectors

~um ¼ fu0ðx; tÞ; u1ðx; tÞ; . . . ; umðx; tÞg: ð17Þ

Differentiating the zeroth-order deformation Eq. (12) m-times

with respect to q and then dividing them by m! and finally set-
ting q = 0, we get the following mth-order deformation
equation:

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hqHðx; tÞRmð~um�1Þ: ð18Þ

Applying the inverse Laplace transform, we have

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½qHðx; tÞRmð~um�1Þ�; ð19Þ

where

Rmð~um�1Þ ¼
1

ðm� 1Þ!
@m�1N½/ðx; t; qÞ�

@qm�1
jq¼0; ð20Þ

and

vm ¼
0; m 6 1;

1; m > 1:

�
ð21Þ
4. Numerical examples

In this section, we discuss the implementation of our numerical
method and investigate its accuracy and stability by applying it

to numerical examples on time-fractional shock wave and
wave equations.

Example 1. Consider the following time-fractional shock wave
equation

Da
t u�

1

c0
� cþ 1

2

u

c20

� �
Dxu ¼ 0; ðx; tÞ

2 R� ½0;T�; 0 < a 6 1; ð22Þ

where c0; c are constants and c is the specific heat. For studying
the case under consideration, we take c0 = 2 and

c = 1.5, which corresponds to the flow of air, subject to the
initial condition

uðx; 0Þ ¼ exp � x2

2

� �
: ð23Þ

Applying the Laplace transform on both sides of Eq. (22) sub-

ject to the initial condition (23), we have

L½uðx; tÞ��1

s
exp �x

2

2

� �
� 1

sa
L

1

c0
Dxu�

cþ1

2

u

c20
Dxu

� �
¼ 0: ð24Þ

We define a nonlinear operator as

N½/ðx;t;qÞ�¼L½/ðx;t;qÞ��1
s
exp �x

2

2

� �

� 1

sa
L

1

c0
Dx/ðx;t;qÞ�

cþ1
2c20

/ðx;t;qÞDx/ðx;t;qÞ
� �

¼0: ð25Þ

and thus

Rmð~um�1Þ ¼ L½um�1� � ð1� vmÞ
1

s
exp � x2

2

� �

� 1

sa
L

1

c0
Dxum�1 �

cþ 1

2c20

Xm�1
r¼0

urDxum�1�r

" #
: ð26Þ

The mth-order deformation equation is given by

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hRmð~um�1Þ: ð27Þ

Applying the inverse Laplace transform, we have

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½Rmð~um�1Þ�: ð28Þ
We start with the initial condition u0ðx; tÞ ¼ uðx; 0Þ ¼
exp � x2

2

	 

, use the iterative scheme (28) and obtain the various

iterates

u1ðx; tÞ¼ �h
1

c0
� cþ1

2c20
exp �x

2

2

� �� �
x exp �x

2

2

� �
ta

Cðaþ1Þ ; ð29Þ

u2ðx; tÞ¼ �hð1þ�hÞ 1

c0
� cþ1

2c20
exp �x

2

2

� �� �
xexp �x

2

2

� �
ta

Cðaþ1Þþ�h2 exp �x
2

2

� �
� 1

c20
þx2

c20
þðcþ1Þ

c30
exp �x

2

2

� ��

�2ðcþ1Þ
c30

x2 exp �x
2

2

� �
�ðcþ1Þ2

4c40
expð�x2Þ

þ3ðcþ1Þ2

4c40
x2 expð�x2Þ

#
t2a

Cð2aþ1Þ : ð30Þ



Figure 1 Plot of u(x, t) w.r. to x and t at a = 1/4 for Example 1.
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Proceeding in the same manner the rest of components of the

HATM solution can be obtained. Finally, we have the series
solution

uðx; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞ þ u2ðx; tÞ þ � � � : ð31Þ

However, most of the results given by theHPMandHPTMcon-
verge to the corresponding numerical solutions in a rather small
region. But, different from those two methods, the HATM pro-

vides us with a simple way to adjust and control the convergence
region of solution series by choosing a proper value for the aux-
iliary parameter ⁄. Choosing ⁄ = �1 in (31) we can recover all

the results obtained by HPM [19] and HPTM [20].

Example 2. Next, consider the following time-fractional wave
equation

Da
t uþ uDxu�Dxxtu ¼ 0; ð32Þ

with the initial condition

uðx; 0Þ ¼ 3 sec h2
x� 15

2

� �
: ð33Þ

Operating the Laplace transform on both sides of Eq. (32) sub-
ject to the initial condition (33), we have

L½uðx; tÞ� � 3

s
sec h2

x� 15

2

� �
þ 1

sa
L½uDxu�Dxxtu� ¼ 0: ð34Þ

We define a nonlinear operator as

N½/ðx; t; qÞ� ¼ L½/ðx; t; qÞ� � 3

s
sec h2

x� 15

2

� �

þ 1

sa
L½/ðx; t; qÞDx/ðx; t; qÞ �Dxxt/ðx; t; qÞ� ¼ 0: ð35Þ

and thus

Rmð~um�1Þ ¼ L½um�1� � ð1� vmÞ
3

s
sec h2

x� 15

2

� �

þ 1

sa
L
Xm�1
r¼0

urDxum�1�r �Dxxtum�1

" #
: ð36Þ

The mth-order deformation equation is given by

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hRmð~um�1Þ: ð37Þ

Applying the inverse Laplace transform, we have

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½Rmð~um�1Þ�: ð38Þ

Using the initial approximation u0ðx; tÞ ¼ uðx; 0Þ ¼
3 sec h2 x�15

2

� �
and the iterative scheme (38), obtain the various

components of series solution

u1ðx; tÞ ¼ �9�h sec h4
x� 15

2

� �
tanh

x� 15

2

� �
ta

Cðaþ 1Þ ; ð39Þ

u2ðx; tÞ ¼ �9�hð1þ �hÞ sec h4
x� 15

2

� �
tanh

x� 15

2

� �
ta

Cðaþ 1Þ

þ �h2
189

2
sec h6

x� 15

2

� �
tanh2 x� 15

2

� ���

� 27

2
sec h6

x� 15

2

� ��
t2a

Cð2aþ 1Þ

þ 135

2
sec h4

x� 15

2

� �
tanh3 x� 15

2

� ��

� 63

2
sec h

4 x� 15

2

� �
tanh

x� 15

2

� ��
Cðaþ 1Þt2a�1

Cð2aÞ



: ð40Þ

In the similar way, the rest of components of the HATM solu-
tion can be obtained. Thus the series solution u(x, t) of the Eq.
(32) is given as:
uðx; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞ þ u2ðx; tÞ þ � � � : ð41Þ

If we set ⁄ = �1 and a = 1 in (41), then the obtained solution
converges to the exact solution

uðx; tÞ ¼ 3 sec h2
x� 15� t

2

� �
: ð42Þ

We can also recover all the results obtained by HPM [19] and
HPTM [20], just by choosing ⁄ = �1 in (41).
5. Numerical results and discussion

In this section, we calculate the numerical solutions of the
probability density function u(x, t) for different time-fractional

Brownian motions a ¼ 1
4
; 1
2
and also the standard motion

a = 1.
The numerical values u(x, t) vs. time t and also those vs. x

at a = 1 for both the two examples are calculated for different

particular cases and are depicted through Figs. 1–8. During
numerical computation only two iterations are considered. It
is evident that by using more terms, the accuracy of the results

can be dramatically improved and the errors converge to zero.
The time-fractional shock wave equation considered in

Example 1 is graphically represented through Figs. 1–4. The

numerical results of the probability density function u(x, t)
for fractional Brownian motion a ¼ 1

4
with c = 1.5 and

c0 = 2, is shown through Fig. 1 and those for different values
of t and a at x= 1 are depicted in Fig. 2. The numerical values

u(x, t) vs. time t and also those vs. x at a = 1, with c = 1.5 and
c0 = 2, are depicted through Figs. 3 and 4. It is observed from
Fig. 2 that as the value of a increase, the value of u(x, t)

increases but afterward its nature is opposite. It is also seen
from Fig. 3 that u(x, t) increases with the decrease in t. We
can also observe from Fig. 4 that u(x, t) is highest at x = 0

and decreases as numeric value of x increases.
The wave equation with time-fractional derivative consid-

ered in Example 2 is described through Figs. 5–8. It is observed

from Fig. 5 that u(x, t) increases with the increase in x and
decreases with the increase in t for a = 1/4.



Figure 2 Plots of u(x, t) vs. t at x= 1 for different values of a for

Example 1.

Figure 4 Plot of u(x, t) vs. x at t= 1 and a = 1 for Example 1. Figure 7 Plot of u(x, t) vs. x at t= 1 and a = 1 for Example 2.

Figure 5 Plot of u(x, t) w.r. to x and t at a = 1/4 for Example 2.

Figure 3 Plot of u(x, t) vs. t at x = 1 and a = 1 for Example 1. Figure 6 Plots of u(x, t) vs. t at x = 1 for different values of a for

Example 2.
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Figure 8 Plot of u(x, t) vs. t at x = 4 and a = 1 for Example 2.
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It is observed from Fig. 6 that as the value of a increase, the

value of u(x, t) increases but afterward its nature is opposite. It
can be seen from the Figs. 7 and 8 that u(x, t) increases with
the increase in x and decreases with the increase in t.

6. Concluding remarks

In this paper, our main concern has been to study the time-
fractional shock wave and wave equations arising in flow of

gases. The HATM and symbolic calculations have been used
to obtain the approximate analytic solutions of the time-frac-
tional shock wave and wave equations. The results obtained

by using the scheme presented here agree well with the analyt-
ical solutions and the numerical results obtained by HPM [19]
and HPTM [20]. It provides us with a simple way to adjust and

control the convergence region of solution series by choosing
proper values for auxiliary parameter �h. The proposed method
provides the solutions in terms of convergent series with easily

computable components in a direct way without using lineari-
zation, perturbation or restrictive assumptions. Thus, it can be
concluded that the HATM is powerful and efficient in finding
analytical as well as numerical solutions for wide classes of

nonlinear fractional differential equations arising in science,
engineering and finance.
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