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Abstract This work improves on the FTNB algorithm to make it more tolerant to noise. The

FTNB algorithm augments the Naı̈ve Bayesian (NB) learning algorithm with a fine-tuning stage

in an attempt to find better estimations of the probability terms involved. The fine-tuning stage

has proved to be effective in improving the classification accuracy of the NB; however, it makes

the NB algorithm more sensitive to noise in a training set. This work presents several modifications

of the fine tuning stage to make it more tolerant to noise. Our empirical results using 47 data sets

indicate that the proposed methods greatly enhance the algorithm tolerance to noise. Furthermore,

one of the proposed methods improved the performance of the fine tuning method on many

noise-free data sets.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The Naı̈ve Bayesian learning algorithm is a simple machine
learning algorithm that has proved to be comparable, in terms
of its classification accuracy in many domains to many more

complex algorithms, such as neural networks and decision
trees (Langley and Sage, 1994). To classify a new instance,
the algorithm uses the Bayesian rule for conditional probabil-
ities to calculate the conditional probability of each class value

and takes the class with the maximum probability as the pre-
dicted class. The algorithm uses the training data to estimate
all the required probability values.
Given a new instance of the form < a1; a2; � � � ; an >, the
predicted class for this instance, cpredicted, is computed as

cpredicted ¼ argmax
c2C

pða1; a2; � � � ; anjcÞ � pðcÞ
pða1; a2; . . . ; anÞ

ð1Þ

where:

C is a vector of all class attribute values.

p(c) is the probability of class c.
p(a1, a2, . . ., an) is the probability that attributes 1, 2, . . ., n
will take the values a1, a2, � � �, an, respectively.
p(a1, a2, � � �, an|c) is the probability that attributes 1, 2, . . ., n
will take the values a1, a2, � � �, an, given that the instance is
of class c.

Given a certain instance (e.g., the instance to be classified), the
probability p(a1, a2, . . ., an) is the same for all class values;
therefore, formula 1 can be simplified as follows:

cpredicted ¼ argmax
c2C

pða1; a2; � � � ; anjcÞ � pðcÞ ð2Þ
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To allow for computational tractability, the algorithm makes

the Naı̈ve assumption that all the attribute values are condi-
tionally independent given the class value; therefore,

p a1; a2; � � � ; anjcð Þ ¼
Y
i

pðaijcÞ ð3Þ

Thus, Eq. (2) can be rewritten as

cpredicted ¼ argmax
c2C

pðcÞ �
Y
i

pðaijcÞ ð4Þ

The classification accuracy of NB degrades in domains where
the independence assumption is violated (Friedman et al.,
1997). The classification accuracy also degrades if a training
set is too small to provide an accurate estimation of the

required probability terms. Most methods for improving the
classification accuracy of NB, (e.g., Friedman et al., 1997;
Chickering, 1996; Zhang and Ling, 2001; Jiang et al., 2005;

Palacios-Alonso et al., 2008), focus on the independence
assumption problem. Some methods, however, were also pro-
posed to address the problem of the lack of training data, (e.g.,

Jiang and Guo, 2005; Jiang and Zhang, 2005; El Hindi, 2014).
The methods proposed by Jiang and Guo, 2005; Jiang and
Zhang, 2005 clones some instances to increase the size of the

training data while the method proposed by El Hindi, 2014
augments the NB with a second fine-tuning stage to determine
better estimations of the needed probability terms.

Although the empirical results presented in El Hindi, 2014

indicate that the extra fine-tuning stage substantially increases
the average classification accuracy in many domains, this work
indicates that it degrades the classification accuracy in domains

where the training data contain some noisy instances. This
sensitivity to noise is an important issue because real life
data are rarely free of noise. Several methods were developed

for dealing with noisy instances. Some methods, (e.g.,
Muhlenbach et al., 2004; El Hindi and Al-Akhras, 2011;
Sanchez et al., 2003; Jiang and Zhou, 2004; Koplowitz and
Brown, 1981), attempt to identify and eliminate noisy

instances. These methods are called noise filtering or data edit-
ing methods. We believe that eliminating the suspected noisy
instances may be error prone because some noise-free instances

may be eliminated. In this work, we do not eliminate noisy
instances; we just assign them small weights to make their
effect during the fine-tuning stage small. Of course, the

proposed methods may incorrectly reduce the weight of a cor-
rect instance, but unless they reduce it to zero, they would still
make use of that instance during training. This makes the pro-

posed methods more robust than data editing methods.
The methods were tested using 47 benchmark data sets that

were obtained for the UCI repository for machine learning
(Blake, 1998). All the ordinal attributes were discretized using

the method of Fayyad amd Irani (1993), as implemented in
Witten and Frank (2005).

Section 2 reviews the fine-tuning algorithms and discusses

the effect of noise on the classification accuracy of these algo-
rithms. Section 3 proposes a method for dealing with noise.
Section 4 presents our empirical results. Section 5 is the conclu-

sion section.

2. Fine tuning the Naı̈ve Bayesian (FTNB) algorithm

In an attempt to find better estimations for the probability
terms used by the NB algorithm, the FTNB (fine-tuning NB)
algorithm (El Hindi, 2014) augments the NB algorithm with
a fine-tuning stage. In the first stage, the training set is used
in the usual manner to estimate the probability terms required

to build an NB classifier. In the second stage, the training set is
used once again to fine tune these probability terms. In this
stage, some probability values are modified in such a way that

makes the algorithm more accurate in classifying the training
instances. If a training instance is mistakenly classified by the
NB classifier, this means the predicted class, cpredicted, has a

higher computed probability than the actual class of the
instance, cactual, given the attribute values of the instance.
Therefore, the FTNB algorithm increases the values of the
probability terms involved in computing the probability of

the actual class and decreases the probability terms involved
in estimating the probability of the predicted class, cpredicted.
Namely, the algorithm increases p(ai|cactual) and decreases

p(ai|cpredicted) for each attribute value ai. This process is gradu-
ally performed using the formula

ptþ1 aijclassð Þ ¼ pt aijclassð Þ þ dtþ1ðai; classÞ ð5Þ

where t is the cycle number, and dt+1 is an update step. This

process is repeated so long as the training classification accu-
racy (i.e., classification accuracy computed using the training
data) continues to improve. Fig. 1 shows the details of the

FTNB algorithm.The size of the update step, di, must be pro-
portional to the amount of error, which is computed as follows

error ¼ P cactualð Þ � PðcpredictedÞ
�� �� ð6Þ

P(co) is calculated using the formula

P coð Þ ¼
pðcojinsttrainÞPm
k pðckjinsttrainÞ

ð7Þ

where, insttrain is a training instance (or vector) of the form
<a1, a2, � � �, ai, � � �, an>, and m is the number of classes (the

number of class attribute values) and

p ckjinsttrainð Þ ¼
Yn
i

p aijckð Þ � pðckÞ ð8Þ

where n is the number of attributes, and ai is the value of the

ith attribute of insttrain.
To increase p(ai|cactual), the FTNB algorithm makes the size

of the update step large for small probability values and small

for large probability values. This task is required because small
probability values are more likely to be responsible for the mis-
classification than large probability values. This task is per-

formed using the formula

dtþ1ðai; cactualÞ ¼ g � ða � p maxijcactualð Þ � p aijcactualð ÞÞ � error ð9Þ

where:

g is a constant, between 0 and 1, which determines the
learning rate.
maxi is the value of the ith attribute, with the maximum
probability given cactual.

a is a constant, greater than or equal to 1, which is used to
control the size of the update step for the term p(ai|cactual) rel-

ative to its distance from p(maxi|cactual).
In contrast, to decrease p(ai|cpredicted), the FTNB algorithm

makes the size of the decrement large for large probability

terms and small for small probability terms (see El Hindi



Figure 1 The FTNB algorithm.
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(2014) for more details). This task is achieved using the
formula

dtþ1 ai;cpredicted
� �

¼�g � ðb �p aijcpredicted
� �

�p minijcpredicted
� �

Þ � error ð10Þ

where:

b is a constant that is greater or equal to 1.
mini is the value of the ith attribute that has the minimum

conditional probability, given cpredicted.

In all the experiments reported in this work, g was set to
0.005, while a and b were set to 2.

2.1. The effect of noise

Although the empirical results presented in El Hindi, 2014

indicate that the fine-tuning stage substantially improves the
classification accuracy in many domains, it may have a nega-
tive effect on the classification accuracy if the training data

contain some noisy instances. It is well known that noise is
one of the main causes of the overfitting problem (Mitchell,
1997). Overfitting simply means that while the classification

accuracy of a classifier measured on the training set may be
high, a classifier may perform poorly on unseen instances.
Because the FTNB algorithm continues to modify the values
of the probability terms so long as the training classification

accuracy continues to improve, this may produce a classifier
that overfits a training set.

To study the effect of noise on the classification accuracy of

the FTNB algorithm, some artificial noise was inserted in 47
benchmark data sets obtained from the UCI machine learning
repository (Blake, 1998). Noise was inserted in training sets by

re-placing some randomly chosen values of the class attribute
values with other random class values. Noise was inserted only
in the training set, leaving the test data set unchanged. Several
sets of experiments were performed using different ratios of

noise of 5%, 10%, 15% and 20%. Due to the random nature
of the process, each experiment was repeated 5 times, perform-
ing a 10-fold cross validation each time. All the ordinal attri-

butes were discretized using the discretization method of
Fayyad amd Irani (1993), as implemented in Witten and
Frank (2005).

Table 1 summarizes the results. Each figure in the table is
the average of the 10-fold experiments repeated 5 times. The
better results are highlighted in bold, and the significantly bet-
ter results are highlighted in bold and underlined. A paired t-

test with a confidence level of 95% was used to determine if
each difference was statistically significant. The last two rows
in the table present the number of data sets on which the meth-

ods achieved better accuracy and significantly better accuracy.
The table shows that at 0% noise, the FTNB algorithm out-

performs the NB algorithm in terms of the average accuracy

and in terms of the number of data sets on which it achieves
better results. By 0% noise, we do not mean that the data sets
are noise free because some of them are not; we simply mean

that we did not deliberately insert any artificial noise in the
data set.

At 0% noise, the average accuracy of the FTNB is 83.08%,
while the average accuracy of NB is 81.11%. Additionally, the

number of data sets on which FTNB achieves better results is
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26, of which 18 are significantly better results at 95% confi-
dence level while NB achieves better results on 15 data sets,
of which only 3 results are significantly better results. How-

ever, the situation gradually changes in favor of the NB algo-
rithm as we increase the noise ratio. At 5% noise, NB
outperforms FTNB with respect to the average accuracy and

the number of data sets on which each algorithm achieves sig-
nificantly better results. Furthermore, the gap continues to
widen between the two algorithms as we increase the noise

ratio. The average classification accuracy of the FTNB algo-
rithm decreased from 83.08% at 0% noise down to 70.92%
at 20% noise, a decrease of 12.16%. In contrast, the average
accuracy of NB decreased from 81.11% at 0% noise down

to 79.43% at 20% noise, a decrease of only 1.68%.
At 20% noise ratio, the gap in the average accuracy between

FTNB and NB becomes 8.51% in favor of NB. The number of

data sets on which FTNB achieves better results, at 20% noise,
is 7, with only 5 of them exhibiting significantly better results,
while the number of data sets on which NB achieves better

results is 38, 33 of which are significantly better results.
These results indicate that the NB algorithm is a noise-tol-

erant learning algorithm and that the FTNB algorithm sacri-

fices this good advantage of NB. The next section proposes 3
simple modifications to the weight update formula used by
the FTNB algorithm to make it more noise tolerant.

3. Making FTNB more noise tolerant

To make the FTNB algorithm more tolerant of noise, this
work proposes making the size of the update step proportional

to our confidence that the misclassified instance is indeed not a
noisy instance. If our confidence is low, so should be the size of
the update step; however, if our confidence is high, the update

step should be large. This task can be achieved by simply mul-
tiplying the update step by a confidence factor or an instance
weight that reflects our confidence that the misclassified

instance under consideration is not a noisy instance. Thus,
the weight update equations become

dtþ1 ai; cactualð Þ ¼ g � a � p maxijcactualð Þ � p aijcactualð Þð Þ
� error � CF ð11Þ

and

dtþ1 ai; cpredicted
� �

¼ �g � ðb � p aijcpredicted
� �

� p minijcpredictedÞ
� �

� error � CF ð12Þ

where CF is the confidence factor.
This work uses three methods to compute the confidence

factor (or instance weight): the first is based on conditional
probabilities, the second is based on the neighboring instances

of the misclassified instance, and the third combines the first
two.

3.1. Probability-based confidence factor

This method is based on Bayes’ conditional probability rule
itself as used by the Naı̈ve Bayesian algorithm. Given a mis-

classified instance, inst, of class, c, the conditional probability
of c given the remaining attribute values of inst reflects our
confidence that inst is not a noisy instance. Therefore, the

CF is computed using the formula
CF ¼ pðcja1; a2; � � � ; anÞ

The probability of c given the remaining attribute values, a1,
a2, � � �, an, can be computed using Bayes’ conditional probabil-

ity rule, which is defined as

pðcja1; a2; � � � ; anÞ ¼
pða1; a2; � � � ; anjcÞ � pðcÞ

pða1; a2; � � � ; anÞ
ð13Þ

where:

p(c) is the probability of class c.
p(a1, a2, � � �, an) is the probability that attributes 1, 2, . . ., n
will take the values a1, a2, � � �, an, respectively.
p(a1, a2, � � �, an|c) is the probability that attributes 1, 2, . . ., n
will take the values a1, a2, � � �, an, given that the instance is
of class c.

To simplify the calculations and make the application of the
rule computationally feasible, this work will, following the

Naı̈ve Bayesian algorithm, make the naı̈ve assumption that
all attribute values are conditionally independent given the
class value. In other words, this work assumes that

p a1; a2; � � � ; anjcð Þ ¼
Y
i

pðaijcÞ ð14Þ
3.2. Neighboring-instance based confidence factor

The second method that is used to measure the confidence fac-
tor is based on the k most similar instances of the misclassified

instance. The intuition is simple if a small number of these
instances have the same class as the instance, in this case, the
instance is most likely a noisy instance, and the value of the

confidence factor should be small. However, if this number is
large, then the value of the confidence factor should be large.
In other words, the larger this number is, the more confident
we are that the instance is actually not a noisy instance.

Therefore, the confidence factor is computed using the formula

CF ¼ number of similar instances of the same class

k
ð15Þ

where k is a constant representing the number of neighbors. In
all the empirical experiments reported in this work, k was set to

5.
To measure the similarity between instances, this work uses

the DISDM function (El Hindi, 2013), defined as follows

dist x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

a¼1
DISCDM2

aðxa; yaÞ
2

q
ð16Þ

Where

� x and y are two vectors; typically one vector is a training
instance and the other is a vector that needs to be classified.

� xa and ya are the values of attribute a in the vectors x and y,
respectively.
� m is the number of attributes.

DISCDM is defined as follows

DISCDM valnew; valtrainð Þ ¼ 1� pðvalnew classtrainj Þ ð17Þ

where valnew and valtrain are the attribute value of the misclas-
sified instance and training instance against which we measure
the distance, respectively, and classtrain is the class of the train-
ing instance.



Table 1 The classification accuracy of the NB and FTNB at different noise ratios.

0% noise 5% noise 10% noise 15% noise 20% noise

NB FTNB NB FTNB NB FTNB NB FTNB NB FTNB

Anneal 97.00 97.55 96.88 89.96 96.42 81.67 96.68 76.21 96.41 72.99

Anneal. ORIG 79.07 97.10 85.15 88.91 86.53 82.48 87.33 78.44 87.40 71.83

Arrhythmia 54.22 72.79 54.22 70.75 54.22 70.26 54.22 67.95 54.22 62.12

Autos 59.95 62.93 59.48 62.28 58.68 60.61 58.11 57.71 58.39 56.20

Breast-cancer 73.13 67.83 72.43 66.93 71.99 65.46 69.96 63.23 68.96 59.91

Breast-w 97.28 96.14 97.48 96.86 97.43 94.74 97.34 89.93 97.34 76.43

Bridges_version1 59.00 60.75 60.32 60.90 60.95 59.67 59.37 58.84 60.10 58.89

Bridges_version2 57.64 58.88 54.86 57.13 55.46 56.34 54.27 55.56 52.59 53.17

Car 73.14 80.96 73.55 77.62 74.21 74.39 72.86 68.78 74.19 67.91

Colic 72.02 80.71 70.65 79.03 69.84 76.47 68.81 74.64 68.69 71.49

Colic.orig 70.65 75.54 69.77 70.74 68.14 70.53 66.19 67.27 66.96 63.55

Credit-a 84.06 82.03 84.00 81.91 83.94 80.29 84.14 78.41 84.20 74.52

Credit-g 75.50 74.10 75.08 72.20 73.98 70.26 73.62 68.36 73.88 67.48

Cylinder-bands 69.44 71.30 69.04 69.19 68.48 66.93 69.07 65.56 67.85 63.93

Dermatology 97.27 97.27 97.45 97.07 97.66 96.02 97.00 94.29 96.90 91.20

Diabetes 77.34 77.08 76.87 77.24 76.22 74.58 76.20 73.17 76.17 71.04

Flags 60.13 55.15 59.72 56.40 58.92 54.64 59.85 53.72 58.41 52.91

Haberman 74.19 70.92 73.69 70.43 73.69 67.70 73.68 64.54 72.24 62.23

Heart-c 85.20 83.83 84.79 83.46 84.66 83.33 84.26 81.80 84.07 77.20

Heart-h 83.21 79.93 83.29 80.75 83.09 81.87 83.50 83.28 82.61 77.09

Heart-statlog 83.70 83.33 83.63 83.33 83.19 83.04 83.63 82.89 83.11 81.41

Hepatitis 83.00 87.74 83.39 86.10 89.79 84.66 80.67 82.24 78.25 81.09

Hypothyroid 92.95 99.26 90.97 88.93 82.35 84.67 88.67 71.02 87.35 67.41

Ionosphere 90.88 92.31 90.37 89.68 89.97 87.92 90.26 82.67 90.14 75.93

Iris 95.33 95.33 95.60 95.87 95.87 95.47 95.60 95.47 95.87 95.47

Letter 74.11 77.16 73.44 75.93 73.02 74.14 72.50 71.89 72.09 68.20

Liver-disorders 54.84 63.19 53.10 63.22 55.36 63.22 58.38 63.22 57.73 63.22

Lung-cancer 80.00 78.13 78.12 80.78 75.11 73.64 73.94 70.78 72.10 69.09

Lymph 83.81 85.81 84.47 85.13 84.32 84.04 83.37 80.67 81.63 77.81

Mushroom 94.33 99.61 92.16 74.31 91.48 69.41 91.16 74.48 91.00 75.79

Nursery 81.37 85.00 81.56 64.48 81.42 50.02 81.64 40.97 81.70 35.42

Optdigits 92.12 93.93 91.61 90.72 91.46 87.72 91.12 85.09 90.86 78.54

Pendigits 87.92 94.65 87.17 89.85 86.60 85.32 86.08 83.90 85.58 77.60

Segment 91.77 93.85 90.53 92.08 89.63 90.88 89.13 88.33 88.16 86.15

Sick 96.85 96.79 93.83 93.89 90.98 92.31 88.41 89.52 85.75 86.22

Solar-flare_1 91.62 95.98 91.74 89.83 92.54 83.82 92.80 78.82 91.38 69.88

Solar-flare_2 97.00 98.87 96.32 87.19 97.05 77.82 97.43 69.74 97.19 64.09

Sonar 82.36 79.33 82.72 83.09 82.91 81.67 82.70 79.42 84.33 74.84

Spambase 89.35 80.87 89.18 76.06 89.38 59.12 89.51 58.43 89.28 53.10

Splice 94.92 93.01 93.72 80.93 92.54 75.97 91.38 74.55 90.53 74.06

Trains 70.00 70.00 70.00 70.00 70.00 70.00 62.00 62.00 62.00 62.00

Vehicle 63.36 67.85 62.76 65.98 62.76 65.39 62.64 64.16 62.48 64.18

Vote 89.43 93.10 89.47 92.22 89.89 88.90 89.57 84.85 89.43 81.13

Waveform-5000 80.64 83.94 80.02 82.36 79.73 77.00 79.40 69.14 79.06 62.90

Wine 98.86 98.88 98.10 97.54 97.99 97.55 97.44 96.55 97.66 97.10

Zoo 91.00 91.09 90.41 90.61 87.81 87.81 86.41 86.41 87.61 87.81

Average 81.11 83.08 80.72 80.00 80.38 76.95 79.83 74.11 79.43 70.92

#Sig better 3 19 18 15 25 9 30 5 33 5

Better 15 26 21 24 32 12 36 8 38 7
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This work uses the DISCDM function because it has
proved to be more tolerant of noise than other more known

distance functions (see El Hindi (2013) for more details).

3.3. A combined method for computing the confidence factor

Note that the probability-based method for computing the
confidence factor is based on global information in the
sense that it uses the entire training set in computing the
conditional probability and thus the confidence factor,
while the second method is based on local information pro-
vided by the k neighboring instances. The third method for

computing the confidence factor makes use of the two types
of information by combining the first and second method
into one method that takes their product according to the
formula

CF ¼ p cja1; a2; � � � ; anð Þ

� number of similar instances of the same class

k
ð18Þ
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4. Empirical results

This section discusses the results of the empirical experiments
obtained using the methods presented in the previous section.

The section compares the different methods with the original
NB algorithm. The tables present the classification accuracy
of the NB algorithm and each one of the different methods

for calculating the confidence factor at different noise ratios:
0%, 5%, 10%, 15%, and 20%. Each pair of columns presents
the results of NB compared with the modified FTNB at a cer-
tain noise ratio.

4.1. The results of the probability-based method

Table 2 summarizes the results obtained using the NB algo-

rithm and the FTNB algorithm modified to take into account
a confidence factor computed using the probability-based
method presented in Section 3.1. The modified FTNB algo-

rithm is called PFTNB. For the 0% noise ratio, Tables 1
and 2 indicate that PFTNB achieves smaller average classifica-
tion accuracy than does FTNB. PFTNB achieves 82.54% aver-

age classification accuracy, while FTNB achieves 83.08%
average classification accuracy.

Also, for the 0% noise ratio, there is a decrease in the num-
ber of data sets on which PFTNB achieves significantly better

results than NB compared with the number for FTNB. FTNB
achieves significantly better results than NB on 19 data sets
(see Table 1), while PFTNB achieves significantly better results

than NB on 14 data sets (see Table 2). However, PFTNB
achieves significantly worse results than NB on 2 data sets,
while FTNB achieves significantly worse results than NB on

3 data sets.
For the 5% noise case, the average classification accuracy

of PFTNB is higher than the average classification accuracy

of both NB and FTNB. The average classification accuracies
of PFTNB, NB, and FTNB for the 5% noise case are
81.80%, 80.76% and 80%, respectively. Moreover, PFTNB
achieves for the 5% noise ratio significantly better results than

NB on 20 data sets and significantly worse results on 9 data
sets, while FTNB achieves significantly better results than
NB for the 5% noise ratio on 15 data sets and significantly

worse results on 18 data sets (see Table 1).
Furthermore, PFTNB continued to achieve better results

than NB as we increased the noise ratio to 10%. However,

for the 15% noise ratio, the situation turned in favor of NB
and continued to do so at the 20% noise ratio. However, for
the 20% noise ratio, the drop in the average classification accu-
racy of PFTNB was less severe than the drop of the average

classification accuracy of FTNB. For the 20% noise ratio,
the average classification accuracy gap between the FTNB
(without a confidence factor) and NB was 8.51% in favor of

NB (see Table 1), while at the same noise ratio, the gap
between PFTNB and NB is only 1.49% in favor of NB. Addi-
tionally, for the 20% noise ratio, PFTNB still achieves signif-

icantly better results than NB on 15 data sets and significantly
worse results on 17 data sets, while FTNB achieves for the
20% noise ratio significantly better results than NB on 5 data

sets and significantly worse results on 33 data sets (see
Table 1).

All of this clearly shows that the probability-based
confidence factor improves the ability of the FTNB method
in dealing with noise. Our experiments indicate that FTNB
slightly outperforms PFTNB only on noise-free data, while
PFTNB outperforms FTNB when the data sets contain 5%,

10%, 15%, or 20% of noise. Additionally, PFTNB outper-
forms NB for the 0%, 5% and 10% noise ratios, while NB out-
performs PFTNB for the 15% and 20% noise ratios.

4.2. The results of the neighborhood-based method

A similar set of experiments was conducted to test the effec-

tiveness of the neighborhood method (NFTNB), as presented
in Section 3.2. Table 3 summarizes the results. The table shows
that this method outperforms FTNB, even for the 0% noise

ratio, with respect to the average classification accuracy. The
average classification accuracy of the NFTNB method is
83.55%, while the average classification accuracy of FTNB is
83.08%, and the average classification accuracy of NB is

81.11%. Although both methods, FTNB and NFTNB, achieve
for the 0% noise ratio significantly better results than NB on
19 data sets, NFTNB achieves significantly worse results than

NB on only 2 data sets, while FTNB achieves significantly
worse results than NB on 3 data sets.

NFTNB continues to achieve better results than NB for the

5% and 10% noise ratios; however, for the 15% and 20%
noise ratios, the situation changes in favor of the NB. For
the 20% noise ratio, the average classification accuracies of
NB and NFTNB are 79.49% and 77.92%, respectively. Also

for the 20% noise ratio, NFTNB achieves significantly better
results than NB on 11 data sets and significantly worse results
on 16 data sets.

Compared with PFTNB, NFTNB achieves better results
for the 0%, 5%, and 10% noise ratios and almost equal results
for the 15% noise ratio. However, the situation changes for the

20% case in favor of PFTNB. At this noise ratio, each of
PFTNB and NFTNB achieves an average classification accu-
racy of 78.12% and 77.92%, respectively. Furthermore, for

the 20% noise ratio, PFTNB achieves significantly better
results than NB on 15 data sets, while NFTNB achieves signif-
icantly better results than NB on only 11 data sets.

4.3. The results of the combined method

Table 4 summarizes the results of a set of similar experiments
conducted using the combined method (CFTNB) that com-

bines the probability-based and the neighborhood-based meth-
ods into one method, as discussed in Section 3.3.

For the 0% noise ratio, the CFTNB method exhibits signif-

icantly better results than the NB method on 16 data sets and
worse results on 2 data sets (see Table 4), while the neighbor-
hood-based method (NFTNB) gave significantly better results

than the NB method on 19 data sets and significantly worse
results on 2 data sets (see Table 3). Additionally, the NFTNB
method achieves an average classification accuracy for the 0%
noise ratio of 83.55%, which is better than the 82.78% average

classification accuracy of CFTNB.
However, CFTNB achieves better results than all the other

methods with respect to the number of data sets on which the

methods achieve significantly better results than NB at all
noise ratios. This is true despite the fact that for the 5% noise
ratio, CFTNB and NFTNB achieve significantly better results

on 22 data sets because CFNTB achieves significantly worse



Table 2 The results of the probability-based method compared to the NB method at different noise ratios.

Data set 0% noise 5% noise 10% noise 15% noise 20% noise

NB PFTNB NB PFTNB NB PFTNB NB PFTNB NB PFTNB

Anneal 97.28 96.29 97.48 96.51 97.40 96.03 97.34 95.77 97.34 93.60

Anneal. ORIG 96.99 97.11 96.71 97.20 96.95 97.20 96.42 95.77 96.70 94.15

Arrhythmia 79.07 91.54 85.02 91.12 87.33 90.07 88.13 88.64 87.08 84.77

Autos 54.22 65.73 54.22 65.91 54.22 65.42 54.22 66.66 54.22 66.34

Breast-cancer 59.96 59.44 59.21 59.08 58.39 58.36 58.01 57.89 57.62 57.30

Breast-w 73.12 72.38 72.00 71.20 70.60 68.81 70.66 69.09 69.47 65.18

Bridges_version1 59.07 59.07 60.68 60.88 58.58 58.20 60.70 60.71 59.59 59.40

Bridges_version2 57.66 59.57 57.22 58.31 53.21 53.75 54.57 54.75 52.26 53.54

Car 73.14 76.61 73.36 77.24 74.24 77.17 74.11 77.09 74.20 76.27

Colic 72.02 83.70 70.60 82.23 69.68 80.61 68.92 78.37 68.43 77.07

Colic.orig 70.65 73.61 69.82 72.64 68.31 71.50 66.68 68.14 66.41 68.19

Credit-a 84.06 81.59 83.77 80.96 83.77 81.04 84.06 80.81 83.91 78.00

Credit-g 75.50 75.50 75.12 75.10 74.52 74.16 74.08 72.58 73.62 70.94

Cylinder-bands 69.44 71.11 68.81 70.07 68.33 69.48 67.15 65.26 68.56 64.26

Dermatology 97.27 97.27 97.55 97.39 97.55 97.55 97.22 97.01 96.95 96.73

Diabetes 77.34 77.60 77.18 77.60 76.77 77.71 76.20 76.09 75.41 74.73

Flags 60.15 57.59 59.74 59.26 58.79 58.63 59.32 58.62 59.78 58.86

Haberman 74.19 74.19 73.42 73.49 72.57 71.27 74.52 72.61 71.35 69.44

Heart-c 85.20 84.20 84.73 84.26 84.53 84.26 84.13 84.19 84.59 84.57

Heart-h 83.22 81.86 83.43 81.80 83.43 82.01 83.21 82.76 83.63 82.90

Heart-statlog 83.70 83.70 83.11 83.26 83.26 82.67 83.19 83.41 83.26 82.30

Hepatitis 83.02 85.64 82.10 85.95 80.06 85.95 80.83 85.01 79.04 84.50

Hypothyroid 92.95 96.95 90.85 97.54 89.74 95.02 88.79 92.34 87.62 90.59

Ionosphere 90.88 91.15 90.37 90.76 90.76 90.76 90.60 88.71 90.48 85.81

Iris 95.33 95.33 95.33 95.20 96.40 96.53 95.47 95.47 95.60 95.60

Letter 74.11 74.75 73.51 74.80 72.93 75.29 72.55 75.54 72.12 75.24

Liver-disorders 54.84 63.22 54.32 63.22 57.15 63.10 55.20 63.22 56.20 63.22

Lung-cancer 80.11 76.80 78.79 78.12 78.79 77.61 73.94 73.28 69.39 71.44

Lymph 83.81 85.81 84.60 84.60 83.81 84.07 83.13 84.20 82.30 83.22

Mushroom 94.33 99.50 92.13 78.72 91.44 65.77 91.17 64.84 91.10 63.98

Nursery 81.37 83.50 81.45 83.50 81.46 81.54 81.75 79.19 81.69 77.52

Optdigits 92.12 93.20 91.62 92.28 91.36 91.87 91.20 91.76 90.93 91.14

Pendigits 87.92 93.17 87.14 91.86 86.63 91.10 86.03 90.22 85.55 89.46

Segment 91.77 93.20 90.55 91.38 89.71 91.06 89.11 90.39 87.92 90.13

Sick 96.85 95.04 93.81 96.77 90.94 95.79 88.90 93.54 87.36 91.09

Solar-flare_1 91.62 96.28 91.99 96.47 93.61 95.41 92.57 91.78 91.92 86.74

Solar-flare_2 97.00 98.97 96.75 98.69 97.05 98.12 96.75 96.21 97.17 93.28

Sonar 82.34 79.96 82.73 80.49 83.95 81.16 83.74 79.64 84.63 78.64

Spambase 89.35 82.62 89.28 82.74 89.39 70.08 89.44 63.88 89.46 60.43

Splice 94.92 92.92 93.84 88.29 92.62 77.98 91.47 74.14 90.04 71.99

Trains 70.00 70.00 70.00 70.00 70.00 70.00 68.00 68.00 70.00 70.00

Vehicle 63.36 64.30 62.83 63.59 62.93 64.21 63.00 64.52 63.14 64.80

Vote 89.43 90.33 89.70 90.69 89.71 90.75 89.56 90.19 89.43 88.91

Waveform-5000 80.64 84.44 80.12 84.38 79.74 83.89 79.44 82.49 79.08 81.96

Wine 98.86 98.86 98.20 97.87 98.21 97.88 98.00 97.44 97.66 97.32

Zoo 91.01 91.01 89.81 89.61 88.01 87.81 88.21 88.21 88.01 87.81

Average 81.11 82.54 80.76 81.80 80.41 80.41 80.04 79.36 79.61 78.12

#Sig better 2 14 9 20 12 19 15 14 17 15

Better 13 26 19 27 21 25 24 21 28 17
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results than NB on 5 data sets, while NFTNB achieves signif-
icantly worse results than NB on 8 data sets.

For the 10%, 15%, and 20% noise ratios, CFTNB outper-
forms PFTNB and NFTNB with respect to the average classi-
fication accuracy and number of data sets on which the
methods achieve significantly better results than NB. In fact,

CFTNB is the only method that outperforms NB for the
15% and 20% noise ratios (see Table 4). CFTNB outperforms
NB even for the 20% noise ratio with respect to the average

classification accuracy (79.84% compared to 79.59%). Also
for the 20% noise ratio, CFTNB achieves significantly better
results than NB on 18 data sets and significantly worse results

on only 8 data sets. This result clearly indicates that the com-
bined method makes the FTNB method more noise tolerant
than each of its constituent methods individually.

4.4. Complexity concerns

In this section, we discuss the effect of the proposed methods
on the execution time of the algorithm. There are two issues



Table 3 The results of the neighborhood-based method compared to the NB method at different noise ratios.

Data set 0% noise 5% noise 10% noise 15% noise 20% noise

NB NFTNB NB NFTNB NB NFTNB NB NFTNB NB NFTNB

Anneal 97.00 97.33 96.97 96.73 96.66 93.74 96.46 89.38 96.26 85.76

Anneal. ORIG 79.07 97.22 85.08 95.15 86.59 92.96 88.91 90.98 86.71 87.62

Arrhythmia 54.22 73.90 54.22 73.55 54.22 72.62 54.22 71.91 54.22 70.76

Autos 59.95 60.93 59.66 60.72 59.01 60.32 55.52 57.48 58.02 58.39

Breast-cancer 73.13 70.32 71.99 70.22 71.36 69.88 70.37 65.79 69.67 65.11

Breast-w 97.28 97.14 97.34 96.97 97.43 97.08 97.40 97.00 97.28 96.34

Bridges_version1 59.00 58.00 58.79 58.59 60.52 59.95 60.60 60.43 60.03 59.80

Bridges_version2 57.64 59.55 56.52 57.08 54.20 54.38 53.99 52.71 51.05 50.51

Car 73.14 80.43 73.69 80.11 74.36 78.42 74.05 76.11 74.73 76.50

Colic 72.02 83.69 70.60 81.84 69.57 81.42 70.06 79.79 67.23 77.78

Colic.orig 70.65 74.43 68.90 71.72 66.63 68.94 67.28 68.29 65.49 66.52

Credit-a 84.06 82.75 84.12 82.78 84.26 82.35 84.14 81.83 83.94 79.94

Credit-g 75.50 75.50 75.20 74.60 74.76 73.78 74.16 71.88 73.26 70.40

Cylinder-bands 69.44 70.74 69.96 70.89 69.93 70.96 68.15 68.04 67.63 68.30

Dermatology 97.27 97.27 97.61 97.72 97.55 97.66 97.17 96.96 97.28 97.28

Diabetes 77.34 78.00 76.77 78.20 76.69 77.26 76.43 76.87 76.43 74.92

Flags 60.13 59.13 59.93 58.33 58.40 58.02 59.03 56.78 57.45 56.19

Haberman 74.19 73.87 73.81 72.77 72.64 72.25 72.71 70.36 72.56 71.07

Heart-c 85.20 84.87 84.53 83.80 84.79 84.13 84.46 84.19 84.13 83.60

Heart-h 83.21 82.90 83.08 82.44 83.15 82.50 83.08 82.83 83.49 83.17

Heart-statlog 83.70 83.33 83.78 84.07 83.33 82.59 83.26 82.96 83.63 83.26

Hepatitis 83.00 88.29 83.14 87.89 82.36 85.14 80.03 85.66 78.06 82.25

Hypothyroid 92.95 98.94 90.92 96.10 89.90 91.29 89.02 87.28 87.77 84.10

Ionosphere 90.88 91.72 90.37 91.39 90.20 91.27 90.20 91.00 90.37 88.94

Iris 95.33 95.33 95.47 95.47 95.47 95.20 95.87 95.60 96.27 96.27

Letter 74.11 78.28 73.49 78.12 72.90 77.82 72.56 77.29 72.08 76.54

Liver-disorders 54.84 63.22 54.62 63.22 57.27 63.22 54.58 63.22 58.38 63.22

Lung-cancer 80.00 76.67 78.79 79.45 74.81 76.14 75.11 72.46 70.27 69.60

Lymph 83.81 85.81 85.01 84.86 83.12 83.25 84.05 83.91 80.98 80.68

Mushroom 94.33 99.57 92.17 91.82 91.39 76.31 91.31 69.74 91.09 66.27

Nursery 81.37 84.78 81.44 83.30 81.59 79.10 81.72 76.04 81.67 70.42

Optdigits 92.12 94.02 91.69 93.15 91.34 92.50 91.06 91.58 90.94 90.90

Pendigits 87.92 94.71 87.22 93.35 86.63 92.41 86.04 91.77 85.57 90.45

Segment 91.77 94.03 90.49 93.05 89.70 92.46 89.16 91.88 88.22 91.15

Sick 96.85 96.98 93.60 96.47 90.53 95.22 88.87 93.94 87.62 92.09

Solar-flare_1 91.62 96.28 92.99 95.84 93.30 92.62 93.44 86.56 92.69 83.43

Solar-flare_2 97.00 98.78 96.72 98.22 97.24 95.57 97.47 90.41 97.11 83.64

Sonar 82.36 80.90 82.82 82.24 83.86 82.48 83.86 81.97 83.94 80.44

Spambase 89.35 86.25 89.16 90.97 89.26 84.22 89.49 77.29 89.54 69.04

Splice 94.92 93.89 93.66 87.73 92.46 77.99 91.43 73.29 90.31 71.61

Trains 70.00 70.00 70.00 70.00 70.00 70.00 52.00 52.00 68.00 68.00

Vehicle 63.36 67.02 63.19 67.11 62.88 65.86 62.69 66.29 62.29 65.70

Vote 89.43 91.48 89.52 92.18 89.33 90.89 89.61 90.19 89.29 88.58

Waveform-5000 80.64 85.08 80.19 85.15 79.73 84.80 79.32 83.83 79.07 82.94

Wine 98.86 98.86 98.42 98.31 98.20 98.09 98.78 98.55 97.55 97.44

Zoo 91.00 91.00 90.21 90.41 88.41 88.41 88.41 88.21 87.01 87.21

Average 81.11 83.55 80.82 82.91 80.39 81.16 79.73 79.18 79.49 77.92

#Sig better 2 19 8 22 14 19 16 15 16 11

Better 13 27 15 29 20 24 27 18 27 17
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of concern here. The first issue is related to the effort required
to compute the instance weights, and the second issue is the

effect that the proposed methods will have on the number of
cycles (or iterations) the fine-tuning algorithm takes before it
converges.

Fortunately, computing the probability-based weights does

not increase the computational cost of the algorithm because
all the required probabilities are computed anyway to con-
struct the Naı̈ve Bayesian classifier. In contrast, computing

the neighborhood-based weights requires O(n2) effort because
finding the k nearest neighbors for each instance requires O(n)
effort.

Regarding the cost in terms of the number of training cycles
the algorithm executes before it converges, Table 5 presents the
average number of training cycles we obtained using the 47
data sets. The first observation is that the average number of

cycles in all cases is relatively small, which indicates how deli-
cate the fine-tuning process is.

The table also indicates that the FTNB without confidence

factor requires on average a lower number of iterations and



Table 4 The results of the combined method compared to the NB method at different noise ratios.

Data set 0% noise 5% noise 10% noise 15% noise 20% noise

NB CFTNB NB CFTNB NB CFTNB NB CFTNB NB CFTNB

Anneal 97.00 97.33 96.97 97.53 96.79 97.51 96.77 97.15 96.68 96.71

Anneal. ORIG 79.07 88.42 84.99 90.31 86.53 89.80 88.42 90.42 88.36 89.74

Arrhythmia 54.22 65.73 54.22 65.24 54.22 65.60 54.22 65.24 54.22 65.41

Autos 59.95 59.95 59.96 59.37 58.62 58.80 57.22 58.19 58.21 58.10

Breast-cancer 73.13 72.07 72.14 71.71 71.16 71.64 70.38 70.71 69.16 68.11

Breast-w 97.28 97.14 97.34 96.97 97.45 97.14 97.48 97.03 97.28 96.91

Bridges_version1 59.00 59.00 60.88 60.88 60.56 60.38 59.26 59.26 60.81 60.81

Bridges_version2 57.64 59.55 56.16 56.55 54.20 54.40 51.67 51.47 51.05 50.87

Car 73.14 76.32 73.29 76.16 73.55 76.02 73.39 76.03 74.24 76.03

Colic 72.02 82.88 70.71 82.77 68.87 81.36 68.87 81.42 68.81 80.01

Colic.orig 70.65 73.63 70.91 73.95 69.22 71.23 65.59 69.33 63.51 67.81

Credit-a 84.06 82.46 84.09 82.38 84.67 82.96 84.35 82.41 84.46 82.35

Credit-g 75.50 76.00 74.86 75.06 75.04 74.86 74.26 74.12 73.54 73.08

Cylinder-bands 69.44 70.19 69.11 69.78 68.63 70.33 69.04 68.89 68.89 68.48

Dermatology 97.27 97.27 97.55 97.50 97.50 97.55 97.61 97.61 97.11 97.17

Diabetes 77.34 77.86 76.92 77.84 76.45 78.07 76.77 77.84 75.73 77.29

Flags 60.13 59.63 59.11 58.71 59.22 58.93 58.63 58.32 59.02 58.41

Haberman 74.19 74.19 73.42 73.75 72.63 73.09 72.90 72.26 71.65 71.21

Heart-c 85.20 84.87 84.60 84.20 84.99 84.66 84.66 84.80 84.21 84.27

Heart-h 83.21 82.18 82.81 82.34 83.43 82.34 83.43 82.89 83.09 82.28

Heart-statlog 83.70 83.70 83.04 83.11 83.19 82.96 83.70 83.78 82.74 81.56

Hepatitis 83.00 88.29 82.50 85.94 81.72 86.58 79.71 85.28 79.92 84.88

Hypothyroid 92.95 97.24 90.86 97.17 89.87 97.54 88.76 97.15 87.61 95.74

Ionosphere 90.88 91.44 90.43 91.38 90.03 91.05 90.26 90.20 90.54 90.88

Iris 95.33 95.33 95.47 95.33 95.60 95.47 95.73 95.60 95.60 95.60

Letter 74.11 75.49 73.44 75.01 72.98 74.79 72.56 74.66 72.13 74.27

Liver-disorders 54.84 63.22 54.32 62.19 55.74 61.16 54.99 62.19 55.14 60.22

Lung-cancer 80.00 76.67 78.12 78.79 75.47 74.15 71.29 71.29 71.74 72.41

Lymph 83.81 85.81 84.60 84.87 83.53 83.80 83.65 83.38 82.99 83.52

Mushroom 94.33 99.51 92.09 95.59 91.41 84.76 91.31 74.85 91.10 66.58

Nursery 81.37 83.48 81.55 83.47 81.51 82.66 81.51 81.85 81.77 82.14

Optdigits 92.12 92.81 91.59 92.50 91.34 92.19 91.10 91.87 90.91 91.68

Pendigits 87.92 93.06 87.15 92.55 86.54 92.27 86.01 91.85 85.60 91.46

Segment 91.77 92.42 90.42 91.08 89.71 90.72 89.05 90.40 88.36 89.99

Sick 96.85 95.73 93.38 96.36 91.33 96.47 89.26 96.08 87.23 93.87

Solar-flare_1 91.62 95.97 92.87 96.16 92.05 95.53 90.75 93.24 92.18 91.38

Solar-flare_2 97.00 98.68 96.47 98.87 97.35 98.82 97.56 98.44 96.79 97.79

Sonar 82.36 80.88 82.63 81.64 83.09 82.10 82.60 81.41 84.14 80.10

Spambase 89.35 87.09 89.28 88.47 89.56 89.96 89.57 82.94 89.42 76.82

Splice 94.92 93.32 93.76 92.03 92.74 88.08 91.44 78.41 90.14 73.64

Trains 70.00 70.00 70.00 70.00 70.00 70.00 64.00 64.00 70.00 70.00

Vehicle 63.36 65.61 63.19 65.30 62.98 64.12 62.74 64.68 62.62 64.39

Vote 89.43 90.33 89.66 89.84 89.61 89.79 89.57 89.83 89.43 90.24

Waveform-5000 80.64 85.24 80.07 85.25 79.70 85.05 79.31 84.99 79.08 84.98

Wine 98.86 98.86 98.99 98.99 98.77 98.65 98.10 97.77 97.33 96.99

Zoo 91.00 91.00 89.41 89.41 88.41 88.41 88.01 87.81 86.61 86.41

Average 81.11 82.78 80.77 82.48 80.39 81.82 79.73 80.64 79.59 79.84

#Sig better 2 16 5 22 6 22 6 20 8 18

Better 11 26 12 30 14 30 17 25 18 25
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that this number decreases as the noise ratio increases. This
behavior is understandable because noise has the greatest

effect in this case and the classification accuracy quickly dete-
riorates, thus causing the loop to terminate. In contrast, taking
the instance weights into account increases the average number
of training cycles. This increase is a result of an instance weight

being a number between 0 and 1, which makes the update step
size smaller and causes the fine-tuning process to be even more
delicate. Of course, the more noise we have, the more instances
with smaller weights we have, and thus, more small updates
are used. This process explains why the average number of

training cycles tends to increase as we increase the noise ratio.
The fact that the number of training cycles increases when we
increase the noise ratio and take the weights of the instances
into account indicates that the classification accuracy contin-

ues to improve in spite of the noisy instances. This continued
improvement is a good sign, indicating that the proposed
methods are successful in limiting the effect of noise.



Table 5 The average number of cycles the algorithms take to converge.

0% noise 5% noise 10% noise 15% noise 20% noise

FTNB 3.82 3.56 3.42 3.39 3.33

PFTNB 4.4 4.32 4.65 4.7 4.53

NFTNB 4.41 3.81 4.23 4.33 4.59

CFTNB 4.42 4.59 4.98 5.94 5.81
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5. Conclusions

The results of this work confirmed that although the fine-tun-
ing method (FTNB) improves the classification accuracy of
NB, it makes the algorithm more sensitive to noise and thus

sacrifices one of the most important advantages of the NB
learning algorithm, namely its tolerance of noise (Nettleton
et al., 2010). To address this problem, this work proposed that

the update step should not only be proportional to the size of
the error but also be proportional to our confidence that the
misclassified instance under consideration is not a noisy

instance.
Three different methods were proposed to measure our

confidence that a training instance is not a noisy instance.
The first method is probability based, the second method is

neighborhood based (based on the neighboring instances),
and the third method combines the first two into one method.
The three methods were demonstrated to improve the noise

tolerance of the FTNB method. However, using the combined
method to calculate the confidence factor was found to be
more effective than each of its constituent methods alone.

Using this method, CFTNB outperforms NB even at a 20%
noise ratio.

Furthermore, the neighborhood-based method proved to

be effective at improving the classification accuracy of the
FTNB method in many domains, even on noise-free data sets.
Investigating more methods for calculating the confidence fac-
tor and the effect of incorporating such confidence factors in

other machine learning algorithms are topics for future work.
Applying the methods proposed in this work for the intrusion
detection problem and comparing it with the Naive Bayesian

classifier (Altwaijry and Algarny, 2011) can also be an interest-
ing topic of future research.
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