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Using Recurrence Relations to Count Certain Elements in Symmetric
Groups

S. P. GLASBY

We use the fact that certain cosets of the stabilizer of points are pairwise conjugate in a symmetric
group$, in orderto construct recurrence relations for enumerating certain subs&{s©tcasionally
one can find ‘closed form’ solutions to such recurrence relations. For example, the probability that a

random element o8, has no cycle of length divisible hyis ]‘[én/iU a- alﬁ)'

© 2001 Academidress

1. INTRODUCTION

Let S, denote the symmetric group of degmedf X C §,, then letOMg(%), ODy(%),
Ey(X) denote the number of elementsinhhaving order: a multiple of}, dividing g, and
equal toq, respectively. Similarly, leCMq (%), CDg(X), CEq(X) denote the number of
elements inX having a cycle (in its disjoint cycle decomposition) of length: a multiple of
g, dividing q, and equal tay, respectively. It is not hard to write down recurrence relations
satisfied byOMq(Cn k), ..., CEq(Cn k) whereCy, k is a certain coset of a stabilizer bf- 1
points. Given a functiomN, denote byN the function defined bN(Z) = |Z| — N(X). We
shall give a ‘closed form’ solution to the recurrence relation for the nuan(Cn,k), of
elementsn C,, i havingn cycles of length divisible byg.

Asymptotic properties of the order and cycle decomposition, of a random element of the
symmetric groupS,, were studied by Eias and Tuén in a series of seven papers entitled
‘On some problems in a statistical group theory’ published between 1956 and 1972. It is
shown in [2] that the distributiofX, of log|z|, wheret is a uniformly random element of
S\, approaches (a8 — oo) the normal distributionN (i, 02) wherepu = %Iogzn and
0% = % log® n. Theexpected orderE,, of a uniformly random element &, was shown by
Goh and Schmutz [3] to satisfy Idg, ~ O(,/n/log n) asn — oo. This is substantially
smaller than the maximal orddy],, of an element of5, as logM, ~ /nlogn asn — oo
(se€5, p. 222]).

The numbenf x € §, satisfyingxd = 1 is ODq(S,). Wilf [9] showed for fixedq that
ODq(S)/n! ~ gq(n) wheregq(n) is a given function ofj andn. In a similar vein, Paviov
[8] showed that certain random variables associated with cycle structure are asymptotically
normal whem — oo.

One can show that the probability that an elemerfdfias no cycles of lengthes, ..., am
is at most(Y ., &, H)~* (see [1, Theorem VI]). To estima@Mq(S), takeax = gk and
m = |n/q). Comparisons with integrals show thgtl + logm)~! < (ka:l(qk)*l)_1 <
q(log(m+ 1))~L. This is unhelpful if 14- logm < q (as probabilities are always1).

The motivation for this work arose from the following problem in probabilistic group theory.
Givene > 0 and a groujg isomorphic to precisely one of the groups, Go, . . ., then (when
possible) determine with probabilityl — ¢ whetherG is isomorphic, or is not isomorphic,
to Gk after testing the order dfl (¢, G) randomly chosen elements @Gf This problem seems
most likely to be successful if the sequerigg Go, . .., comprises groups that are finite and
simple (or with few composition factors). For such groups the set of orders of elemeats of
frequently characterizeS (see, for example, [6]). The task is clearly impossible if different
groupsGk andG, hawe the same proportions of elements of each order. It follows from the
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‘law of large numbers’ [7] and the above result of BscandTuran that this task is possible if
G is a symmetric group an@x =  for all k. By using additional information we can give a
smaller value oN (g, G). Thus it is important to be able to quickly calculaetualvalues of
OMq (&), ODq(Sn), etc and not merelgsymptoticapproximations as — oo.

If g is a prime power, then [1, Lemma I] can be interpreted as giving a formula for the
numberOMq(S,) of elementof S, whose order is not a multiple gf Note thatO Mq(%) <
M(E), and equality holds if] is a prime power. We shall give a more general formula in the
next section fo€ Mq (Cn k) which specializesthenk = 1toCMq(S) =[1]_y (i—[q | jD
where[q | j] equals 1 ifg divides j, and 0 otherwise. IP is a logical proposition, thefP]
denotes 1 ifP is true, and 0 otherwise. This notation, attributed to Iverson [4, p. 24], is useful
for reducinga collection of formulas involving different cases, to one formula.

2. RECURRENCERELATIONS

The symmetric grougs, acts naturally on the sét, ..., n}. If k € {0,...,n}, let Gk
denote the subgroup & that fixes each of 12, ..., k. If k € {1, ..., n}, let C,, x denote the
cosetGn k-1(1,2, ..., k). Note thatG, i is permutationally isomorphic t6,_. Furthermore
Chi1=SandChpn={(1,2,...,n}.

The six recurrence relations below use the orderingk’) < (n, k) if and only ifn’ < n,
orn’ =nandk’ > k.

LEMMA 1. Letq, n, k be positive integers wherekn. Letg=qs, ..., o whereq, ...,
g are powers of distinct primes. Let(q, k) = []j_, qj[q”k] and v(q, k) = [T qj[q”k].
If K < n, then

OMq(Cnk) = OMa(q.k(Cni,1) + (N — KOMq(Cn k41). 1)
ODqg(Ch k) = [k | qlODg(Cn—k,1) + (N — K)ODq(Cp k+1), 2
0&q(Cn) = Y, Eda@k(Cn k1) + (M —KOEG(Cnks1), €)

d|v(g.k)

CMq(Cnx) = [q1KICMq(Cnk,1) + (N — KICMg(Cnk+1), (4)
CDq(Cnk) = [k{qICDq(Cn_k,1) + (N — K)CDG(Cn k41). (5)
CEq(Cnk) = [q # KICE(Cn—k,1) + (N — K)CEq(Ch k41), (6)

where the respective initial conditions are
OMq(Cnhn) =19 1nl, ODq(Cn,n) =1[n|ql, O&q(Cnn) =1g #nl,
CMq(Cnn) =[q1n], CDq(Cnn) =[ntql, CEq(Chn) =[q #nl.

ProoOE The initial conditions are easily verified. Suppose now that n, andconsider
the coset decomposition

Gn,k—l = Gn,k U U Gn,k(k, £).
>k
Post-multiplying by(1, ..., k) gives
Cnk =Gnk(1.2,....0 U | | Gnk(L.2,....k 0. @)
>k

Note that the set of elements movedd¥ Gp k (i.e., the support o&) is disjoint from the
supportob = (1, ..., k). Also, if £ > Kk, thenGnk(1,2,...,k, £)is the conjugate o€n k+1
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by (k + 1, ¢). Nowab has no cycle of length a multiple gfif and only if k is not a multiple
of q, anda has no cycle of length a multiple gf That is,

CMq(Gnk(1,2,...,K) =[q1KICMq(Gnk) = [q 1 KICMg(Cnk1)-
It follows from Eqn. (7) that
CMq(Cnx) = [q 1 KICMq(Cnk 1) + (N = K)CMq(Cn k+1)-

The recurrenceelations (5) and (6) are derived similarly, and the recurrence relations (1)—(3)
can beeasily derived from the facts below. Note that the orderabfsatisfies|ab] =
lcm(lal, |b]). Hence (1)q t |ab| if and only if A(q,k) 1 |al; (2) |ab] | g if and only if
lal | g andk | g; and (3)|ab] = q if and only if |a] = dA(q, k) whered | v(q, k). ]

The recurrence relations for the complementary numeys$q (Cn ), (’)_Dq(cn,k) etc, can
be determined from determined from those above using the faciNi&) = |Z| — N(Z).
We shall give a surprising ‘closed form’ solution to the recurrence relatioM(Cn,k).
Let n mod g be theunique integer satisfyingn = r (modq) and 0<r < n. The ‘mod’
function is notorious for not preserving order, so the formulatdi (Cy, k) belowis curious
as it involves both ‘<’ and ‘mod’.

THEOREM 2. If g, n, k are positive integers anti< k < n, then
CMq(Cnk) = fq(n—k+1)—[(—=k) modq < s]fq(n —k) 8

where §(n) = ]_[’j’:l(j —[g]jDands=qg—2—(n modq). In particular, CMq(S) =
fq(n).

PROOF The result is trivially true whem = 1. Assumehenceforth thay > 1. We use
induction on(n, k) ordered vian’, k') < (n, k) whenn’ < n, orn’ = nandk’ > k. Consider
formula (8) wherk = n. By Lemmal, CMq(Cn n) = [q 1 n]. Since

(=n) modg = [q{n]g—(n modq),

it follows that
[(=n) modg<g—2—-(n modg]=I[[gfnlg<qg—-2]=[q]n].

The right-hand side of (8) i$q(1) — [q | n]fq(0) = 1—[q | n] = [g { n], and so (8) is true
whenk = n. Assumenow that (8) is true fotn’, k') < (n, k) where 1< k < n. Thus

CMq(Shi) = CMq(Cnk1) = fq(n — k)

as[g—1<qg—-2—-(n modq)] =0.

Obsere that[(—k) modq < s] = Y-5_¢[q | k + j] where[q | (k + j)] is abbreviated
[q | k+j]. Whenn modq = q—1, thens = —1 and both sides are zero. (A sy, a; is
zero by convention.) Suppose tllmimod q < g — 1. Then at most one summafml| k + j]
is non-zero, and the equatida | k + j] = 1 is equivalent to the equatigr-k) modq = j.
HenceZ?zo[q | k+ j]=[(—k) modqg < s], as required.

We shall now prove that

S
CMq(Cnx) = fqn—k+1)— fah—k) > [q | k+ .
j=0
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We shorten this equation @©Mq(Ch k) = Fk-1 — Fk Z?Zo[q | k+ j1. Thefirst equality
below is justified by Eqn.4), and the second follows from the inductive hypothesis

CMq(Chk) = [0 1KICMq(Ch_k,1) + (N = K)CMq(Ch k+1)

S
SCILGRRGE LA SICIPER eal]
=0

S
=(N—k+DF—[q | KIFk— (N —K)Fkr1 Y [qk+1+]]
j=0
s+1
= —K+DFk—[q | KIFk = (N =K Fkr1 ) [q | k+ j].
=1

The last step involved a change in summation variable.

The equationq | n — k] Z?j[q | k+ j]1 = 0 is helpful. This is clearly true when
[gln—Kkl =0.If[g|n—k]=1,thenk =n (modq)andsolq | k+ jl=[] =s+2].
Thus in either case the expression is zero. Using the equiatien(n —k — [q | N —K]) Fi41,
therefore gives

s+1
CMq(Cnx) = (N—k+ DFk —[q | KIFk = Fc Y [q | k+ j]
j=1
s+1
=M -k+DFc—F ) _lak+j]
j=0

S
=*(N—k+1-[q[n—Kk+1DFk—Fc Y [qlk+j]
j=0

S
=F1—Fe ) [q]k+ j]
j=0

*where the second to last equality usgg§ n —k + 1] =[q | K+ s+ 1]sinces= —n — 2
(mod q). This completes the inductive proof. O

3. ESTIMATIONS AND APPLICATIONS

The recurrence relations of Lemraaive algorithms which are quadratic imfor comput-
ing these numbers. As the conjugacy classeS,oforrespond bijectively to partitions of,
these numbers can be computed by summing over certain partitions. This gives rise to slower
algorithms for computing these numbers. In practice, however, we need not compute all the
significant digits of these numbers, usually the first four suffice. Good lower bounds may be
found quickly by considering some of the large relevant conjugacy classes.

It is a simple (and somewhat surprising) consequence of The@rtdrat the proportion,
pg.n, Of elements ofS, having no cycles of length divisible by is the same fon = mg,
mg+1,...,mg+ q— 1. Estimates fopg n = CMq(S))/n! are obtainedbelow.

If g = 1, thenpy,n = 0. Assume henceforth thgt> 2. Useful upper and lower bounds for
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Pg.mq = [The1(1 — (@k 1) may be deduced from

m m
> log(1— @k + > @kt
k=1

k=1

m
=" Jloga— @™ + @k |
k=1

e (g O
<)) =) @w?<c
k=1i=2 k=1

whereC = Y22 1 (k)2 = q~272/6. It follows from

1 m 1
—a(1+logm) —C< Zlog(l— (k™ < -3 logm+ C
k=1

thatcg*(em) /9 < [TiL; (1 — (k™) < cgm~*/9 wherecq = el *m/8,

Recall that one motivation for computing the numh@rs14(S,) etc, arosérom probabilis-
tic computational group theory. Suppose we are given a ‘black box’ gBuich is known
to be isomorphic tds, for somen. How do we findn? The relative frequency of finding an
element ofG of odd order should be close to the probabiltii\,(S)/ k! for preciselytwo
values ofk, saym andm + 1. If p is the smallest prime divisor af or m + 1, then by de-
termining the relative frequency of elements®bf order co-prime tg, one can determine,
with quantifiable probability, whether equalsm of m + 1.
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