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UsingRecurrence Relations to Count Certain Elements in Symmetric
Groups

S. P. GLASBY

We use the fact that certain cosets of the stabilizer of points are pairwise conjugate in a symmetric
groupSn in orderto construct recurrence relations for enumerating certain subsets ofSn. Occasionally
one can find ‘closed form’ solutions to such recurrence relations. For example, the probability that a
random element ofSn has no cycle of length divisible byq is

∏bn/qc
d=1 (1− 1

dq ).

c© 2001 AcademicPress

1. INTRODUCTION

Let Sn denote the symmetric group of degreen. If 6 ⊆ Sn, then letOMq(6), ODq(6),
Œq(6) denote the number of elements in6 having order: a multiple ofq, dividing q, and
equal toq, respectively. Similarly, letCMq(6), CDq(6), CEq(6) denote the number of
elements in6 having a cycle (in its disjoint cycle decomposition) of length: a multiple of
q, dividing q, and equal toq, respectively. It is not hard to write down recurrence relations
satisfied byOMq(Cn,k), . . . , CEq(Cn,k) whereCn,k is a certain coset of a stabilizer ofk− 1
points. Given a functionN, denote byN the function defined byN(6) = |6| − N(6). We
shall give a ‘closed form’ solution to the recurrence relation for the number,CMq(Cn,k), of
elementsin Cn,k havingn cycles of length divisible byq.

Asymptotic properties of the order and cycle decomposition, of a random element of the
symmetric group,Sn, were studied by Erd̈os and Tuŕan in a series of seven papers entitled
‘On some problems in a statistical group theory’ published between 1956 and 1972. It is
shown in [2] that the distributionXn of log |τ |, whereτ is a uniformly random element of
Sn, approaches (asn → ∞) the normal distributionN(µ, σ 2) whereµ = 1

2 log2 n and
σ 2
=

1
3 log3 n. Theexpected order,En, of a uniformly random element ofSn was shown by

Goh and Schmutz [3] to satisfy logEn ∼ O
(√

n/ logn
)

asn → ∞. This is substantially
smaller than the maximal order,Mn, of an element ofSn as logMn ∼

√
n logn asn → ∞

(see[5, p. 222]).
The numberof x ∈ Sn satisfyingxq

= 1 isODq(Sn). Wilf [9] showed for fixedq that
ODq(Sn)/n! ∼ gq(n) wheregq(n) is a given function ofq andn. In a similar vein, Pavlov
[8] showed that certain random variables associated with cycle structure are asymptotically
normal whenn→∞.

One can show that the probability that an element ofSn has no cycles of lengthsa1, . . . ,am

is at most(
∑m

k=1 a−1
k )−1 (see [1, Theorem VI]). To estimateCMq(Sn), takeak = qk and

m = bn/qc. Comparisons with integrals show thatq(1+ logm)−1
≤
(∑m

k=1(qk)−1
)−1
≤

q(log(m+ 1))−1. This is unhelpful if 1+ logm≤ q (as probabilities are always≤1).
The motivation for this work arose from the following problem in probabilistic group theory.

Givenε > 0 and a groupG isomorphic to precisely one of the groupsG1,G2, . . . , then (when
possible) determine with probability≥1− ε whetherG is isomorphic, or is not isomorphic,
to Gk after testing the order ofN(ε,G) randomly chosen elements ofG. This problem seems
most likely to be successful if the sequenceG1,G2, . . . , comprises groups that are finite and
simple (or with few composition factors). For such groups the set of orders of elements ofG
frequently characterizesG (see, for example, [6]). The task is clearly impossible if different
groupsGk andG` have the same proportions of elements of each order. It follows from the
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‘law of large numbers’ [7] and the above result of Erdös andTurán that this task is possible if
G is a symmetric group andGk = Sk for all k. By using additional information we can give a
smaller value ofN(ε,G). Thus it is important to be able to quickly calculateactualvalues of
OMq(Sn),ODq(Sn), etc and not merelyasymptoticapproximations asn→∞.

If q is a prime power, then [1, Lemma I] can be interpreted as giving a formula for the
numberOMq(Sn) of elementsof Sn whose order is not a multiple ofq. Note thatOMq(6) ≤

CMq(6), and equality holds ifq is a prime power. We shall give a more general formula in the
next section forCMq(Cn,k)which specializeswhenk = 1 toCMq(Sn) =

∏n
j=1 ( j−[q | j ])

where[q | j ] equals 1 ifq divides j , and 0 otherwise. IfP is a logical proposition, then[P]
denotes 1 ifP is true, and 0 otherwise. This notation, attributed to Iverson [4, p. 24], is useful
for reducinga collection of formulas involving different cases, to one formula.

2. RECURRENCERELATIONS

The symmetric groupSn acts naturally on the set{1, . . . ,n}. If k ∈ {0, . . . ,n}, let Gn,k

denote the subgroup ofSn that fixes each of 1,2, . . . ,k. If k ∈ {1, . . . ,n}, let Cn,k denote the
cosetGn,k−1(1,2, . . . ,k). Note thatGn,k is permutationally isomorphic toSn−k. Furthermore
Cn,1 = Sn andCn,n = {(1,2, . . . ,n)}.

The six recurrence relations below use the ordering:(n′, k′) < (n, k) if and only if n′ < n,
or n′ = n andk′ > k.

LEMMA 1. Let q,n, k be positive integers where k≤ n. Let q= q1, . . . ,qr where q1, . . . ,

qr are powers of distinct primes. Let1(q, k) =
∏r

j=1 q
[q j -k]
j andO(q, k) =

∏r
j=1 q

[q j |k]
j .

If k < n, then

OMq(Cn,k) = OM1(q,k)(Cn−k,1)+ (n− k)OMq(Cn,k+1), (1)

ODq(Cn,k) = [k | q]ODq(Cn−k,1)+ (n− k)ODq(Cn,k+1), (2)

OEq(Cn,k) =
∑

d |O(q,k)

Œd1(q,k)(Cn−k,1)+ (n− k)OEq(Cn,k+1), (3)

CMq(Cn,k) = [q - k]CMq(Cn−k,1)+ (n− k)CMq(Cn,k+1), (4)

CDq(Cn,k) = [k - q]CDq(Cn−k,1)+ (n− k)CDq(Cn,k+1), (5)

CEq(Cn,k) = [q 6= k]CEq(Cn−k,1)+ (n− k)CEq(Cn,k+1), (6)

where the respective initial conditions are

OMq(Cn,n) = [q - n], ODq(Cn,n) = [n | q], OEq(Cn,n) = [q 6= n],

CMq(Cn,n) = [q - n], CDq(Cn,n) = [n - q], CEq(Cn,n) = [q 6= n].

PROOF. The initial conditions are easily verified. Suppose now thatk < n, andconsider
the coset decomposition

Gn,k−1 = Gn,k ∪
⋃
`>k

Gn,k(k, `).

Post-multiplying by(1, . . . ,k) gives

Cn,k = Gn,k(1,2, . . . ,k) ∪
⋃
`>k

Gn,k(1,2, . . . ,k, `). (7)

Note that the set of elements moved bya ∈ Gn,k (i.e., the support ofa) is disjoint from the
support ofb = (1, . . . ,k). Also, if ` > k, thenGn,k(1,2, . . . ,k, `) is the conjugate ofCn,k+1
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by (k+ 1, `). Nowab has no cycle of length a multiple ofq if and only if k is not a multiple
of q, anda has no cycle of length a multiple ofq. That is,

CMq(Gn,k(1,2, . . . , k)) = [q - k]CMq(Gn,k) = [q - k]CMq(Cn−k,1).

It follows from Eqn. (7) that

CMq(Cn,k) = [q - k]CMq(Cn−k,1)+ (n− k)CMq(Cn,k+1).

The recurrencerelations (5) and (6) are derived similarly, and the recurrence relations (1)–(3)
can beeasily derived from the facts below. Note that the order ofab satisfies|ab| =
lcm(|a|, |b|). Hence (1)q - |ab| if and only if 1(q, k) - |a|; (2) |ab| | q if and only if
|a| | q andk | q; and (3)|ab| = q if and only if |a| = d1(q, k) whered | O(q, k). 2

The recurrence relations for the complementary numbersOMq(Cn,k),ODq(Cn,k) etc, can
bedetermined from determined from those above using the fact thatN(6) = |6| − N(6).
We shall give a surprising ‘closed form’ solution to the recurrence relation forCMq(Cn,k).
Let n modq be theunique integerr satisfyingn ≡ r (mod q) and 0≤ r < n. The ‘mod’
function is notorious for not preserving order, so the formula forCMq(Cn,k) belowis curious
as it involves both ‘≤’ and ‘mod’.

THEOREM 2. If q,n, k are positive integers and1≤ k ≤ n, then

CMq(Cn,k) = fq(n− k+ 1)− [(−k) mod q ≤ s] fq(n− k) (8)

where fq(n) =
∏n

j=1( j − [q | j ]) and s= q − 2− (n mod q). In particular, CMq(Sn) =

fq(n).

PROOF. The result is trivially true whenq = 1. Assumehenceforth thatq > 1. We use
induction on(n, k) ordered via(n′, k′) < (n, k) whenn′ < n, or n′ = n andk′ > k. Consider
formula (8) whenk = n. By Lemma1, CMq(Cn,n) = [q - n]. Since

(−n) mod q = [q - n]q − (n mod q),

it follows that

[(−n) mod q ≤ q − 2− (n mod q)] = [[q - n]q ≤ q − 2] = [q | n].

The right-hand side of (8) isfq(1)− [q | n] fq(0) = 1− [q | n] = [q - n], and so (8) is true
whenk = n. Assumenow that (8) is true for(n′, k′) < (n, k) where 1≤ k < n. Thus

CMq(Sn−k) = CMq(Cn−k,1) = fq(n− k)

as[q − 1≤ q − 2− (n mod q)] = 0.
Observe that[(−k) mod q ≤ s] =

∑s
j=0[q | k + j ] where[q | (k + j )] is abbreviated

[q | k+ j ]. Whenn mod q = q−1, thens= −1 and both sides are zero. (A sum
∑
−1
j=0 a j is

zero by convention.) Suppose thatn mod q < q− 1. Then at most one summand[q | k+ j ]
is non-zero, and the equation[q | k+ j ] = 1 is equivalent to the equation(−k) mod q = j .
Hence

∑s
j=0[q | k+ j ] = [(−k) mod q ≤ s], as required.

We shall now prove that

CMq(Cn,k) = fq(n− k+ 1)− fq(n− k)
s∑

j=0

[q | k+ j ].
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We shorten this equation toCMq(Cn,k) = Fk−1 − Fk
∑s

j=0[q | k + j ]. Thefirst equality
below is justified by Eqn. (4), and the second follows from the inductive hypothesis

CMq(Cn,k)= [q - k]CMq(Cn−k,1)+ (n− k)CMq(Cn,k+1)

= [q - k]Fk + (n− k)

{
Fk − Fk+1

s∑
j=0

[q | k+ 1+ j ]

}

= (n− k+ 1)Fk − [q | k]Fk − (n− k)Fk+1

s∑
j=0

[q | k+ 1+ j ]

= (n− k+ 1)Fk − [q | k]Fk − (n− k)Fk+1

s+1∑
j=1

[q | k+ j ].

The last step involved a change in summation variable.
The equation[q | n − k]

∑s+1
j=1[q | k + j ] = 0 is helpful. This is clearly true when

[q | n− k] = 0. If [q | n− k] = 1, thenk ≡ n (mod q) and so[q | k + j ] = [ j = s+ 2].
Thus in either case the expression is zero. Using the equationFk = (n−k−[q | n−k])Fk+1,
therefore gives

CMq(Cn,k) = (n− k+ 1)Fk − [q | k]Fk − Fk

s+1∑
j=1

[q | k+ j ]

= (n− k+ 1)Fk − Fk

s+1∑
j=0

[q | k+ j ]

=
∗(n− k+ 1− [q | n− k+ 1])Fk − Fk

s∑
j=0

[q | k+ j ]

= Fk−1− Fk

s∑
j=0

[q | k+ j ]

∗where the second to last equality uses[q | n− k + 1] = [q | k + s+ 1] sinces ≡ −n− 2
(mod q). This completes the inductive proof. 2

3. ESTIMATIONS AND APPLICATIONS

The recurrence relations of Lemma1 give algorithms which are quadratic inn for comput-
ing these numbers. As the conjugacy classes ofSn correspond bijectively to partitions ofn,
these numbers can be computed by summing over certain partitions. This gives rise to slower
algorithms for computing these numbers. In practice, however, we need not compute all the
significant digits of these numbers, usually the first four suffice. Good lower bounds may be
found quickly by considering some of the large relevant conjugacy classes.

It is a simple (and somewhat surprising) consequence of Theorem2 that the proportion,
pq,n, of elements ofSn having no cycles of length divisible byq is the same forn = mq,
mq+ 1, . . . ,mq+ q − 1. Estimates forpq,n = CMq(Sn)/n! are obtainedbelow.

If q = 1, thenpq,n = 0. Assume henceforth thatq ≥ 2. Useful upper and lower bounds for
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pq,mq =
∏m

k=1(1− (qk)−1) may be deduced from∣∣∣∣∣
m∑

k=1

log(1− (qk)−1)+

m∑
k=1

(qk)−1

∣∣∣∣∣ ≤
m∑

k=1

∣∣∣log(1− (qk)−1)+ (qk)−1
∣∣∣

≤

m∑
k=1

∞∑
i=2

(qk)−i

2
≤

m∑
k=1

(qk)−2 < C

whereC =
∑
∞

k=1(qk)−2
= q−2π2/6. It follows from

−
1

q
(1+ logm)− C ≤

m∑
k=1

log(1− (qk)−1) ≤ −
1

q
logm+ C

thatc−1
q (em)−1/q

≤
∏m

k=1(1− (qk)−1) ≤ cqm−1/q wherecq = eq−2π2/6.
Recall that one motivation for computing the numbersOMq(Sn) etc, arosefrom probabilis-

tic computational group theory. Suppose we are given a ‘black box’ groupG which is known
to be isomorphic toSn for somen. How do we findn? The relative frequency of finding an
element ofG of odd order should be close to the probabilityOM2(Sk)/k! for preciselytwo
values ofk, saym andm+ 1. If p is the smallest prime divisor ofm or m+ 1, then by de-
termining the relative frequency of elements ofG of order co-prime top, one can determine,
with quantifiable probability, whethern equalsm of m+ 1.
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