191

COMBINED EFFECTS OF A VALGUS KNEE BRACE AND LATERAL WEDGE ORTHOTIC ON DYNAMIC KNEE JOINT LOADING IN PATIENTS WITH MEDIAL COMPARTMENT KNEE OSTEOARTHRITIS

R. Meyer, J. Birmingham, J. Jones, C. Donato, R. Walsh, K. Leitch, J.R. Griffin, Univ. of Western Ontario, London, ON, Canada

Purpose: A number of conservative strategies are suggested to modify the external knee adduction moment and potentially decrease the rate of disease progression for patients with medial compartment knee osteoarthritis (OA). The aim of this study was to compare the effects of a custom-fit knee brace and foot orthotic, when used separately and together, on frontal plane lever arm and external adduction moment about the knee in patients with knee OA.

Methods: 11 patients completed three-dimensional gait analysis with an optical motion capture system. Using a balanced latin square design, all participants were tested in each of four conditions: (1) neither knee brace nor foot orthotic, (2) knee brace only, (3) foot orthotic only, and (4) knee brace and foot orthotic combined. Static lower limb alignment was measured using hip-to-ankle standing radiographs. The mechanical axis angle was compared between conditions when each participant wore both the knee brace and foot orthotic and without either intervention.

Results: Although differences between conditions did not reach statistical significance, the decrease in frontal plane lever arm with knee brace and foot orthotic together [mean decrease (95%CI) = 0.50 (−0.04, 1.05) cm] was greater than the decrease for knee brace [0.16 (−0.37, 0.60) cm] or foot orthotic [0.10 (−0.24, 0.44) cm] alone. Similarly, the decrease in peak knee adduction moment with knee brace and foot orthotic together [0.28 (−0.08, 0.65) %BWxHT] was greater than the decrease for knee brace [0.14 (−0.22, 0.49) %BWxHT] or foot orthotic [0.04 (−0.20, 0.28) %BWxHT] alone (Figure 1). There were no statistically significant differences in static alignment.

Conclusions: These findings suggest that some of the biomechanical effects of valgus bracing and lateral wedge orthotics may interact, and wearing both devices may provide greater benefits than either one on its own.

Fig. 1. Difference in external knee adduction moment throughout stance between four treatment conditions. Ensemble average curves represent all patients in each condition with 95% confidence limits at the first and second peak external knee adduction moment.

192

PERTURBATION OF LOWER LIMB DURING DYNAMIC LOADING

E.M. Debbi, A. Haim, A. Wolf, Technion-Israel Inst. of Technology, Haifa, Israel; Sourasky Med. Ctr., Tel-Aviv, Israel

Purpose: Perturbation training programs have been shown to have positive therapeutic results in patients with knee osteoarthritis. Most programs are carried out during static movements on stationary balance boards. The benefit of perturbation training may improve if it can be carried out during dynamic loading activities such as walking. The purpose of this study was to determine if perturbation can be induced during walking.

Methods: Twelve healthy male volunteers were fitted with foot-worn devices to which two convex-shaped biomechanical elements can be attached at the soles (Figure 1) (AposTherapy System, Herzlia, Israel). The subjects were asked to walk in a gait lab under three conditions: (1) Device without elements, (2) Device with 9.2 mm high elements, (3) Device with 10.8 mm high elements. Kinetic and kinematic measurements were made during each walk using the Vicon motion analysis system. The standard deviations of the kinetic and kinematic measurements were recorded during walks in each condition and the changes in standard deviations were evaluated across the three conditions. An increase in perturbation was defined as a significant increase in the standard deviations of the measurements.

Results: Significant changes in standard deviations across the three conditions were observed in the peak ankle adduction moment (p = 0.034), peak knee flexion angle (p = 0.041), peak knee flexion moment (p = 0.049), peak hip adduction angle (p = 0.008) and peak hip adduction moment (p = 0.045).

Conclusions: The results of this study show that perturbation of the lower limb can be achieved during walking. This effect might enhance the current treatments for patients with knee osteoarthritis.

Fig. 1.
retraining. After rehabilitation the case patient also demonstrated movement patterns that more closely reflect the patterns of patients without knee pathology and these variables were substantially improved compared to her pre-operative levels. Her knee flexion excursion and knee flexion moment in the operated limb were nearly twice that of the TKA patients who did not undergo the specialized rehabilitation (Figure 1) and she demonstrated a 40% reduction in the adduction moment of her non-operated limb. Her knee excursion symmetry ratio (operated/non-operated limb) was 1.0, whereas the symmetry ratio was 0.7 for the other TKA group.

Table 1. Patient characteristics at all time points

<table>
<thead>
<tr>
<th></th>
<th>Pre-operative</th>
<th>Initial PT Evaluation</th>
<th>Discharge from PT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case patient</td>
<td>TKA group (SD)</td>
<td>Case patient</td>
</tr>
<tr>
<td></td>
<td>TKA group</td>
<td>(SD)</td>
<td>TKA group (SD)</td>
</tr>
<tr>
<td>KOS (%)</td>
<td>37.14</td>
<td>50.28 (17.43)</td>
<td>32.86</td>
</tr>
<tr>
<td></td>
<td>98.60</td>
<td>70.02 (12.35)</td>
<td>9.6</td>
</tr>
<tr>
<td>TUG (s)</td>
<td>11.1</td>
<td>10.2 (2.8)</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>21.4</td>
<td>20.1 (5.5)</td>
<td>16.4</td>
</tr>
<tr>
<td>SMA (W)</td>
<td>1442</td>
<td>1487 (410)</td>
<td>1071</td>
</tr>
<tr>
<td>Knee flexion ROM</td>
<td>115</td>
<td>118 (14)</td>
<td>95</td>
</tr>
<tr>
<td>Quadriceps (N/BMI)</td>
<td>11.37</td>
<td>18.7 (2.5)</td>
<td>8.31</td>
</tr>
</tbody>
</table>

Conclusions: In this case study, the rehabilitation protocol that focused on improving limb symmetry and normalizing joint motion on the involved leg resulted in dramatic improvements in knee biomechanics and functional outcomes. This restoration of symmetrical and normalized movement patterns may have important implications on reducing the incidence of contralateral joint OA. Future research is warranted to movement patterns may have important implications on reducing the incidence of contralateral joint OA. Future research is warranted to

Results: The average EMG varied significantly with COP in at least one phase of stance in all examined muscles of the less symptomatic leg and in three muscles of the more symptomatic leg. After training, a significant increase in average EMG was observed in most muscles. Most muscles of the less symptomatic leg showed significantly increased peak EMG. Activity duration was shorter for all muscles of the less symptomatic leg (significant in the lateral gastrocnemius) and three muscles of the more symptomatic leg (significant in the biceps femoris). These results were associated with reduced pain and increased function.

Conclusions: COP manipulation influences the muscle activation patterns of the leg in patients with knee osteoarthritis. When combined with a therapy program, muscle activity increases and activity duration decreases.

Bone Biology

195 LOAD-INDUCED SUBCHONDRAL BONE THICKENING IN MICE WITH OR WITHOUT ARTICULAR CARTILAGE LESIONS


Purpose: Subchondral bone remodelling is an important characteristic of osteoarthritis (OA) in humans and in animal models. However, the relationship between SCB changes and articular cartilage (AC) degeneration remains controversial. Do they precede or follow AC lesions? To begin answering this question, we analysed changes in SCB thickness in a mouse model of knee joint loading, in which localised AC lesions are generated in the lateral femur where it becomes closely opposed to the tibia during loading.

Methods: Right knees of 8 week-old CBA mice were loaded 3 times each week for 2 (± 3 weeks of normal use with no loads applied) or 5 weeks at a magnitude of 9N as described previously. Micro-CT scanning was performed on left (non-loaded) and right (loaded) knee joints and SCB thickness measured in the posterior half of each condyle using CTAn software, and in order to precisely define their spatial relationship to lesions in the lateral femur, in 0.1 mm sections within this posterior half. Paired t-test was used for statistical analysis.

Results: SCB thickness was increased in the regions of the lateral femur which were closely associated with load-induced AC lesions, and no changes were noted in regions remote from these lesions. Joints loaded for 5 weeks showed most obvious thickening in SCB. In addition, SCB thickness was increased in the most posterior region of the lateral tibia, where no AC lesions were induced by the application of mechanical loading, but which was directly in contact with the lateral femur AC during loading. This SCB thickening was again most prominent after 5 weeks of loading.

Conclusions: We have described focal thickening of SCB associated with load-induced AC lesion formation in the lateral femur, as well as thickening of SCB in areas exposed to direct mechanical loads (without cartilage lesions) in the lateral tibia. This indicates that SCB changes can be induced by loading independently of AC lesions, and that altered load distribution associated with the presence of AC lesions acts to enhance load-induced SCB thickening. These data suggest that SCB thickening is due to altered mechanical loads in OA joints.

196 BLOOD PERFUSION AND BONE FORMATION BEFORE AND AFTER MINIMALLY INVASIVE PERIACETABULAR OSTEOTOMY ANALYSED WITH PET COMBINED WITH CT

I. Mechlenburg1, F. Hermansen2, T. Thillemann1, K. Søballe1. 1Aarhus Univ. Hosp., Aarhus, Denmark; 2PET-Ctr. Aarhus Univ. Hosp., Aarhus, Denmark

Purpose: A new minimally invasive technique for periacetabular osteotomy (PAO) has been developed in our institution. The osteotomized acetabular fragment is reoriented three dimensionally in order to achieve a better acetabular coverage. Bone healing is believed to be completed eight weeks after surgery and from that time, the patients are allowed to fully weight-bear on the operated leg. Sufficient blood perfusion is held to be essential to successful bone healing after PAO. It is never examined in vivo how blood perfusion to the acetabular fragment is affected by