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Abstract-For minimization problems with nonlinear equality constraints, various numerical tools 
are shown to become available when the constraint set has a manifold structure. In appropriate local 
coordinate systems these tools permit the computation, e.g., of the gradient and Hessian of the 
transformed (unconstrained) objective function. This opens up a new view on the computational 
solution of the minimization problem which-while leading to algorithms similar in concept and 
performance to the well-known “reduced Hessian” methods-provides a different theoretical basis for 
these methods. 

Keywords-Optimization, Equality constraints, Manifolds, Local coordinates, Reduced Hessian 
methods. 

1. INTRODUCTION 

Consider the constrained optimization problem 

min{g(s) : 2 E IV, F(s) = 0}, (1.1) 

where the mappings g : B” H IF?, and F : IP H ILP, with n = m + d, d > 0, are of class C’ for 
r 2 2 on some open subset E of E-P. We restrict ourselves to a set E where 

rank DF(z) = m, Vx E E. (1.2) 

Here DF(x) is the Jacobian of F at x, and we will denote the gradient of g by Vg(x) = Dg(x)T 
and its derivative-the Hessian matrix-by V2g(x). 

A well-known necessary condition for x* E E to be a local minimizer of (1.1) requires the 
existence of a Lagrange multiplier X* E IF such that (x*, X*) is a critical point of the functional 

h:RnxRmHW, h(x, A) = g(x) + X*F(x). (1.3) 

A sufficient condition for x* E E to be a minimizer is the positive definiteness of the 9educed” 
Hessian matrix UTV2h(x*, X*)U for some, and hence any, n x m matrix U whose columns span 
ker DF(x*). 

These facts have been used in various ways in the development of numerical methods for 
computing local minimizers of (1.1). One class of these methods works, in essence, with the 
augmented functional (1.3) and hence with its gradient and Hessian (or some approximation); 
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see, e.g., the surveys [1,2]. Another class of methods uses projections of Vh(z,X) onto the 
nullspace of DF(z) and involves the mentioned reduced Hessian matrix or some approximation 
of it; see, e.g., [3], and the survey [2]. 

The submersion assumption (1.2) guarantees that 

M = {x E E : F(x) = 0) (1.4 

is a d-dimensional CT-submanifold of R”. In connection with (1.1) this fact appears to have 
been used first by Tanabe i4]. Yet it has found little, if any, application in the development 
of the above indicated classes of methods. The aim of this note is to show that this manifold 
structure provides the basis for some geometrical observations which, in turn, suggest new tools 
for the computational solution of (1.1). While the resulting approaches are similar in concept and 
performance to the “reduced Hessian” methods (e.g., that in [3]), the geometric insight provides 
a different theoretical basis for these methods. 

2. LOCAL COORDINATE SYSTEMS 

Central to any analysis on a differentiable manifold is the concept of a chart or its inverse, a 
local coordinate system. Specifically, for submanifolds of Iw”, such as (1.4), a pair (a, a) is a 
local coordinate system on M if 

(i) s2 is an open neighborhood of 0 E R”, 
(ii) the CT-mapping Q : fl H RF is a homeomorphism of R onto the (relatively) open subset 

(P(R) of IM, and 
(iii) @ is an immersion on R. 

We call (R, @) a local coordinate system of any point z E M such that x E (P(R). 
In any local coordinate system (R, @) on M, the functional g restricted to @(OR) c M is 

transformed into the functional 

-/:Rl-+lEt, Y(Y) = d@(Y))> VY E ft (2.1) 

which is of the class CT on the open set 0 C R d. Thus, in local coordinates the constraints are 
always automatically satisfied. 

We review briefly some earlier results about certain local coordinate systems for which effective 
numerical methods have been developed (see, e.g., [5-71). For this we assume that P is equipped 
with its canonical inner product which then induces a Riemannian metric on M. For any x E M 
the tangent and normal space are denoted by T,M and N,M, respectively. 

Let xc E M be a point on M where a local coordinate system is to be constructed. For this we 
use the splitting Rn = T,= M@N,= M and apply the implicit function theorem to F(xC+u+zu) = 0, 
u E TzcM, w E Nzc M. This ensures the existence of open neighborhoods V c T,= M of 0 E Tzc M 
and W c Bn of xc, and of a CT mapping $ : V H N,M such that 4(O) = 0 and M n W = a(V) 
where 

cp:Vk+lP, @(U) = XC + 21+ $(U) E R”, 21 E v. (2.2) 

Any choice of a basis of Tzc M provides us with an isomorphism from T,= M onto Rd under which 
the image of V is some open neighborhood R of 0 E Rd. Then it follows easily that (a, a) is a 
local coordinate system of xc on M to be called here a tangent coordinate system. 

For the mapping $ in (2.2) we note that D@(O)u E T,= M for u E T,c M implies that D+(O) = 0. 
Moreover, in [8] it was shown that 

D2$(0) (u1,u2) = v,c (u1,?J2), Vd,u2 E T,cM (2.3) 

where V, : T,M x T, M I-+ N,M denotes the second fundamental tensor of M at x. 
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Several methods exist for the computation of an n x d matrix V(z) whose columns form a 
basis of the tangent space T,M = ker DF(z) of a given z E M. For instance, a QR-factorization 
of DF(cc)~ obviously provides such matrix with orthonormal columns. It is readily seen (see, 
e.g., [9]) that there exists a b > 0 such that for any y E Wd, ]]y]] < 6 the nonlinear system 

F(x) 0 
U(x”y-(x -XC) = y > 0 (2.4 

has the unique solution x = Q(y) which can be easily computed, say, by means of a chord Newton 
method, If a QR-factorization was used to obtain U(x”) this can be simplified considerably so 
that each step involves only one back-solve in Rd. 

From (2.4) it follows (see, e.g., [7]) that the derivative D@(y) of @ at y satisfies 

(2.5) 

For the case when V(x) has orthonormal columns, the explicit solution 

WY) = W(Y))KW)TWWY))l-l (2.6) 

was given in [lo] and it was also shown that (2.6) does not depend on the particular choice of 
U(Q(y)). Th’ ff is o ers another approach for computing Da. 

Finally, in [ll] it was proved that, when Q denotes the orthogonal projection onto N,M for 
given z E M, then for any u1,u2 = ker DF(z) we have Vz(u1,u2) = -Qz with any solution z of 
DF(x)z = D2F( x )( ul, u2). Thus Vz(ul, u2) E N,M is the unique solution of the linear system 

-D2F(z) (u1,u2) 
0 (2.7) 

As before, the computation is considerably simplified when QR-factorizations are used. 

3. APPLICATION TO PROBLEM (1.1) 

Once a tangent coordinate system (a, @) has been chosen, the methods sketched in the previous 
section allow us to compute for any y E Wd, ]]y]] I 6 the point 2 = ‘P(y) E M and with it the 
value y(y) = g((a(x)) of the transformed objective function (2.2), the corresponding gradient 

WY) = D%)TWWd)~ (3.1) 

and, for each i,j = 1,. . . , d, the component of the Hessian 

eiTV2y(y)ej = (Ii), V2g(x)d + v, (72, d)’ Vg(x), ui = U(x)ei, ui = U(x)e-l. (3.2) 

The equation (3.2) is of interest in itself. For strictly convex g, V2g(z) is positive definite, but 
the second term of (3.2) may well be negative. This term reflects curvature properties of M at x. 
Note that, by definition, we have Vz(ui, uj) E N,M, and if z is a local minimizer of g, then the 
necessary condition involving the functional (1.3) requires that Vg(z) E rge DF(z)~ = N,M. 
Thus, the second term in (3.2) certainly need not be small near a local minimizer unless the 
curvature of M at that point is zero, or the point constitutes a local minimizer of g in W”. 

The computational tools discussed so far can now be applied to the numerical solution of (1.1). 
Let xk E M be a known iterate where a tangent coordinate system (Cl, a) has been constructed. 
Then, a step of our procedure will consist in the computation of a point zk+l = cP(y”+‘) such 
that y”+l E R and that some sufficient-decrease condition in g holds. In other words, the 
corresponding step g(z”) - g(s”+l ) > 0 in the g-values should be sufficiently far away from zero. 
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For the computation we introduce a suitable radius 6k > 0 such that the closed ball & = {y E 
Rd : llyll < 6k) is contained in 0. Estimates of such a 6 > 0 can be obtained easily from the 
iterative procedure used in the computation of x = Q(y) for given y. Such techniques have been 
indicated in [7,12], and are similar to those discussed in [13]. Of course, if the exact Hessians (3.2) 
are used then information about the local curvature behavior of M can be derived directly from 
the second fundamental tensor. 

With 6k the computation of the next point xk+i now requires minimizing y on &. This 
suggests the application of a trust region method to some quadratic approximation of y. For 
example, with the Taylor approximation 

+7(Y) = Y(O) + WO)Y + ;YTv2mY, Y E Rd, (3.3) 

we wish to solve the problem 

min {Y(y); Y E Rd, IIYII 5 S.>. (3.4) 

Trust region methods have been investigated by several authors (see, e.g., [14,15]). Any such 
method is designed to produce a point y”+’ E & which satisfies a sufficient decrease condition 
for y. From y”+’ the next iterate xk+’ is obtained by an application of a. Of course, in practice, 
it is desirable to avoid the computation of the exact Hessians in (3.3) by replacing them with 
certain matrices Ak. Here, a widely used approach is to update these Ak from step to step by 
means of variable metric methods (see, e.g., [1,3]). 

Suppose that for the tangent coordinate system at xk the set (a(a) does not contain a local 
minimizer of g. Then, we expect x k+l = a(~“+‘) to be a point for which yk+l is on the boundary 
of &, that is, where ]]ykfl]]/b = 1. H ence, for any reasonable choice of Sk, we expect xk+l to 
be almost out of the domain of validity of the coordinate system. Accordingly we evaluate a new 
tangent coordinate system at xk+i and proceed as before. 

On the other hand, suppose that xk E M is a point where the set Q(R) c M contains a local 
minimizer x* = Q(y*) of g. Then, we expect that y has compact level sets in fl containing y*, 
as is the case, for example, when V2y(y*) is positive definite. Hence, now the quotient ]]yk+‘]]/6 
should be below one. If this quotient is less than some tolerance 1 - n > 0 then we retain the 
old coordinate system constructed at x k. In other words, our process now becomes a standard 
unconstrained descent method for y in Cl which continues in the same tangent coordinate system 
until either there is convergence to a local minimizer of y in R or the computed points are detected 
to leave that set. 

An essential consequence of the present setting is that any chosen minimization procedure for y 
that converges in R to y* will retain exactly the asymptotic convergence properties known for 
it in the general unconstrained minimization setting. No further proofs are required here. In 
particular, the variable metric methods involving, e.g., the DFP or BFGS updates will have the 
superlinear asymptotic convergence behavior proved for such methods in [16] (see also [17]). 

The overall procedure is similar in concept to the mentioned reduced Hessian methods, as, e.g., 
the method in [3]. But our approach provides a strong geometric basis for the algorithm. This 
shows itself not only in the simple local convergence results but also, for instance, in our “updating 
algorithm” for the local coordinate system-which in [3] is reflected by the recomputation of 
the basis of the nullspace of DF. As expected, numerical experiments with the new approach 
correspond largely to those reported for the known methods. However, we should mention that 
when the Taylor approximation (3.3) is used, then the new method does not exhibit the well 
known slow-down in solving the Maratos-problem 

min{-xi+lO*(x:+zg-1):xEW2, xT+zz-l=O}, 

as can be seen in Table 1. 
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I I Zl I 22 I IPY(Y)II Step 

1 0.8 0.6 0.6 

2 0.94735 0.32030 0.33705 

3 1 0.99996 1 0.83802(-2) 1 0.88212(-2) 

4 1.00000 -0.78728( -5) 0.78731(-5) 

5 1.00000 0.16391(-7) 0.16391(-7) 
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