Journal of Number Theory 129 (2009) 434-438

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

NUMBER THEORY

A variant of Tao's method with application to restricted sumsets ${}^{\bigstar}$

Song Guo^{a,*}, Zhi-Wei Sun^b

^a Department of Mathematics, Huaiyin Teachers College, Huaian 223300, People's Republic of China
^b Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

ARTICLE INFO

Article history: Received 20 December 2007 Revised 29 May 2008 Available online 19 August 2008 Communicated by David Goss

MSC: primary 11B75 secondary 05A05, 11P99, 11T99

Keywords: Restricted sumsets Uncertainty principle Erdős–Heilbronn conjecture

ABSTRACT

In this paper, we develop Terence Tao's harmonic analysis method and apply it to restricted sumsets. The well-known Cauchy– Davenport theorem asserts that if $\emptyset \neq A$, $B \subseteq \mathbb{Z}/p\mathbb{Z}$ with p a prime, then $|A + B| \ge \min\{p, |A| + |B| - 1\}$, where $A + B = \{a + b: a \in A, b \in B\}$. In 2005, Terence Tao gave a harmonic analysis proof of the Cauchy–Davenport theorem, by applying a new form of the uncertainty principle on Fourier transform. We modify Tao's method so that it can be used to prove the following extension of the Erdős–Heilbronn conjecture: If A, B, S are non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$ with p a prime, then $|\{a + b: a \in A, b \in B, a - b \notin S\}| \ge$ $\min\{p, |A| + |B| - 2|S| - 1\}$.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let *p* be a prime, and let *A* and *B* be two subsets of the finite field

$$\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z} = \{\bar{r} = r + p\mathbb{Z}: r \in \mathbb{Z}\}.$$

Set

$$A + B = \{a + b: \ a \in A, \ b \in B\}$$
(1)

* Corresponding author. E-mail addresses: guosong77@hytc.edu.cn (S. Guo), zwsun@nju.edu.cn (Z.-W. Sun). URL: http://math.nju.edu.cn/?zwsun (Z.-W. Sun).

^{*} The first author is supported by Program for Excellent Talents in Huaiyin Teachers College. The second author is supported by the National Natural Science Foundation of People's Republic of China.

⁰⁰²²⁻³¹⁴X/\$ – see front matter @ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2008.05.009

and

$$A + B = \{a + b: a \in A, b \in B, a \neq b\}.$$
 (2)

The well-known Cauchy-Davenport theorem (cf. [3] and [9, p. 44]) asserts that

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$
(3)

In 1964 P. Erdős and H. Heilbronn [5] conjectured that

$$|A + A| \ge \min\{p, 2|A| - 3\}; \tag{4}$$

this was confirmed by J.A. Dias da Silva and Y.O. Hamidoune [4] in 1994. In 1995–1996 N. Alon, M.B. Nathanson and I.Z. Ruzsa [2] proposed the so-called polynomial method to handle similar problems. By the powerful polynomial method (cf. [1,2]), many interesting results on restricted sumsets have been obtained (see, e.g., [7,8,10–12]).

In 2005, Terence Tao [13] developed a harmonic analysis method in this area, applying a new form of the uncertainty principle on Fourier transform. Let p be a prime. For a complex-valued function $f : \mathbb{Z}_p \to \mathbb{C}$, we define its support supp(f) and its Fourier transform $\hat{f} : \mathbb{Z}_p \to \mathbb{C}$ as follows:

$$\operatorname{supp}(f) = \left\{ x \in \mathbb{Z}_p \colon f(x) \neq 0 \right\}$$
(5)

and

$$\hat{f}(x) = \sum_{a \in \mathbb{Z}_p} f(a) e_p(ax) \quad \text{for all } x \in \mathbb{Z}_p,$$
(6)

where $e_p(\bar{r}) = e^{-2\pi i r/p}$ for any $r \in \mathbb{Z}$.

Here is the main result of the paper [13].

Theorem 1. (See T. Tao [13].) Let p be an odd prime. If $f : \mathbb{Z}_p \to \mathbb{C}$ is not identically zero, then

$$|\operatorname{supp}(f)| + |\operatorname{supp}(\hat{f})| \ge p+1.$$
 (7)

Moreover, given two non-empty subsets A and B of \mathbb{Z}_p with $|A| + |B| \ge p + 1$, we can find a function $f:\mathbb{Z}_p \to \mathbb{C}$ such that $\operatorname{supp}(f) = A$ and $\operatorname{supp}(\hat{f}) = B$.

Using this theorem Tao [13] gave a new proof of Cauchy–Davenport theorem. Note that the inequality (7) was also discovered independently by Andráas Biró (cf. [6,13]). In this article we adapt the method further and use the refined method to deduce the following result.

Theorem 2. Let A and B be non-empty subsets of \mathbb{Z}_p with p a prime, and let

$$C = \{a + b: a \in A, b \in B, a - b \notin S\}$$
(8)

with $S \subseteq \mathbb{Z}_p$. Then we have

$$|C| \ge \min\{p, |A| + |B| - 2|S| - 1\}.$$
(9)

Theorem 2 in the case $S = \emptyset$ reduces to the Cauchy–Davenport theorem. When A = B and $S = \{0\}$, Theorem 2 yields the Erdős–Heilbronn conjecture. In the case $p \neq 2$ and $\emptyset \neq S \subset \mathbb{Z}_p$, Pan and Sun [10, Corollary 2] obtained the stronger inequality

$$|C| \ge \min\{p, |A| + |B| - |S| - 2\}$$
(10)

via the polynomial method. The second author (cf. [7]) ever conjectured that 2 in (10) can be replaced by 1 if |S| is even. We conjecture that when $A \neq B$ we can also substitute 1 for 2 in (10).

2. Proof of Theorem 2

Without loss of generality, we let $|A| \leq |B|$. When $|A| + |B| \leq 2|S| + 1$ or |A| = 1, (9) holds trivially. Below we suppose that |A| + |B| > 2|S| + 1 and $|A| \ge 2$.

In the case p = 2, we have $A = B = \mathbb{Z}_2$ and $C = (A + B) \setminus S = \mathbb{Z}_2 \setminus S$, thus

$$|C| = 2 - |S| \ge \min\{2, |A| + |B| - 2|S| - 1\} = \min\{2, 3 - 2|S|\}.$$

Below we assume that *p* is an odd prime. Set $k = p - |A| + 1 \in [1, p - 1]$ and $l = p - |B| + 1 \in [1, p - 1]$. Then $k + l \leq 2p - 2|S|$ and $l \leq p - |S|$ since $2|B| \ge |A| + |B| \ge 2|S| + 2$. Define

$$\hat{A} = \{\bar{0}, \dots, \overline{k-1}\} = \{\bar{0}, \dots, \overline{p-|A|}\}$$
(11)

and

$$\hat{B} = \{\overline{p - |S| - l + 1}, \dots, \overline{p - |S|}\} = \{\overline{|B| - |S|}, \dots, \overline{p - |S|}\}.$$
(12)

Clearly, $|\hat{A}| = p + 1 - |A|$ and $|\hat{B}| = p + 1 - |B|$. By Theorem 1 there are functions $f, g : \mathbb{Z}_p \to \mathbb{C}$ such that

$$\operatorname{supp}(f) = A, \quad \operatorname{supp}(\hat{f}) = \hat{A}, \quad \operatorname{supp}(g) = B, \quad \operatorname{supp}(\hat{g}) = \hat{B}.$$
 (13)

Now we define a function $F : \mathbb{Z}_p \to \mathbb{C}$ by

$$F(x) = \sum_{a \in \mathbb{Z}_p} f(a)g(x-a) \prod_{d \in S} (e_p(x-a) - e_p(a-d)).$$
(14)

For each $x \in \text{supp}(F)$, there exists $a \in \text{supp}(f)$ with $x - a \in \text{supp}(g)$ and $d := a - (x - a) \notin S$, hence $x = a + (x - a) \in C$. Therefore

$$\operatorname{supp}(F) \subseteq \mathcal{C}.\tag{15}$$

For any $x \in \mathbb{Z}$ we have

$$\hat{F}(x) = \sum_{b \in \mathbb{Z}_p} F(b)e_p(bx) = \sum_{a \in \mathbb{Z}_p} \sum_{b \in \mathbb{Z}_p} f(a)g(b-a)e_p(bx)P(a,b).$$

where

$$P(a,b) = \prod_{d \in S} (e_p(b-a) - e_p(a-d))$$

= $\sum_{T \subseteq S} (-1)^{|T|} e_p((|S| - |T|)(b-a)) e_p(|T|a - \sum_{d \in T} d)$

Therefore

$$\hat{F}(x) = \sum_{T \subseteq S} (-1)^{|T|} e_p \left(-\sum_{d \in T} d \right) \sum_{a \in \mathbb{Z}_p} f(a) e_p \left(ax + |T|a \right) \sum_{b \in \mathbb{Z}_p} g(b-a) e_p \left((b-a)x + \left(|S| - |T| \right) (b-a) \right)$$
$$= \sum_{T \subseteq S} (-1)^{|T|} e_p \left(-\sum_{d \in T} d \right) \hat{f} \left(x + \overline{|T|} \right) \hat{g} \left(x + \overline{|S| - |T|} \right).$$

For $T \subseteq S$, if $\overline{p - |S|} + \overline{|S| - |T|} \in \operatorname{supp}(\hat{g}) = \hat{B}$, then we must have |T| = |S| (i.e., T = S) by the definition of \hat{B} . It follows that

$$\hat{F}\left(\overline{p-|S|}\right) = (-1)^{|S|} e_p\left(-\sum_{d\in S} d\right) \hat{f}(\bar{0})\hat{g}\left(\overline{p-|S|}\right) \neq 0$$

since $\overline{0} \in \hat{A} = \operatorname{supp}(\hat{f})$ and $\overline{p - |S|} \in \hat{B} = \operatorname{supp}(\hat{g})$. With the helps of (15) and Theorem 1, we get

$$|C| \ge |\operatorname{supp}(F)| \ge p + 1 - |\operatorname{supp}(\hat{F})|.$$

Suppose that $x \in \operatorname{supp}(\hat{F})$. By the above, there is a subset T of S such that $x + |\overline{T}| \in \operatorname{supp}(\hat{f}) = \hat{A}$ and $x + |\overline{S}| - |T| \in \operatorname{supp}(\hat{g}) = \hat{B}$. As $0 \leq |T| \leq |S|$,

$$x + \overline{|T|} \in \hat{A} \quad \Rightarrow \quad x \in \left\{\overline{p - |S|}, \dots, \overline{p - 1}, \overline{0}, \dots, \overline{k - 1}\right\}$$

and

$$x + \overline{|S| - |T|} \in \hat{B} \implies x \in \{\overline{|B| - 2|S|}, \dots, \overline{p - |S|}\}$$

Therefore $x = \overline{p - |S|}$, or $x = \overline{r}$ for some $r \in [|B| - 2|S|, k - 1]$.

If $|A| + |B| \ge p + 2|S| + 1$, then k - 1 = p - |A| < |B| - 2|S|, hence $supp(\hat{F}) = \{\overline{p - |S|}\}$ and thus $|C| \ge p$. If |A| + |B| , then

$$|\operatorname{supp}(\hat{F})| \leq 1 + k - (|B| - 2|S|) = k + l - p + 2|S|$$

and hence

$$|C| \ge p + 1 - k - l + p - 2|S| = |A| + |B| - 2|S| - 1.$$

So (9) always holds. We are done.

Acknowledgment

The authors are grateful to the referee for his/her helpful comments.

437

References

- [1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999) 7-29.
- [2] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996) 404–417.
- [3] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30-32.
- [4] J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140–146.
- [5] P. Erdős, H. Heilbronn, On the addition of residue classes modulo p, Acta Arith. 9 (1964) 149-159.
- [6] P.E. Frenkel, Simple proof of Chebotarëv's theorem on roots of unity, preprint, arXiv: math.AC/0312398 (version 3), 2004.
- [7] Q.H. Hou, Z.W. Sun, Restricted sums in a field, Acta Arith. 102 (2002) 239-249.
- [8] J.X. Liu, Z.W. Sun, Sums of subsets with polynomial restrictions, J. Number Theory 97 (2002) 301-304.
- [9] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math., vol. 165, Springer, New York, 1996.
- [10] H. Pan, Z.W. Sun, A lower bound for $|\{a + b: a \in A, b \in B, P(a, b) \neq 0\}|$, J. Combin. Theory Ser. A 100 (2002) 387–393.
- [11] H. Pan, Z.W. Sun, Restricted sumsets and a conjecture of Lev, Israel J. Math. 154 (2006) 21–28.
- [12] Z.W. Sun, On Snevily's conjecture and restricted sumsets, J. Combin. Theory Ser. A 103 (2003) 291-304.
- [13] Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005) 121-127.