A variant of Tao's method with application to restricted sumsets ${ }^{\pi}$

Song Guo ${ }^{\text {a,* }}$, Zhi-Wei Sun ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Huaiyin Teachers College, Huaian 223300, People's Republic of China
${ }^{\text {b }}$ Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

A R T I C L E I N F O

Article history:

Received 20 December 2007
Revised 29 May 2008
Available online 19 August 2008
Communicated by David Goss

MSC:

primary 11B75
secondary 05A05, 11P99, 11T99

Keywords:

Restricted sumsets
Uncertainty principle
Erdős-Heilbronn conjecture

Abstract

In this paper, we develop Terence Tao's harmonic analysis method and apply it to restricted sumsets. The well-known CauchyDavenport theorem asserts that if $\emptyset \neq A, B \subseteq \mathbb{Z} / p \mathbb{Z}$ with p a prime, then $|A+B| \geqslant \min \{p,|A|+|B|-1\}$, where $A+B=\{a+b: a \in A$, $b \in B\}$. In 2005, Terence Tao gave a harmonic analysis proof of the Cauchy-Davenport theorem, by applying a new form of the uncertainty principle on Fourier transform. We modify Tao's method so that it can be used to prove the following extension of the Erdős-Heilbronn conjecture: If A, B, S are non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$ with p a prime, then $|\{a+b: a \in A, b \in B, a-b \notin S\}| \geqslant$ $\min \{p,|A|+|B|-2|S|-1\}$.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a prime, and let A and B be two subsets of the finite field

$$
\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}=\{\bar{r}=r+p \mathbb{Z}: r \in \mathbb{Z}\}
$$

Set

$$
\begin{equation*}
A+B=\{a+b: a \in A, b \in B\} \tag{1}
\end{equation*}
$$

[^0]0022-314X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2008.05.009
and

$$
\begin{equation*}
A+B=\{a+b: a \in A, b \in B, a \neq b\} . \tag{2}
\end{equation*}
$$

The well-known Cauchy-Davenport theorem (cf. [3] and [9, p. 44]) asserts that

$$
\begin{equation*}
|A+B| \geqslant \min \{p,|A|+|B|-1\} . \tag{3}
\end{equation*}
$$

In 1964 P. Erdős and H. Heilbronn [5] conjectured that

$$
\begin{equation*}
|A+A| \geqslant \min \{p, 2|A|-3\} ; \tag{4}
\end{equation*}
$$

this was confirmed by J.A. Dias da Silva and Y.O. Hamidoune [4] in 1994. In 1995-1996 N. Alon, M.B. Nathanson and I.Z. Ruzsa [2] proposed the so-called polynomial method to handle similar problems. By the powerful polynomial method (cf. [1,2]), many interesting results on restricted sumsets have been obtained (see, e.g., [7,8,10-12]).

In 2005, Terence Tao [13] developed a harmonic analysis method in this area, applying a new form of the uncertainty principle on Fourier transform. Let p be a prime. For a complex-valued function $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}$, we define its support $\operatorname{supp}(f)$ and its Fourier transform $\hat{f}: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ as follows:

$$
\begin{equation*}
\operatorname{supp}(f)=\left\{x \in \mathbb{Z}_{p}: f(x) \neq 0\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}(x)=\sum_{a \in \mathbb{Z}_{p}} f(a) e_{p}(a x) \quad \text { for all } x \in \mathbb{Z}_{p} \tag{6}
\end{equation*}
$$

where $e_{p}(\bar{r})=e^{-2 \pi i r / p}$ for any $r \in \mathbb{Z}$.
Here is the main result of the paper [13].
Theorem 1. (See T. Tao [13].) Let p be an odd prime. If $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ is not identically zero, then

$$
\begin{equation*}
|\operatorname{supp}(f)|+|\operatorname{supp}(\hat{f})| \geqslant p+1 \tag{7}
\end{equation*}
$$

Moreover, given two non-empty subsets A and B of \mathbb{Z}_{p} with $|A|+|B| \geqslant p+1$, we can find a function $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ such that $\operatorname{supp}(f)=A$ and $\operatorname{supp}(\hat{f})=B$.

Using this theorem Tao [13] gave a new proof of Cauchy-Davenport theorem. Note that the inequality (7) was also discovered independently by Andráas Biró (cf. [6,13]). In this article we adapt the method further and use the refined method to deduce the following result.

Theorem 2. Let A and B be non-empty subsets of \mathbb{Z}_{p} with p a prime, and let

$$
\begin{equation*}
C=\{a+b: a \in A, b \in B, a-b \notin S\} \tag{8}
\end{equation*}
$$

with $S \subseteq \mathbb{Z}_{p}$. Then we have

$$
\begin{equation*}
|C| \geqslant \min \{p,|A|+|B|-2|S|-1\} . \tag{9}
\end{equation*}
$$

Theorem 2 in the case $S=\emptyset$ reduces to the Cauchy-Davenport theorem. When $A=B$ and $S=\{0\}$, Theorem 2 yields the Erdős-Heilbronn conjecture. In the case $p \neq 2$ and $\emptyset \neq S \subset \mathbb{Z}_{p}$, Pan and Sun [10, Corollary 2] obtained the stronger inequality

$$
\begin{equation*}
|C| \geqslant \min \{p,|A|+|B|-|S|-2\} \tag{10}
\end{equation*}
$$

via the polynomial method. The second author (cf. [7]) ever conjectured that 2 in (10) can be replaced by 1 if $|S|$ is even. We conjecture that when $A \neq B$ we can also substitute 1 for 2 in (10).

2. Proof of Theorem 2

Without loss of generality, we let $|A| \leqslant|B|$. When $|A|+|B| \leqslant 2|S|+1$ or $|A|=1$, (9) holds trivially. Below we suppose that $|A|+|B|>2|S|+1$ and $|A| \geqslant 2$.

In the case $p=2$, we have $A=B=\mathbb{Z}_{2}$ and $C=(A+B) \backslash S=\mathbb{Z}_{2} \backslash S$, thus

$$
|C|=2-|S| \geqslant \min \{2,|A|+|B|-2|S|-1\}=\min \{2,3-2|S|\}
$$

Below we assume that p is an odd prime. Set $k=p-|A|+1 \in[1, p-1]$ and $l=p-|B|+1 \in$ [1, $p-1]$. Then $k+l \leqslant 2 p-2|S|$ and $l \leqslant p-|S|$ since $2|B| \geqslant|A|+|B| \geqslant 2|S|+2$. Define

$$
\begin{equation*}
\hat{A}=\{\overline{0}, \ldots, \overline{k-1}\}=\{\overline{0}, \ldots, \overline{p-|A|}\} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{B}=\{\overline{p-|S|-l+1}, \ldots, \overline{p-|S|}\}=\{\overline{|B|-|S|}, \ldots, \overline{p-|S|}\} \tag{12}
\end{equation*}
$$

Clearly, $|\hat{A}|=p+1-|A|$ and $|\hat{B}|=p+1-|B|$. By Theorem 1 there are functions $f, g: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\operatorname{supp}(f)=A, \quad \operatorname{supp}(\hat{f})=\hat{A}, \quad \operatorname{supp}(g)=B, \quad \operatorname{supp}(\hat{g})=\hat{B} \tag{13}
\end{equation*}
$$

Now we define a function $F: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
F(x)=\sum_{a \in \mathbb{Z}_{p}} f(a) g(x-a) \prod_{d \in S}\left(e_{p}(x-a)-e_{p}(a-d)\right) \tag{14}
\end{equation*}
$$

For each $x \in \operatorname{supp}(F)$, there exists $a \in \operatorname{supp}(f)$ with $x-a \in \operatorname{supp}(g)$ and $d:=a-(x-a) \notin S$, hence $x=a+(x-a) \in C$. Therefore

$$
\begin{equation*}
\operatorname{supp}(F) \subseteq C \tag{15}
\end{equation*}
$$

For any $x \in \mathbb{Z}$ we have

$$
\hat{F}(x)=\sum_{b \in \mathbb{Z}_{p}} F(b) e_{p}(b x)=\sum_{a \in \mathbb{Z}_{p}} \sum_{b \in \mathbb{Z}_{p}} f(a) g(b-a) e_{p}(b x) P(a, b)
$$

where

$$
\begin{aligned}
P(a, b) & =\prod_{d \in S}\left(e_{p}(b-a)-e_{p}(a-d)\right) \\
& =\sum_{T \subseteq S}(-1)^{|T|} e_{p}((|S|-|T|)(b-a)) e_{p}\left(|T| a-\sum_{d \in T} d\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\hat{F}(x) & =\sum_{T \subseteq S}(-1)^{|T|} e_{p}\left(-\sum_{d \in T} d\right) \sum_{a \in \mathbb{Z}_{p}} f(a) e_{p}(a x+|T| a) \sum_{b \in \mathbb{Z}_{p}} g(b-a) e_{p}((b-a) x+(|S|-|T|)(b-a)) \\
& =\sum_{T \subseteq S}(-1)^{|T|} e_{p}\left(-\sum_{d \in T} d\right) \hat{f}(x+\overline{|T|}) \hat{g}(x+\overline{|S|-|T|})
\end{aligned}
$$

For $T \subseteq S$, if $\overline{p-|S|}+\overline{|S|-|T|} \in \operatorname{supp}(\hat{g})=\hat{B}$, then we must have $|T|=|S|$ (i.e., $T=S$) by the definition of \hat{B}. It follows that

$$
\hat{F}(\overline{p-|S|})=(-1)^{|S|} e_{p}\left(-\sum_{d \in S} d\right) \hat{f}(\overline{0}) \hat{g}(\overline{p-|S|}) \neq 0
$$

since $\overline{0} \in \hat{A}=\operatorname{supp}(\hat{f})$ and $\overline{p-|S|} \in \hat{B}=\operatorname{supp}(\hat{g})$. With the helps of (15) and Theorem 1, we get

$$
|C| \geqslant|\operatorname{supp}(F)| \geqslant p+1-|\operatorname{supp}(\hat{F})| .
$$

Suppose that $x \in \operatorname{supp}(\hat{F})$. By the above, there is a subset T of S such that $x+\overline{|T|} \in \operatorname{supp}(\hat{f})=\hat{A}$ and $x+\overline{|S|-|T|} \in \operatorname{supp}(\hat{g})=\hat{B}$. As $0 \leqslant|T| \leqslant|S|$,

$$
x+\overline{|T|} \in \hat{A} \quad \Rightarrow \quad x \in\{\overline{p-|S|}, \ldots, \overline{p-1}, \overline{0}, \ldots, \overline{k-1}\}
$$

and

$$
x+\overline{|S|-|T|} \in \hat{B} \quad \Rightarrow \quad x \in\{\overline{|B|-2|S|}, \ldots, \overline{p-|S|}\}
$$

Therefore $x=\overline{p-|S|}$, or $x=\bar{r}$ for some $r \in[|B|-2|S|, k-1]$.
If $|A|+|B| \geqslant p+2|S|+1$, then $k-1=p-|A|<|B|-2|S|$, hence $\operatorname{supp}(\hat{F})=\{\overline{p-|S|}\}$ and thus $|C| \geqslant p$. If $|A|+|B|<p+2|S|+1$, then

$$
|\operatorname{supp}(\hat{F})| \leqslant 1+k-(|B|-2|S|)=k+l-p+2|S|
$$

and hence

$$
|C| \geqslant p+1-k-l+p-2|S|=|A|+|B|-2|S|-1
$$

So (9) always holds. We are done.

Acknowledgment

The authors are grateful to the referee for his/her helpful comments.

References

[1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999) 7-29.
[2] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996) 404-417.
[3] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30-32.
[4] J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146.
[5] P. Erdős, H. Heilbronn, On the addition of residue classes modulo p, Acta Arith. 9 (1964) 149-159.
[6] P.E. Frenkel, Simple proof of Chebotarëv's theorem on roots of unity, preprint, arXiv: math.AC/0312398 (version 3), 2004.
[7] Q.H. Hou, Z.W. Sun, Restricted sums in a field, Acta Arith. 102 (2002) 239-249.
[8] J.X. Liu, Z.W. Sun, Sums of subsets with polynomial restrictions, J. Number Theory 97 (2002) 301-304.
[9] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math., vol. 165, Springer, New York, 1996.
[10] H. Pan, Z.W. Sun, A lower bound for $|\{a+b: a \in A, b \in B, P(a, b) \neq 0\}|$, J. Combin. Theory Ser. A 100 (2002) $387-393$.
[11] H. Pan, Z.W. Sun, Restricted sumsets and a conjecture of Lev, Israel J. Math. 154 (2006) 21-28.
[12] Z.W. Sun, On Snevily's conjecture and restricted sumsets, J. Combin. Theory Ser. A 103 (2003) 291-304.
[13] Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005) 121-127.

[^0]: \& The first author is supported by Program for Excellent Talents in Huaiyin Teachers College. The second author is supported by the National Natural Science Foundation of People's Republic of China.

 * Corresponding author.

 E-mail addresses: guosong77@hytc.edu.cn (S. Guo), zwsun@nju.edu.cn (Z.-W. Sun). URL: http://math.nju.edu.cn/?zwsun (Z.-W. Sun).

