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A direct CP asymmetry in inclusive semileptonic B(s) decays vanishes by CPT to lowest order in weak
interactions. Calculating the asymmetry at second-order-weak interactions in the Cabibbo–Kobayashi–
Maskawa framework we find Asl = (−3.2 ± 0.9) × 10−9. A maximal asymmetry which is two orders of
magnitude larger is estimated in a left–right-symmetric model. This quite generic upper bound implies
negligible effects on wrong-sign lepton asymmetries in B0 and Bs decays.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

The D0 Collaboration working at the Fermilab Tevatron has re-
ported recently a charge asymmetry in like-sign dimuon events
produced in p̄p collisions. The measured asymmetry [1,2],

Ab
sl ≡ N++ − N−−

N++ + N−−
= [−0.957 ± 0.251(stat) ± 0.146(syst)

]
%, (1)

was interpreted as due to CP violation in B0–B̄0 or Bs–B̄s mixing,

Ab
sl = (0.506 ± 0.043)Ad

sl + (0.494 ± 0.043)As
sl. (2)

(An asymmetry consistent with zero was measured a few years ago
by the CDF Collaboration using fewer same-sign dimuon events
produced in p̄p collisions with a lower integrated luminosity [3].)
The experimental result (1) differs by 3.2 standard deviations
from much smaller asymmetries predicted within the Cabibbo–
Kobayashi–Maskawa (CKM) framework [4],

Ad
sl = (−4.8+1.0

−1.2

) × 10−4, As
sl = (2.06 ± 0.57) × 10−5. (3)

Unambiguous evidence for physics beyond the Standard Model re-
quires (a) showing that the measured asymmetry is, indeed, due
to B0 or Bs semileptonic decays and not due to background pro-
cesses [5], and (b) confirming an anomalously large negative asym-
metry with a somewhat higher statistical significance than the
current one.
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In view of the tiny CKM predictions (3) for Ak
sl (k = d, s) from

second-order |�B| = 2 weak transitions, attention has been of-
ten drawn to potentially larger corrections to the two asymme-
tries from new |�B| = 2 flavor physics at a TeV or higher energy
scale [6]. In this Letter we will study |�B| = 1 contributions to
Ak

sl from CP violation in inclusive semileptonic decays, which have
been systematically neglected in all earlier studies.

In Section 2 we review briefly the usual treatment of the asym-
metry Ak

sl involving CP violation in B0
k –B̄0

k mixing, introducing a
new contribution from direct CP violation. Section 3 discusses an
argument based on CPT for the vanishing of the new contribution
at lowest order in weak interactions. We perform a second-order
calculation of the inclusive semileptonic asymmetry within the
CKM framework. Maximal values of the asymmetry in a left–right
extension of the Standard Model are studied in Section 4. In Sec-
tion 5 we estimate for completeness second-order amplitudes for
neutral B mesons decaying directly into wrong-sign leptons while
Section 6 concludes.

2. Including a direct asymmetry in Ak
sl

One starts by defining neutral B mass eigenstates Bk
L and Bk

H ,
with mass and width differences �mk and �Γk , in terms of flavor
states B0

k and B̄0
k ,∣∣Bk

L

〉 = pk
∣∣B0

k

〉 + qk
∣∣B̄0

k

〉
,∣∣Bk

H

〉 = pk
∣∣B0

k

〉 − qk
∣∣B̄0

k

〉
. (4)

Time evolution of flavor states [7,8],∣∣B0(t)
〉 = gk+(t)

∣∣B0〉 − (qk/pk)gk−(t)
∣∣B̄0〉,
k k k
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∣∣B̄0
k(t)

〉 = gk+(t)
∣∣B̄0

k

〉 − (pk/qk)gk−(t)
∣∣B0

k

〉
, (5)

implies time-dependent decay rates for inclusive semileptonic de-
cays for wrong-sign leptons B0

k (t) → X�−ν̄� (� = e,μ) and their
charge conjugates,

dΓ
[

B0
k (t) → X�−ν̄�

]
/dt =

∣∣∣∣ qk

pk
Āk

�

∣∣∣∣
2∣∣gk−(t)

∣∣2
,

dΓ
[

B̄0
k (t) → X�+ν�

]
/dt =

∣∣∣∣ pk

qk
Ak

�̄

∣∣∣∣
2∣∣gk−(t)

∣∣2
, (6)

where

Āk
� ≡ A

(
B̄0

k → X�−ν̄�

)
, Ak

�̄
≡ A

(
B0

k → X�+ν�

)
, (7)∣∣gk−

∣∣2 = 1

2
e−Γkt[cosh(�Γkt/2) − cos(�mkt)

]
. (8)

By definition Ak
sl is the time-dependent asymmetry of wrong-

sign leptons due to mixing,

Ak
sl(t) ≡ dΓ [B̄0

k (t) → X�+ν�]/dt − dΓ [B0
k (t) → X�−ν̄�]/dt

dΓ [B̄0
k (t) → X�+ν�]/dt + dΓ [B0

k (t) → X�−ν̄�]/dt
. (9)

Usually, one neglects a direct CP asymmetry in B0
k → X�+ν� . As-

suming | Āk
�| = |Ak

�̄
| one finds [7,8],

Ak
sl(mixing) = 1 − |qk/pk|4

1 + |qk/pk|4 ≈ Im

(
Γ k

12

Mk
12

)
. (10)

That is, the asymmetry caused by CP violation in B0
k –B̄0

k mixing
is given by Im(Γ k

12/Mk
12) where Mk

12 and Γ k
12 are off-diagonal ele-

ments of Hermitian matrices representing B0
k ↔ B̄0

k transitions via
off-shell (dispersive) and on-shell (absorptive) intermediate states,
respectively. The CKM predictions (3) for Ak

sl(mixing) are based on
calculations of this imaginary part for B0 and Bs [4].

We now define a direct CP asymmetry in inclusive semileptonic
decays,

Ak
sl(direct) ≡ | Āk

�|2 − |Ak
�̄
|2

| Āk
�|2 + |Ak

�̄
|2 . (11)

Eqs. (6) and (9) imply an expression for Ak
sl(t) which includes both

the asymmetry in mixing and the direct asymmetry. Neglecting
terms quadratic in the Ak

sl(mixing) and Ak
sl(direct), one has

Ak
sl(t) = Ak

sl(mixing) − Ak
sl(direct)

1 − Ak
sl(mixing)Ak

sl(direct)

≈ Ak
sl(mixing) − Ak

sl(direct). (12)

We note that this asymmetry of time-dependent decay rates is
actually time-independent as in the special case (10) of CP vio-
lation in mixing alone. In the following two sections we will study
Ak

sl(direct).

3. Direct asymmetry in the CKM framework

The inclusive semileptonic direct asymmetries in B0 and Bs de-
cays are equal to each other to a good approximation as Γ (Bs →
X�+ν�) = Γ (B0 → �+ Xν�) + O(msΛQCD/m2

b). (See also calculation
below.) Furthermore, in the isospin symmetry limit the asymme-
try in B0 decays is equal to that measured directly in self-tagged
B+ → X�+ν� by comparing the rate for this inclusive process with
Fig. 1. Tree diagram for b → c�−ν̄� representing B̄ → X(C=1)�
−ν̄� .

that of its charge-conjugate. For this reason we omit the super-
script k in Ak

sl(direct) by defining a generalized direct semilep-
tonic asymmetry for non-strange (charged or neutral) or strange
B mesons,

Asl ≡ Γ (B̄ → X�−ν̄�) − Γ (B → X�+ν�)

Γ (B̄ → X�−ν̄�) + Γ (B → X�+ν�)
. (13)

It has often been stated that Asl vanishes because of CPT invari-
ance [9–11]. CPT implies equal total decay widths for a particle and
its antiparticle. A generalization of this theorem applies to partial
decay rates for a set of final states, connected among themselves
by strong and electromagnetic final state interactions but not con-
nected by such interactions to other states. The inclusive decays
B → X(C=−1)�

+ν� and B → X(C=0)�
+ν� are two special cases to

which this generalization applies.
A violation of the theorem of equal partial rates for B → X�+ν�

and B̄ → X�−ν̄� is possible if one considers weak interactions
which connect the final states X�+ν� with intermediate hadronic
states. That is, a small nonvanishing asymmetry Asl may be ob-
tained by considering an interference between the dominant tree
amplitude for B → X�+ν� and an amplitude which is second order
in weak interactions. A similar interference has been shown to im-
ply a tiny CP asymmetry in inclusive semileptonic rare top quark
decays, t → d�+ν� [12,13].

A very crude upper bound on this asymmetry is

|Asl| < 1

4π

G F√
2
(mb − mc)

2 ∼ few × 10−6. (14)

This estimate includes a suppression by a loop factor 1/4π and a
phase space factor (mb − mc)

2. Further suppression of the asym-
metry may be due to a small weak phase difference between the
two interfering amplitudes and due to a possible extra dynamical
suppression of the second-order amplitude. We will show below
that, indeed, such suppression factors exist in the CKM framework.
The above upper limit is one order of magnitude smaller than the
estimate (3) for a CP asymmetry in Bs–B̄s mixing, and two orders
of magnitude below the asymmetry in B0–B̄0 mixing.

We will now calculate the CP asymmetry in CKM favored B →
X(C=−1)�

+ν� decays dominated by a tree amplitude proportional
to V ∗

cb describing a quark transition b̄ → c̄�+ν� . In order to pro-
duce an asymmetry, the second amplitude, leading to the same
final states, must involve a CKM factor with a different weak phase.
A second-order amplitude fulfilling these two requirements con-
sists of a product of a penguin amplitude for b̄ → c̄cs̄ involving
V ∗

tb Vts (see discussion below) and a tree amplitude for cs̄ → �+ν�

involving V ∗
cs . Two diagrams, describing the tree amplitude for

b → c�−ν̄� and the second-order amplitude for this transition, are
shown in Figs. 1 and 2, respectively. A relative CP-conserving phase
of 90◦ between the two amplitudes follows by taking the ab-
sorptive (i.e., imaginary) part of the second-order amplitude. The
absorptive part is described by a discontinuity cut crossing the
c̄s lines in the second-order diagram, which amounts to summing
over corresponding on-shell intermediate states.

In order to calculate the asymmetry we write down expressions
for an effective Hamiltonian associated with each of the three four-
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Fig. 2. Second-order diagram for b → c�−ν̄� representing B̄ → X(C=1)�
−ν̄� .

fermion vertices appearing in the two diagrams in Figs. 1 and 2.
The tree diagram is obtained from

Hb→c�−ν̄�

eff = G F√
2

V cb
[
c̄γ μ(1 − γ5)b

][
�̄γμ(1 − γ5)ν�

]
. (15)

The Hamiltonian related to the first vertex in the second-order di-
agram is [14],

Hb→cc̄s(pen)

eff = G F√
2

Vtb V ∗
ts(c3 O 3 + c4 O 4 + c5 O 5 + c6 O 6), (16)

c3(mb) = 0.012,

O 3 = [
s̄αγ μ(1 − γ5)bα

][
c̄βγμ(1 − γ5)cβ

]
,

c4(mb) = −0.033,

O 4 = [
s̄αγ μ(1 − γ5)bβ

][
c̄βγμ(1 − γ5)cα

]
,

c5(mb) = 0.0096,

O 5 = [
s̄αγ μ(1 − γ5)bα

][
c̄βγμ(1 + γ5)cβ

]
,

c6(mb) = −0.040,

O 6 = [
s̄αγ μ(1 − γ5)bβ

][
c̄βγμ(1 + γ5)cα

]
. (17)

Here α, β are color indices. The Wilson coefficients ci (i = 3–6)

have been calculated in the next-to-leading logarithmic approxi-
mation (NLL). The second vertex in this diagram is described by

Hc̄s→�−ν̄�

eff = G F√
2

V cs
[
c̄γ μ(1 − γ5)s

][
�̄γμ(1 − γ5)ν�

]
. (18)

We are interested in the imaginary part of the amplitude in-
volving the c̄s loop illustrated in Fig. 2. Contributions of the
(V − A)(V + A) operators O 5 and O 6 are all proportional to ms

and some are also proportional to m� . [See Eqs. (20) and (21).]
These contributions will be neglected. We consider the dominant
terms from O 3 and O 4. After Fierz rearrangement of these terms
the second-order loop amplitude is given by

M1 = G2
F

2
(c3 + NC c4)Vtb V ∗

ts V cs

× [
c̄γμ(1 − γ5)b

]
T μν

[
�̄γν(1 − γ5)ν�

]
, (19)

where

T μν ≡ −
∫

d4k

(2π)4
Tr

[
γ μ(1 − γ5)

i(/k + /q + ms)

(k + q)2 − m2
s

× γ ν(1 − γ5)
i(/k + mc)

k2 − m2
c

]
. (20)

The minus sign takes account of the closed fermion loop. The most
general form of T μν is

T μν = T1 gμν + T2qμqν . (21)

We shall be interested in the T1 part, neglecting the T2 contribu-
tion to M1 which is proportional to m� . Contracting T μν with gμν

and qμqν we obtain
gμν T μν = 4T1 + q2T2, qμqν T μν = q2T1 + (
q2)2

T2, (22)

so

T1 = 1

3

(
gμν T μν − qμqν

q2
T μν

)
. (23)

Performing the appropriate traces, one finds

T1 = 1

6

∫
d4k

π4

(
−2(q · k)2

q2
− k2 − 3k · q

)

× [
(k + q)2 − m2

s

]−1[
k2 − m2

c

]−1
. (24)

To take twice the absorptive part [15], we put the internal prop-
agators on the mass shell, replacing[
(k + q)2 − m2

s

]−1 ⇒ −2π iδ
[
(k + q)2 − m2

s

]
,[

k2 − m2
c

]−1 ⇒ −2π iδ
[
k2 − m2

c

]
. (25)

On-shell, we have k2 = m2
c and (k + q)2 = m2

s , implying 2k · q =
m2

s −m2
c −q2. Simplifying by neglecting ms , we find the expression

in the large brackets in Eq. (24) reduces to (1/2q2)(2q4 − m2
c q2 −

m4
c ). The delta functions reduce the loop integral to an integral

over two-body phase space:∫
d4k δ

[
(k + q)2 − m2

s

]
δ
[
k2 − m2

c

]
=

∫
d4k

∫
d4 p δ4(q + k − p)δ

(
p2 − m2

s

)
δ
(
k2 − m2

c

)
=

∫
d3k

2Ek

∫
d3 p

2E p
δ4(q + k − p) = (2π)2

∫
d2(ps), (26)

where the two-body phase space integral in the limit ms = 0 is∫
d2(ps) = q2 − m2

c

8πq2
.

We define an n-body phase space:

∫
dn(ps) ≡ (2π)4

[
n∏
i

∫
d3 pi

2Ei(2π)3

]
δ4(Pfinal − P initial). (27)

Putting the pieces together, we find

T1(abs) = −q2 − m2
c

12πq2

(
2q4 − m2

c q2 − m4
c

q2

)

= − (q2 − m2
c )

2

12π(q2)2

(
2q2 + m2

c

)
, (28)

M1(abs) = G2
F

2
(c3 + NC c4)Vtb V ∗

ts V cs T1(abs)
(
q2)[c̄γ μ(1 − γ5)b

]
× [

�̄γμ(1 − γ5)ν�

]
. (29)

Given the tree level amplitude M0 in Eq. (15), the expression
for the semileptonic asymmetry then becomes, performing the
three-body phase space integrals,

Asl = 2
∫

d3(ps) Im(M0M†
1(abs))∫

d3(ps) |M0|2

= −(c3 + NC c4)
Im[V ∗

tb Vts V cb V ∗
cs]

|V cb|2
G F√

2

m2
b

6π
R, (30)

where
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Table 1
Range of constituent-quark masses providing adequate descriptions on charmonium
and bottomonium spectra [16].

mb (GeV) mc (GeV) rc = m2
c /m2

b R m2
b R (GeV2)

4.5 1.082 0.058 0.296 5.99
4.75 1.359 0.082 0.207 4.67
5.0 1.626 0.106 0.136 3.39

R ≡
∫

dz F (z)G(z)∫
dz F (z)

, (31)

F (z) ≡ w(z)(zw1 + w2 w3),

G(z) ≡ (1 − rc/z)2(2z + rc). (32)

Here rc ≡ m2
c /m2

b , z ≡ q2/m2
b , w1 ≡ 1 + rc − z, w2 ≡ 1 − rc + z,

w3 ≡ 1 − rc − z, and w(z) ≡ (w2
2 − 4z)1/2. The upper limit of in-

tegration in both integrals in the numerator and denominator of R
is zmax = (1 − √

rc )2. The lower limit of the integral in the numer-
ator is zmin = rc (in the limit that the strange quark mass may be
neglected), while the lower limit in the denominator is zero in the
limit of vanishing lepton mass. Thus the denominator obtains the
well-known expression for the kinematic factor in b → c�ν̄� ,

2

(1−√
rc)

2∫
0

dz F (z) = 1 − 8rc + 8r3
c − r4

c + 12r2
c ln(1/rc). (33)

For mc and mb we use constituent masses, which we expect to
simulate QCD effects to a certain degree. These masses were found
in Ref. [16] to reproduce charmonium and bottomonium spectra
for a rather wide range as long as mb − mc lay within a narrower
range. The masses considered there are summarized in Table 1, to-
gether with the corresponding values of rc , R , and Rm2

b (in which
the dependence of R on mb is partially compensated). The uncer-
tainty on Rm2

b is approximately 28%, which we carry in our final
estimate of the asymmetry.

Using CKM fits [17],

Im(V �
tb Vts V cb V �

cs)

|V cb|2 ≈ Arg
(

V �
tb Vts V cb V �

cs

) ≡ −βs = −0.018, (34)

we then find

As� = (−3.2 ± 0.9) × 10−9. (35)

4. Direct asymmetry beyond the Standard Model

A crude estimate for a maximum asymmetry based on dimen-
sional arguments was given in Eq. (14). It applies to a generic new
physics contribution to the asymmetry occurring at one-loop or-
der. Here we wish to be more concrete by considering a specific
model leading to CP-violation in B → X�+ν� at one loop, without
involving suppression factors which occur in the CKM framework.

An example that falls into this category is a left–right-symmetric
model [18], in which the interaction of two charged vector-bosons
W1 and W2 is given by

LLR
W = g√

2
ūi

(
cos ξ V L

ijγ
μ P L − eiω sin ξ V R

ij γ
μ P R

)
d j W1μ

+ g√
2

ūi
(
e−iω sin ξ V L

ijγ
μ P L + cos ξ V R

ij γ
μ P R

)
d j W2μ

+ H.c. (36)

Here P L,R ≡ (1 ± γ5)/2 while V L,R are CKM-like matrices for left
(right)-handed quark fields. The angle ξ is a (small) mixing angle
between the two charged vector-bosons W1 and W2 and ω is a
new CP phase related to this mixing. The light mass eigenstate is
identified with the Standard Model (SM) gauge boson W L , W1 ∼
W L with M1 = MW .

The interaction (36) contributes to the asymmetry in B →
X�+ν� at one-loop order. We consider a W1 exchange diagram as
in Fig. 1, with self-energy insertions on the W1 line of c̄s and ūd
quark loops and �′ν�̄′ (�′ = [e,μ] �= �) and τ ν̄τ leptonic loops. Elas-
tic weak rescattering from an intermediate �ν̄ state is not included
for consistency with CPT [19]. Loop amplitudes involving W2 ex-
change or mixed W1–W2 exchanges are expected to be smaller
because a suppression factor sin ξ is replaced in these amplitudes
by M2

1/M2
2. One obtains M2 > 1.6 TeV if V L = V R [20] (a later

estimate gave 1.4 TeV [21]) but this bound can be relaxed if the
left-hand- and right-hand-quark mixings are different [21]. For the
case V L = V R , which we consider below, the W1 exchange diagram
with self-energy insertions dominates over these other contribu-
tions.

The absorptive part of the dominant one-loop amplitude is

MLR
1(abs) = − G2

F

2
NC sin ξ cos3 ξ V R

cbeiω · T LR
1(abs)

(
q2)

· [c̄γ μ(1 + γ5)b
][

�̄γμ(1 − γ5)ν�

]
, (37)

with

T LR
1(abs)

(
q2) = ∣∣V L

cs

∣∣2
T cs

1(abs) + ∣∣V L
ud

∣∣2
T ud

1(abs)

+ (1/NC )
(
T

�′ν�′
1(abs) + T τντ

1(abs)

)
. (38)

Here T cs
1(abs)(q

2) is the same as in the SM, T cs
1(abs) ≡ T1(abs) , while

T ud
1(abs) , T

�′ν�′
1(abs) and T τντ

1(abs) correspond to a ūd loop and to the two
leptonic loops. Using the notations of Eq. (32) and the approxima-
tion mu = md = m�′ 
 0, mτ 
 mc , one has

T τντ
1(abs)(z) 
 T cs

1(abs)(z) = − m2
b

12π
G(z),

T
�′ν�′
1(abs) 
 T ud

1(abs)(z) = −m2
b

6π
z. (39)

Comparing the contribution of this amplitude to the asymmetry
with the asymmetry calculated in the SM, we obtain a ratio

ALR
s�

ASM
s�

= 8 sin ξ cos3 ξ
mc

mb

NC

c3 + NC c4

ILR

ISM

RLR

RSM
. (40)

This ratio involves two enhancement factors following from a sup-
pression which occurs in the Standard Model but not in its left–
right-symmetric extension. The first factor, NC /(c3 + NC c4) = −34,
originates in a loop suppression of the Wilson coefficients for pen-
guin operators in (16). A second potential enhancement is due to
the ratio of weak phase factors ILR/ISM , where

ISM ≡ Im[V L∗
tb V L

ts V L
cb V L∗

cs ]
|V L

cb|2
, ILR ≡ Im[V L

cb V R∗
cb e−iω]

|V L
cb|2

. (41)

While this factor is −0.018 in the SM, it may be of order one in
the LR model if V R

cb = V L
cb and if ω is large. The last ratio in (40)

depends on quark couplings and on phase space. Neglecting u,d
and s quark masses and setting |V L

cs|2 = |V L
ud|2 = 1, it is given by

RLR

RSM
=

∫
dz zw(z)G(z) + 2

∫
dz z2 w(z)∫

dz F (z)G(z)
. (42)

The upper limit of integration in the three integrals is zmax =
(1 − √

rc )2 as in (31). The lower limit of the first integral in the
numerator and the one in the denominator is zmin = rc , while that
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Fig. 3. Second-order quark diagrams contributing to B0
k → X�−ν̄� .

of the second integral in the numerator is zero. Taking rc = 0.082
as a central value in Table 1, one finds RLR/RSM = 0.93.

Combining all factors and assuming that CP-violation in semi-
leptonic B decays is dominated by the phase ω, one obtains

∣∣∣∣ ALR
s�

ASM
s�

∣∣∣∣ 
 4 × 103 |V R
cb|

|V L
cb|

| sin ξ sinω|. (43)

A recent study of phenomenological constraints on right-handed
quark currents obtains an upper bound on a b → c right-handed
coupling of several percent relative to a left-handed coupling [22],
|(V R

cb/V L
cb) tan ξ cosω| = (2.5 ± 2.5) × 10−2. A comparable upper

bound may be obtained on |(V R
cb/V L

cb) tan ξ sinω| from a recent
measurement of CP asymmetry in B+ → J/ψ K + [23], ACP(B+ →
J/ψ K +) = [−0.76 ± 0.50(stat) ± 0.22(syst)] × 10−2. This bound
requires assuming that a final state interaction phase difference
between two interfering B → J/ψ K hadronic amplitudes, for tree-
level (V − A)(V − A) and (V + A)(V − A) b → cc̄s transitions, is
not small. Thus, the asymmetry in the left–right-symmetric model
may be at most two orders of magnitude larger than in the Stan-
dard Model.

5. Wrong-sign leptons without neutral B(s) mixing

In Section 2 we have assumed A(B̄0
k → X�+ν�) = A(B0

k →
X�−ν̄�) = 0, neglecting second-order-weak contributions to these
two processes which occur in the CKM framework leading to
“wrong-sign” leptons without B0

k –B̄0
k mixing. Interference between

these second-order contributions and first-order tree amplitudes
for B̄0

k → X�−ν̄� and B0
k → X�+ν� leads to additional time-

dependent terms in Eqs. (6) of the forms e−Γkt sinh(�Γkt/2) and
e−Γkt sin(�mkt). Second-order amplitudes for B0

k → X�−ν̄� have
been discussed in Ref. [24] without estimating their magnitudes.
For completeness, as we have studied tiny CP asymmetries from
second-order amplitudes, we will estimate the ratio of second-
order amplitudes for “wrong-sign” leptons and first-order ampli-
tudes for “right-sign” leptons, showing that this ratio is negligibly
small.

Second-order amplitudes for B0
k → X�−ν̄� are described by dia-

grams plotted in Fig. 3, in which both the b̄ quark and the specta-
tor k quark undergo weak decays into q̄ck̄ and q�−ν̄� , respectively,
by exchanging q = u, c, t quarks. These second-order amplitudes,
involving CKM factors V ∗

qb Vqd V cd and V ∗
qb Vqs V cs in B0 and Bs de-

cays, lead to final hadronic states with quark structures X = cd̄
and X = cs̄, respectively, as in first-order amplitudes for B̄0 and B̄s

semileptonic decays.
Let us denote the second-order-weak amplitude for B0
k decay by

Ak
� ≡ A(B0

k → X�−ν̄�). We wish to estimate the ratios of semilep-
tonic rates

Rk =
∣∣∣∣ Ak

�

Āk
�

∣∣∣∣
2
Φ2

Φ1
, (44)

where Φ1,2 are the appropriate phase-space factors for the first-
order and second-order processes. By neglecting the effect of the
spectator quark in Āk

� we are treating the first-order process as
leading to a three fermion final state, while the second-order dia-
gram illustrated in Fig. 3 involves four fermions in the final state.
A naive dimensional analysis then leads to

Φ2

Φ1
= (mb − mc)

2

16π2
. (45)

The ratio Ak
�/ Āk

� must involve a factor of G F f B which has a
suitable dimension. The momentum passing through the propa-
gator of the fermion q = u, c, t is of order mb , and kinematic
factors of the same order will cancel it for q = u, c, while the
contribution of q = t is highly suppressed by the heavy t-quark
mass. The corresponding CKM factors are V ∗

ub V us V cs ∼ O(λ4) (q =
u), V ∗

cb V cs V cs ∼ O(λ2) (q = c) and V ∗
ub V ud V cd ∼ O(λ4) (q = u),

V ∗
cb V cd V cd ∼ O(λ4) (q = c) for Bs and B0 decays, respectively,

where λ = 0.23. Thus, the c quark dominates As
� with a CKM fac-

tor comparable to V cb governing Ās
� , while the contributions of

the u and c quarks in Ad
� are comparable to each other and are

suppressed by λ2 
 1/20 relative to the CKM factor in Ād
� . Taking

mb − mc = 3.4 GeV (see Table 1 above for values of mb and mc)
and f B = 230 MeV, one then finds

Rs ∼ (mb − mc)
2

16π2
( f B G F )2 
 5.3 × 10−13, (46)

Rd ∼ (1/20)2 Rs 
 1.3 × 10−15. (47)

The corresponding ratios of square roots, ∼ 0.7×10−6 and ∼ 0.4×
10−7, characterize coefficients of additional time-dependent terms
of forms e−Γkt sinh(�Γkt/2) and e−Γkt sin(�mkt) in Eqs. (6) for Bs

and B0 which may be safely neglected.

6. Conclusion

Inclusive semileptonic B and Bs decays are shown to have a
small non-zero direct CP asymmetry in the Standard Model as a
result of interference of first-order- and second-order-weak pro-
cesses. This stands in contrast with statements about the vanish-
ing of this asymmetry made in two textbooks on CP violation [9,
10]. Taking a range of effective quark masses and estimating the
asymmetry in b → c�ν̄� as due to weak rescattering from the in-
termediate state in b →

peng
cc̄s, we have found

Asl = (−3.2 ± 0.9) × 10−9. (48)

A dimensional argument leads to a model-independent upper
bound on Asl which is three orders of magnitude larger, while an
extension of the Standard Model to a left–right-symmetric variant
can increase the above asymmetry by at most two orders of mag-
nitude. These values are far smaller than a value of about −1%
recently reported by the D0 Collaboration [1,2], which may still be
associated with a new source of CP violation in neutral B meson
mixing.

As a by-product of second-order-weak amplitudes, we have es-
timated their effect on wrong-sign leptons in direct decays of
neutral B mesons and found it to be much below any reasonable
sensitivity.
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