
Linear Algebra and its Applications 416 (2006) 1060–1082
www.elsevier.com/locate/laa

A characterization of solutions of the
discrete-time algebraic Riccati equation based on

quadratic difference forms

Chiaki Kojima a,∗, Kiyotsugu Takaba a, Osamu Kaneko b,
Paolo Rapisarda c

a Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

b Graduate School of Engineering Science, Osaka University, Japan
c School of Electronics and Computer Science, University of Southampton, United Kingdom

Received 2 November 2004; accepted 23 November 2005
Available online 9 March 2006

Submitted by V. Mehrmann

Abstract

This paper is concerned with a characterization of all symmetric solutions to the discrete-time algebraic
Riccati equation (DARE). Dissipation theory and quadratic difference forms from the behavioral approach
play a central role in this paper. Along the line of the continuous-time results due to Trentelman and Rapisarda
[H.L. Trentelman, P. Rapisarda, Pick matrix conditions for sign-definite solutions of the algebraic Riccati
equation, SIAM J. Contr. Optim. 40 (3) (2001) 969–991], we show that the solvability of the DARE is
equivalent to a certain dissipativity of the associated discrete-time state space system. As a main result, we
characterize all unmixed solutions of the DARE using the Pick matrix obtained from the quadratic difference
forms. This characterization leads to a necessary and sufficient condition for the existence of a non-negative
definite solution. It should be noted that, when we study the DARE and the dissipativity of the discrete-time
system, there exist two difficulties which are not seen in the continuous-time case. One is the existence of
a storage function which is not a quadratic function of state. Another is the cancellation between the zero
and infinite singularities of the dipolynomial spectral matrix associated with the DARE, due to the infinite
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generalized eigenvalues of the associated Hamiltonian pencil. One of the main contributions of this paper is
to demonstrate how to resolve these difficulties.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Discrete-time algebraic Riccati equation; Dissipative system; Quadratic difference forms; Behavioral
approach; Spectral factorization; Storage function

1. Introduction

The algebraic Riccati equation (ARE) plays an important role in many control problems such
as linear quadratic optimal control, H∞ optimal control, optimal filtering, and so on. Since its
introduction in control theory, the ARE has been studied extensively.

An important problem related to the ARE is to find a necessary and sufficient condition for
the existence of a sign definite solution of the equation. For the continuous-time system, Willems
[1] derived a necessary condition for the existence of a non-positive definite solution. But it
turned out that this result was not a sufficient condition [2]. Molinari [3] derived a necessary and
sufficient condition for the existence of a non-positive definite solution. However, it is impossible
to numerically check this condition because it contains the non-negative definiteness of infinite
number of matrices [4]. Since then, several attempts have been made to this open problem. From
the viewpoint of the behavioral approach, Trentelman and Rapisarda [5] derived a characterization
of all unmixed solutions of the ARE by using quadratic differential forms. Their characterization
results in a necessary and sufficient condition for the existence of a sign definite solution in terms
of a single finite dimensional matrix called the Pick matrix.

The purpose of this paper is to derive a characterization of all symmetric solution to the
discrete-time algebraic Riccati equation (DARE) along the line of [5]. In the discrete-time system,
a necessary and sufficient condition for the existence and uniqueness of an unmixed solution are
obtained by Clements and Wimmer [6]. But, there has never been derived the characterization of
the solutions of the DARE so far.

In order to obtain a characterization of solutions of the DARE, we have to overcome the
following two difficulties which are not seen in the continuous-time case. One difficulty arises in
the construction of a storage function. In the continuous system, since every storage function is
a quadratic function of state [7], a solution of the ARE can be obtained from a weighting matrix
of a storage function. In contrast, in the discrete-time case, a storage function is not necessarily
expressed as a quadratic function of state [8]. Only sufficient conditions have been known so
far [8]. Another difficulty is the cancellation between the zero and infinite singularities of the
dipolynomial spectral matrix associated with the DARE. This cancellation is due to the well-
known fact that the Hamiltonian pencil has zero and infinite generalized eigenvalues [9,10]. We
will show how to resolve the above difficulties by developing a spectral factorization algorithm
satisfying a certain biproperness condition.

This paper is organized as follows. In Section 2, we review the basic definitions and results
from the behavioral system theory. In particular, quadratic difference forms are introduced to
formulate the dissipativity of a linear discrete-time system. We give some results related to storage
functions in terms of quadratic difference forms. In Section 3, we solve the discrete-time problems
as described the above, and derive a necessary and sufficient condition for the existence of a
symmetric solution of the DARE. In Section 4, we obtain a characterization of all unmixed
solutions of the DARE using the Pick matrix as a main result of this paper. As a corollary of this,
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we obtain a necessary and sufficient condition for the existence of a non-negative definite solution
of the DARE. In Section 5, a numerical example is given in order to demonstrate the procedure
for the present characterization of all unmixed solutions. Several preliminary lemmas used in this
paper are collected in Appendix A. The proofs of our results are given in Appendix B.

We give the notations used in this paper in the following:

Rm×m
s : the set of m × m real symmetric matrices

R[ξ ]: the set of polynomials with coefficients in R

Rm1×m2 [ξ ]: the set of m1 × m2 polynomial matrices in the indeterminate ξ

Rm1×m2(ξ): the set of m1 × m2 rational matrices in the indeterminate ξ

Rm1×m2 [ζ, η]: the set of m1 × m2 polynomial matrices in the indeterminates ζ and η

Rm×m
s [ζ, η]: the set of m × m real symmetric polynomial matrices in the indeterminates ζ

and η

R[ξ−1, ξ ]: the set of dipolynomials in the indeterminate ξ

Rm×m[ξ−1, ξ ]: the set of m × m dipolynomial matrices in the indeterminate ξ

WT: the set of maps from T to W

l
q

2 := {w ∈ (Rq)Z
∣∣∑∞

t=−∞ ‖w(t)‖2 < ∞}
R(ξ)∼ :=R(ξ−1)�
M(l)(ξ): the lth derivative of the polynomial matrix M(ξ)

R̃ := [R0 R1 · · · RL

]
: the coefficient matrix of the polynomial matrix R(ξ) = R0 +

R1ξ + · · · + RLξL

col(A1, A2, . . . , An) = [A�
1 A�

2 · · · A�
n

]�
diag(a1, a2, . . . , am) : m × m diagonal matrix with diagonal elements {a1, a2, . . . , am}
rowdim (A): the row dimension of a matrix A

�(E, A): the set of the generalized eigenvalues of a square matrix pencil ξE − A. This
set consists of the finite eigenvalues which are the roots of det(ξE − A), and the infinite
eigenvalues which are the reciprocals of the zero eigenvalues of ηA − E (see e.g. [9,10,11,
12]).

2. Preliminaries

In this section, we will review the basic definitions and results from the behavioral system
theory.

2.1. Linear discrete-time system [13,14,20]

In the behavioral system theory, a dynamical system is defined as a triple � = (T, W, B),
where T is the time axis, and W is the signal space in which the trajectories take their values
on. The behavior B ⊆ WT is the set of all possible trajectories. In this paper, we will consider a
linear time-invariant discrete-time system whose time axis is T = Z and signal space is W = Rq .
Such a � is represented by a system of linear constant coefficient difference-algebraic equation
as

R0w + R1σw + · · · + RLσLw = 0, (1)

whereR0, R1, . . . , RL ∈ R•×q andL � 0. The variablew ∈ (Rq)Z is called the manifest variable.
The operator σ is called the shift operator defined by (σw)(t) :=w(t + 1) and (σTw)(t) :=w(t +
T ) for all T ∈ Z. We call (1) a kernel representation of B. A short hand notation for (1) is
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R(σ)w = 0,

where R(ξ) :=R0 + R1ξ + · · · + RLξL ∈ R•×q [ξ ]. Hence, B is given by

B = {w ∈ (Rq)Z | R(σ)w = 0
}
.

Whenever rank R(λ) is constant for all λ ∈ C, there exists a polynomial matrix M ∈ Rq×m[ξ ]
satisfying R(ξ)M(ξ) = 0 with m � rank M = q − rank R [13], where ‘rank M’ is viewed as
the normal rank of a polynomial matrix M(ξ). Then, for every w ∈ B, there always exists an
� ∈ (Rm)Z such that

w = M(σ)�. (2)

The above system representation is called an image representation of B, and � is an auxiliary
variable called a latent variable of B. In terms of the image representation, B can be rewritten as

B = {w ∈ (Rq)Z | ∃ � ∈ (Rm)Z s.t. w = M(σ)�}.
An image representation of B is called observable if M(σ)� = 0 implies � = 0. This is the case
if and only if M(λ) is right prime, i.e. M(λ) is of full column rank for all λ ∈ C [13].

We introduce the notion of state maps [14]. X ∈ Rn×m[ξ ] is said to induce a state map for �
and a latent variable x = X(σ)� is called a state variable for �, if x satisfies the axiom of state{[

w1
x1

]
,

[
w2
x2

]
∈ Bfull and x1(0) = x2(0)

}
	⇒

[
w1
x1

]
∧
[
w2
x2

]
∈ Bfull, (3)

where Bfull is a full behavior defined by

Bfull :={col(w, x) ∈ (Rq+n)Z | ∃ � ∈ (Rm)Z s.t. w = M(σ)�, x = X(σ)�}.
In (3), (v1 ∧ v2)(t) denotes (v1 ∧ v2)(t) = v1(t) for t < 0 and (v1 ∧ v2)(t) = v2(t) for t � 0. It
is easily seen that the state map X(σ) is not unique. A state map X(σ) is said to be minimal, if
rowdim(X) � rowdim(X′) for any other X′ ∈ Rn′×m[ξ ] which induces a state map for � [14].

If w = M(σ)� is an observable image representation, there exists a partition M(ξ) = col(Y (ξ),

U(ξ)) satisfying U ∈ Rm×m[ξ ] is non-singular, and Y (ξ)U(ξ)−1 is proper, possibly after permut-
ing the components of w appropriately and, accordingly, the rows of M(ξ) [8]. Such a partition
is called a proper input–output partition of M(ξ). We can regard u = U(σ)� and y = Y (σ)� as
input and output, respectively.

Let X ∈ Rn×m[ξ ] induce a minimal state map for �, and let x = X(σ)�. Then, there exist
matrices A ∈ Rn×n and B ∈ Rn×m satisfying x(t + 1) = Ax(t) + Bu(t) from Proposition IX.2
in [13]. Also, we have the next lemma.

Lemma 1 [7,15]. Suppose that X ∈ Rn×m[ξ ] induces a minimal state map for � represented
by the observable image representation w = M(σ)�. Let M(ξ) = col(Y (ξ), U(ξ)) be a proper
input–output partition. We introduce a new polynomial matrix F ∈ Rp×m[ξ ]. Then, the following
statements (i)–(iii) hold.

(i) There exists a matrix C ∈ Rp×n satisfying F(ξ) = CX(ξ) if and only if F(ξ)U(ξ)−1 is
strictly proper.

(ii) There exist C ∈ Rp×n and D ∈ Rp×m satisfying F(ξ) = CX(ξ) + DU(ξ) if and only if
F(ξ)U(ξ)−1 is proper.

(iii) In the case of p = m, there exist a matrix C ∈ Rm×n and a non-singular matrix D ∈ Rm×m

satisfying F(ξ) = CX(ξ) + DU(ξ) if and only if F(ξ)U(ξ)−1 is biproper.
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2.2. Quadratic difference forms and dissipativity

Consider a two-variable polynomial matrix in Rm1×m2 [ζ, η] described by

�(ζ, η) =
N∑

i=0

N∑
j=0

�ij ζ
iηj , (4)

where �ij ∈ Rm1×m2 and N � 0. This �(ζ, η) induces a bilinear difference form

L� : (Rm1)Z × (Rm2)Z → RZ, L�(�1, �2)(t) :=
N∑

i=0

N∑
j=0

�1(t + i)��ij �2(t + j).

This means that ζ and η correspond to the shift operations on �1(t) and �2(t), respectively.
We call �(ζ, η) symmetric when m1 = m2 =: m and �(ζ, η)� = �(η, ζ ). In this case, �(ζ, η)

induces a quadratic difference form (QDF)

Q� : (Rm)Z → RZ, Q�(�)(t) :=L�(�, �)(t).

A QDF Q�(�) is called the rate of change of Q�(�) if Q�(�)(t + 1) − Q�(�)(t) = Q�(�)(t).
In terms of two-variable polynomial matrices, this relationship is expressed equivalently as
(ζη − 1)�(ζ, η) = �(ζ, η).

With every � ∈ Rm×m
s [ζ, η] in (4), we define its coefficient matrix by

�̃ :=




�00 �01 · · · �0N

�10 �11 · · · �1N

...
...

. . .
...

�N0 �N1 · · · �NN


 ∈ R(N+1)m×(N+1)m

s .

For � ∈ Rm×m
s [ζ, η], a QDF Q�(�) is called non-negative if Q�(�)(t) � 0 for all � ∈ (Rm)Z

and t ∈ Z. If Q�(�) is non-negative, and if Q�(�) = 0 implies � = 0, then Q�(�) is said to be
positive. Clearly, Q�(�) is non-negative if and only if �̃ � 0.

For � ∈ Rm×m
s [ζ, η], its coefficient matrix can be factored as �̃ = M̃���M̃ , where �� ∈

Rrank �̃×rank �̃
s , M̃ ∈ Rrank �̃×(N+1)m is of full row rank, and det �� /= 0, i.e. rank �� = rank �̃.

With such a factorization of �̃, we obtain a canonical factorization of �(ζ, η) as �(ζ, η) =
M(ζ)���M(η), where M(ξ) :=M̃col(Im, ξIm, . . . , ξNIm) ∈ Rrank �̃×m[ξ ].

The map � associates a dipolynomial matrix with a two-variable polynomial matrix as follows.
Given � ∈ Rm×m

s [ζ, η], we define the map

� : Rm×m
s [ζ, η] → Rm×m[ξ−1, ξ ], ��(ξ) :=�(ξ−1, ξ).

A QDF Q�(�) is called average non-negative, if
∑∞

t=−∞ Q�(�)(t) � 0 for all � ∈ lm2 . Then, from
Proposition 3.1 in [16], Q�(�) is average non-negative if and only if ��(eiω) � 0 holds for all
ω ∈ [0, 2π).

Here, we introduce the notion of dissipativity.

Definition 1 [8]. Let � ∈ R
q×q
s [ζ, η]. A system � = (Z, Rq, B) is called dissipative with respect

to the supply rate Q�(w) if
∑∞

t=−∞ Q�(w)(t) � 0 holds for all w ∈ l
q

2 ∩ B.

We can think of Q�(w) as the power delivered to the system �. The dissipativity implies that
the net flow of energy into the system is non-negative, i.e. the system dissipates energy. Hence,
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the rate of increase of the energy stored inside of the system does not exceed the power supplied
to it.

In the remainder of this section, we assume that B has an observable image representation w =
M(σ)�, M ∈ Rq×m[ξ ]. Then, � is dissipative with respect to the supply rate Q�(w) if and only
if the QDF Q�(�) induced by �(ζ, η) = M(ζ)��(ζ, η)M(η) is average non-negative. Hence,
we can describe any claims on the dissipativity with a general QDF in terms of a latent variable.

Definition 2 [8,15]. Let � ∈ Rm×m
s [ζ, η].

(i) The QDF Q�(�) induced by � ∈ Rm×m
s [ζ, η] is a storage function for Q�(�) if

Q�(�)(t + 1) − Q�(�)(t) � Q�(�)(t) (5)

holds for all t ∈ Z and � ∈ (Rm)Z. We call (5) the dissipation inequality.
(ii) The QDF Q�(�) induced by � ∈ Rm×m

s [ζ, η] is a dissipation rate for Q�(�) if
∞∑

t=−∞
Q�(�)(t) =

∞∑
t=−∞

Q�(�)(t) (6)

and Q�(�)(t) � 0 hold for all t ∈ Z and � ∈ lm2 .

Moreover, there is a one-to-one relation between a storage function Q�(�) and a dissipation
rate Q�(�) defined by

Q�(�)(t + 1) − Q�(�)(t) = Q�(�)(t) − Q�(�)(t), (7)

or equivalently,

(ζη − 1)�(ζ, η) = �(ζ, η) − �(ζ, η). (8)

Eq. (7) is called the dissipation equality.

It follows from Lemma 3.1 in [16] that (6) is equivalent to ��(λ) = ��(λ) for all non-zero
λ ∈ C.

The next theorem gives a characterization of average non-negativity of Q�(�) in terms of a
storage function and a dissipation rate.

Proposition 1 [8]. Let � ∈ Rm×m
s [ζ, η]. The following statements (i)–(iii) are equivalent.

(i) Q�(�) is average non-negative.
(ii) Q�(�) admits a storage function.

(iii) Q�(�) admits a dissipation rate.

In the rest of this section, we restrict our attention to the case where a supply rate Q�(w) for
� is induced by a symmetric matrix � ∈ R

q×q
s . Then, a QDF Q�(�) is induced by a two variable

polynomial matrix defined by

�(ζ, η) = M(ζ)��M(η). (9)

Let X ∈ Rn×m[ξ ] induce a minimal state map for �, and define x :=X(σ)� ∈ (Rn)Z. We factorize
a dissipation rate Q�(�) as �(ζ, η) = F(ζ )�F(η), F ∈ Rp×m[ξ ]. Then, (8) reduces to

(ζη − 1)�(ζ, η) = M(ζ)��M(η) − F(ζ )�F(η). (10)
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Let M(ξ) = col(Y (ξ), U(ξ)) be a proper input–output partition. Such a partition always exists
by the observability assumption of the image representation w = M(σ)�. From Lemma 1 and
(10), we obtain the following proposition.

Proposition 2. Let � ∈ Rm×m
s [ζ, η] be defined by (9). Let � ∈ Rm×m

s [ζ, η] induce a storage
function for Q�(�) corresponding to the dissipation rate induced by �(ζ, η) = F(ζ )�F(η), F ∈
Rp×m[ξ ]. Then, there exists a symmetric matrix P ∈ Rn×n

s satisfying �(ζ, η) = −X(ζ)�PX(η),

i.e. Q�(�) = −x�Px if and only if F(ξ)U(ξ)−1 is proper.

Proof. See Appendix B. �

If a storage function Q�(�) is expressed as �(ζ, η) = −X(ζ)�PX(η) for some P ∈ Rn×n
s ,

then Q�(�) is said to be a quadratic function of state, or simply a state function.

Remark 1. In continuous-time systems,1 since F(ξ)U(ξ)−1 is always proper, every storage func-
tion is a state function [7]. On the contrary, in the discrete-time case, the same claim does not hold
in general. Because there exists a dissipation rate induced by �(ζ, η) = F(ζ )�F(η) for which
F(ξ)U(ξ)−1 is not proper [8]. Only sufficient conditions have been known so far.

We give the following proposition about the smallest storage function under some biproperness
restriction.

Proposition 3. Let � ∈ Rm×m
s [ζ, η] be defined by (9). Assume that ��(eiω) > 0 holds for all ω ∈

[0, 2π).Let� ∈ R
q×q
s [ζ, η] induces a storage function forQ�(�) corresponding to the dissipation

rate induced by F(ζ )�F(η) such that F ∈ Rm×m[ξ ], ��(ξ) = F(ξ)∼F(ξ) and F(ξ)U(ξ)−1 is
biproper. Let H ∈ Rm×m[ξ ] be a Schur2 polynomial matrix such that ��(ξ) = H(ξ)∼H(ξ) and

H(ξ)U(ξ)−1 is biproper. Then, the storage function induced by �−(ζ, η) = �(ζ,η)−H(ζ)�H(η)
ζη−1

satisfies

Q�−(�) � Q�(�), ∀t ∈ Z, � ∈ lm2 (11)

for any other �(ζ, η) satisfying the above conditions.

Proof. See Appendix B. �

3. Solvability condition of the DARE

In this paper, we consider the DARE with the unknown matrix P ∈ Rn×n
s

A�PA − P + Q − (A�PB + S�)V (P )−1(B�PA + S) = 0, (12)

V (P ) = B�PB + R,

1 In the continuous-time case, the dissipation equality of (8) is replaced by (ζ + η)�(ζ, η) = �(ζ, η) − �(ζ, η). Also,
��(ξ) and F(ξ)∼ are defined by ��(ξ) :=�(−ξ, ξ) and F(ξ)∼ :=F(−ξ)�, respectively.

2 For a polynomial matrix F ∈ Rm×m[ξ ], we call it Schur (respectively, anti-Schur) if det F(λ) /= 0 for all λ ∈ C such
that |λ| � 1 (respectively, |λ| � 1).
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where A ∈ Rn×n, B ∈ Rn×m, Q ∈ Rn×n
s , R ∈ Rm×m

s , and S ∈ Rn×m. The DARE (12) is associ-
ated with the linear quadratic optimal control problem of minimizing the quadratic performance
index

J =
∞∑
t=0

[
x(t)

u(t)

]�
�

[
x(t)

u(t)

]
, � :=

[
Q S�
S R

]
for the system described by the state space equation

x(t + 1) = Ax(t) + Bu(t), (13)

where x(t) ∈ Rn is a state variable and u(t) ∈ Rm is an input variable. We assume that (A, B)

is reachable. Recall that (A, B) is reachable if and only if
[
A − λIn B

]
has full row rank for

all λ ∈ C. Hence, the reachability of (A, B) is equivalent to the controllability in the behavioral
system theory [13].

We define the manifest variable w ∈ (Rn+m)Z by w :=col(x, u). Then, the state space equation
(13) is equivalent to the kernel representation R(σ)w = 0 with R(ξ) := [A − ξIn B

]
. Hence,

this system is defined by � := (Z, Rn+m, B) with the behavior B = {w ∈ (Rn+m)Z |R(σ)w = 0}.
Since R(λ) is assumed to have full row rank for all λ ∈ C, (ξIn − A)−1B has a right coprime
factorization over the polynomial ring, namely

(ξIn − A)−1B = X(ξ)U(ξ)−1, (14)

where X ∈ Rn×m[ξ ] and U ∈ Rm×m[ξ ] are right coprime. Without loss of generality, we assume
det U(ξ) = det(ξIn − A). By using the coprime factors X(ξ) and U(ξ), the observable image
representation of B is obtained as

w(t) =
[
x(t)

u(t)

]
=
[
X(σ)

U(σ)

]
�(t), (15)

where � ∈ (Rm)Z is a latent variable. Since we assumed that (A, B) is reachable, it can be shown
that x = X(σ)� is a minimal state variable for �.

Let the QDF

Q�(w) = w��w (16)

be a supply rate for �. Define the symmetric two-variable polynomial matrix

�(ζ, η) :=M(ζ)��M(η) ∈ Rm×m
s [ζ, η], M(ξ) = col(X(ξ), U(ξ)). (17)

Since Q�(w) = Q�(�) from (15)–(17), the dissipativity of � for the supply rate Q�(w) is equiv-
alent to the average non-negativity of Q�(�) as explained in Section 2.2. Hence, from now on,
we assume

Assumption 1

(i) ��(eiω) � 0, ∀ω ∈ [0, 2π). This implies that the system � is dissipative with respect to the
supply rate Q�(w), or equivalently, Q�(�) is average non-negative.

(ii) det ��(ξ) /= 0 holds as an element of R[ξ−1, ξ ].

For a given P ∈ Rn×n
s , we define

�(ζ, η) := − X(ζ)�PX(η),

�(ζ, η) :=M(ζ)�L(P )M(η), L(P ) :=
[
A�PA − P + Q A�PB + S�

B�PA + S V (P )

]
.
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We easily see from (14) that ξX(ξ) = AX(ξ) + BU(ξ). It thus follows that �(ζ, η) and �(ζ, η)

satisfies

�(ζ, η) − �(ζ, η) = (1 − ζη)X(ζ )�PX(η), (18)

or equivalently,

Q�(�)(t) − Q�(�)(t) = Q�(�)(t + 1) − Q�(�)(t) (19)

holds for all � ∈ (Rm)Z and for all t ∈ Z. We obtain the following proposition from Definition 2
and Proposition 1.

Lemma 2. Let � ∈ Rm×m
s [ζ, η] be defined by (17). Then, for P ∈ Rn×n

s , the following statements
(i)–(iii) are equivalent.

(i) L(P ) � 0.

(ii) The QDF Q�(�) is average non-negative, and the QDF Q�(�) = −x�Px is a storage
function for Q�(�).

(iii) The QDF Q�(�) is average non-negative, and the QDF Q�(�) = w�L(P )w is a dissipation
rate for Q�(�).

Proof. See Appendix B. �

We define the set of the solutions to the DARE (12) by

S := {P ∈ Rn×n
s |P satisfies the DARE (12) and V (P ) > 0

}
.

Then, we have a necessary condition for S /= ∅ in the following lemma.

Lemma 3. Let X ∈ Rn×m[ξ ] and U ∈ Rm×m[ξ ] be a right coprime factorization of (ξIn −
A)−1B. Let � ∈ Rm×m

s [ζ, η] be defined by (17). Then, for any P ∈ S, ��(ξ) is factorized as

��(ξ) = FP (ξ)∼FP (ξ), where FP (ξ) = V (P )
1
2 (KX(ξ) + U(ξ)) and K :=V (P )−1(B�PA +

S). Therefore, the following statements (i)–(iii) hold.

(i) The two-variable polynomial matrices defined by �(ζ, η) = −X(ζ)�PX(η) and �(ζ, η) =
FP (ζ )�FP (η) satisfy the dissipation equality (10). Thus, they induce a storage function
and a dissipation rate for Q�(�), respectively.

(ii) det FP (ξ) = √
det V (P ) det(ξIn − AP ), AP :=A − BV (P )−1(B�PA + S).

(iii) deg det FP (ξ)=nholds,and the rational matrixFP (ξ)U(ξ)−1 =V (P )
1
2 K(ξIn − A)−1B+

V (P )
1
2 is biproper.

Proof. See Appendix B. �

We see from Lemma 3(iii) that a necessary condition for S /= ∅ is that there exists F ∈
Rm×m[ξ ] satisfying ��(ξ) = F(ξ)∼F(ξ) and F(ξ)U(ξ)−1 is biproper. The next proposition
guarantees that this necessary condition is also sufficient for S /= ∅.

Proposition 4. Let X ∈ Rn×m[ξ ] and U ∈ Rm×m[ξ ] be a right coprime factorization of (ξIn −
A)−1B. Let � ∈ Rm×m

s [ζ, η] be defined by (17). Then, S /= ∅ holds if and only if there exists a
polynomial matrix F ∈ Rm×m[ξ ] satisfying ��(ξ) = F(ξ)∼F(ξ) and F(ξ)U(ξ)−1 is biproper.
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Proof. See Appendix B. �

We define

F :=
{
f ∈ R[ξ ]

∣∣∣∣ f (ξ) = f0 + f1ξ + · · · + fnξ
n, fn > 0,

det ��(ξ) = f (ξ)∼f (ξ)

}
.

In view of Lemma 3 and Proposition 4, the basic idea for solving the DARE (12) is as follows. If we
can find a spectral factorization ��(ξ) = F(ξ)∼F(ξ) such that det F(ξ) = f (ξ) and F(ξ)U(ξ)−1

is biproper for f ∈ F, then the solution P corresponding to f (ξ) is obtained by solving the
polynomial matrix equation

�(ζ, η) − F(ζ )�F(η) = (1 − ζη)X(ζ )�PX(η). (20)

Hence, in order to establish the solvability condition of the DARE (12), we need to show the
existence of a factorization such that F(ξ)U(ξ)−1 is biproper for any f ∈ F. But, unlike the
continuous-time case, it is not trivial to prove this for the following two reasons.

(i) There holds deg det ��(ξ) = 2r � 2n in discrete-time systems, while deg det ��(ξ) = 2n

is always guaranteed in the continuous-time case.3 Thus, f ∈ F can be described by f (ξ) =
ξn−rf0(ξ), where f0 ∈ R[ξ ] is such that det ��(ξ) = f0(ξ)∼f0(ξ), deg f0(ξ) = r , and f0(0) /=
0. Hence, the singularities of ��(ξ) are arranged as

0, . . . , 0︸ ︷︷ ︸
n−r

, λ1, . . . , λr︸ ︷︷ ︸
r

, λ−1
1 , . . . , λ−1

r︸ ︷︷ ︸
r

, ∞, . . . ,∞︸ ︷︷ ︸
n−r

,

where λ1, . . . , λr and λ−1
1 , . . . , λ−1

r are the non-zero roots of det ��(ξ) = 0. Note that n finite
singularities of ��(ξ) are the zeros of f (ξ), while n other singularities including infinities are
the zeros of ξnf (ξ−1). There are cancellations between the zero and infinite singularities in
det ��(ξ). Moreover, the singularities of ��(ξ) coincide with the eigenvalues of AP and their
reciprocals from Lemma 3(ii). Actually, these are the generalized eigenvalues of the Hamiltonian
pencil associated with the DARE (12) [9,10]. Although Popov [18] proved the existence of a
factorization ��(ξ) = F(ξ)∼F(ξ) such that det F(ξ) = f (ξ) for f ∈ F, the biproperness of
F(ξ)U(ξ)−1 is not guaranteed yet.

(ii) As pointed out in Remark 1, from the existence of a dissipation rate such that F(ξ)U(ξ)−1

is not proper, storage functions are not expressed as a state function for discrete-time systems in
general. This implies that the necessary condition forS /= ∅ in Lemma 3(i) is not always satisfied.

Example. Consider the case where X(ξ) = 1, U(ξ) = ξ , Q = 2, R = 1, and S = 0. In this case,
we have n = 1 and �(ζ, η) = 2 + ζη. It is clear that ��(ξ) = 3, and hence deg det ��(ξ) =
0 < 2 = 2n. Hence, the singularities of ��(ξ) are {0, ∞}. If we choose F(ξ) = √

3ξ2, then
F(ξ)U(ξ)−1 = √

3ξ is not proper. Taking �(ζ, η) = F(ζ )�F(η) = 3ζ 2η2 yields �(ζ, η) =
−2 − 3ζη. Since F(ξ)U(ξ)−1 is not proper, by Proposition 2, this �(ζ, η) induces a storage
function which cannot be expressed as a state function. Indeed, the induced storage function
Q�(�) = −2x2 − 3u2 depends not only on the state but also on the input.

In the remainder of this section, we will discuss how to overcome the above difficulties peculiar
to the discrete-time case. More specifically, we will present a method for constructing a spectral
factor F(ξ) that satisfies the biproperness condition of F(ξ)U(ξ)−1.

3 The degree of a dipolynomial φ(ξ) = φLξL + · · · + φlξ
l (φL, φl /= 0, L � l) is defined by deg φ(ξ) = L − l [17].
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For this purpose, we assume that U(ξ) is column reduced without loss of generality. Otherwise,
we can always obtain such a coprime factorization as follows. There always exists a unimodular
matrix V ∈ Rm×m[ξ ] such that U ′(ξ) :=U(ξ)V (ξ) is column reduced (see [19, p. 386]). Then, the
image representation of (14) is equivalently rewritten asw = M ′(σ )�′, whereM ′(ξ) = M(ξ)V (ξ)

and �′ = V (σ)−1�. Let nj (j = 1, 2, . . . , m) be the degree of the j th column vector of U(ξ). We
define the diagonal polynomial matrix Ud(ξ) :=diag(ξn1 , ξn2 , . . . , ξnm), n1 + n2 + · · · + nm =
n. It is well-known that U(ξ) is column reduced if and only if U(ξ)Ud(ξ)−1 is biproper [19].
Moreover, the identity F(ξ)U(ξ)−1 = F(ξ)Ud(ξ)−1 · Ud(ξ)U(ξ)−1 implies that F(ξ)U(ξ)−1 is
biproper if and only if F(ξ)Ud(ξ)−1 is biproper. Therefore, we have only to check the biproperness
of F(ξ)Ud(ξ)−1. A spectral factor F(ξ) satisfying the biproperness condition can be obtained by
the following iterative algorithm.

Algorithm 1

Step 1: Let f ∈ F be given. Then, f (ξ) is expressed as f (ξ) = ξn−rf0(ξ), where f0 ∈
R[ξ ] satisfies deg det f0(ξ) = r and det ��(ξ) = f0(ξ)∼f0(ξ). It is clear from the definition that
f0(0) /= 0. Find a factor F0 ∈ Rm×m[ξ ] satisfying ��(ξ) = F0(ξ)∼F0(ξ) and det F0(ξ) = f0(ξ).
The existence of such an F0(ξ) is guaranteed for any f ∈ F (see e.g. [18]). Note also that
F0(ξ)Ud(ξ)−1 is always proper.

Step 2: If deg det Fk(ξ) = n, then stop, and the desired factor F(ξ) is obtained by F(ξ) :=
Fk(ξ). Otherwise, go to Step 3.

Step 3: At the (k + 1)th iteration, we define Hk := lim|ξ |→∞ Fk(ξ)Ud(ξ)−1. Let ρk denote
the rank deficiency of Hk , namely rank Hk = m − ρk . There exists an orthogonal matrix Zk ∈
Rm×m such that ZkHk =

[
0ρk×m

�������
Ĥk

]
, where Ĥk ∈ R(m−ρk)×m is of full row rank. Then, ZkFk(ξ) is

expressed as

ZkFk(ξ) =




f
(k)
11 (ξ) f

(k)
12 (ξ) · · · f

(k)
1m (ξ)

f
(k)
21 (ξ) f

(k)
22 (ξ) · · · f

(k)
2m (ξ)

...
...

. . .
...

f
(k)
ρk1(ξ) f

(k)
ρk2(ξ) · · · f

(k)
ρkm(ξ)

����������������������������
F̂k(ξ)




where F̂k ∈ R(m−ρk)×m[ξ ] and f
(k)
ij ∈ R[ξ ] satisfy

lim|ξ |→∞ F̂k(ξ)Ud(ξ)−1 = Ĥk : full row rank,

lim|ξ |→∞ f
(k)
ij (ξ)ξ−nj = 0 (i = 1, 2, . . . , ρk; j = 1, 2, . . . , m).

Define µki := minj∈[1,m]{nj − deg f
(k)
ij (ξ)} for i = 1, 2, . . . , ρk , and form a unitary polynomial

matrix Wk(ξ) :=diag(ξµk1 , ξµk2 , . . . , ξµkρk , 1, . . . , 1) ∈ Rm×m
s [ξ ]. Update the polynomial matrix

Fk(ξ) by Fk+1(ξ) :=Wk(ξ)ZkFk(ξ), and go back to Step 2.

We obtain the next lemma since it can be shown that F(ξ)Ud(ξ)−1 is biproper for the factor
F(ξ) obtained from Algorithm 1.
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Lemma 4. For every f ∈ F, there exists a polynomial matrix F ∈ Rm×m[ξ ] satisfying ��(ξ) =
F(ξ)∼F(ξ), det F(ξ) = f (ξ), and F(ξ)U(ξ)−1 is biproper.

Proof. See Appendix B. �

Summarizing Lemmas 3, 4 and Proposition 4, we conclude that the solvability condition of
the DARE (12) is given by Theorem 1.

Theorem 1. There exists a real symmetric solution of the DARE (12), i.e. S /= ∅ if and only if
Assumption 1 is satisfied.

Proof. See Appendix B. �

4. Characterization of all unmixed solutions

In this section, we derive a characterization of all unmixed solutions of the DARE (12). A
solution P ∈ S is called unmixed if �(In, AP ) ∩ �(AP , In) = ∅ is satisfied,4 where AP = A −
BV (P )−1(B�PA + S). We define the set of all unmixed solutions by Sunm. Also, we define

Fcop :={f ∈ F | f (ξ) and ξnf (ξ−1) are coprime}.
It is straightforward to verify under Assumption 1 that Fcop /= ∅ if and only if ��(eiω) > 0 for
all ω ∈ [0, 2π). Hence, we see that Sunm /= ∅ if and only if Fcop /= ∅ from Lemma 3(ii). In the
following, we assume a more restrictive condition than Assumption 1.

Assumption 1′. ��(eiω) > 0 holds for all ω ∈ [0, 2π).

We define the map

Ric : Fcop → Sunm

as follows. For f ∈ Fcop, find a factorization ��(ξ) = F(ξ)∼F(ξ) such that F(ξ)U(ξ)−1 is
biproper and det F(ξ) = f (ξ). Then, Pf = Ric(f ) is defined as a unique solution of the equation
(20).

Proposition 5. Under the Assumption 1′, the map Ric is well-defined and bijective.

Proof. See Appendix B. �

We consider the relationship between the map Ric and the characterization of all unmixed solu-
tions. For a given f ∈ Fcop, let F ∈ Rm×m[ξ ] be such that ��(ξ) = F(ξ)∼F(ξ) and det F(ξ) =
f (ξ). Let Pf = Ric(f ).

We now define the Pick matrix which plays a central role in our characterization of all unmixed
solutions. For f ∈ Fcop, suppose that λ1, λ2, . . . , λk ∈ C are the roots of f (ξ) = 0. Note that
these roots are not necessarily distinct. Let λi have the partial multiplicity di � 1. Then, d1 +

4 Our definition of the unmixed solution is slightly different from the definition by [6] in that we do not allow AP to
have an eigenvalue on the unit circle.
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d2 + · · · + dk = n. Let F (i) ∈ Rm×m[ξ ] be the ith derivative of F(ξ). By the result of Theorem
3.2.16 in [20], there exist non-zero vectors aij ∈ Cm (j = 0, 1, . . . , di − 1) such that

di−1∑
j=l

(
j

l

)
F (j−l)(λi)aij = 0 (l = 0, 1, . . . , di − 1). (21)

Using these vectors, we form the matrix Vi ∈ Cdim×di as

Vi :=




(
0
0

)
ai0

(
1
1

)
ai1 · · ·

(
di − 2
di − 2

)
aidi−2

(
di − 1
di − 1

)
aidi−1(

1
0

)
ai1

(
2
1

)
ai2 · · ·

(
di − 1

di − 2

)
aidi−1 0

...
... 0 0(

di − 2
0

)
aidi−2

(
di − 1

1

)
aidi−1

...
...(

di − 1
0

)
aidi−1 0 · · · 0 0




.

(22)

For i, j = 1, 2, . . . , k, we construct the matrix �ij ∈ Cdj ×dj by

�ij :=
dj −1∑
s=0

(
λ̄i

1 − λ̄iλj

)s

Ls
j , Li :=




0 0 · · · 0 0

1 0
. . . 0 0

0 2
. . . 0 0

...
...

. . .
. . .

...

0 0 · · · di − 1 0




. (23)

Finally, we define the Pick matrix associated with f (ξ) by the matrix Tf ∈ Cn×n whose (i, j)th
block Tij ∈ Cdim×dj m(i, j = 1, 2, . . . , k) is given by

Tij :=
min{di ,dj }−1∑

l=0

1

(1 − λ̄iλj )2l+1

(
�∗

jiL
�
i

)l

�∗
jiV

∗
i �ijVj�ij

(
Lj�ij

)l
. (24)

In (24), �ij ∈ Cdim×dj m is the matrix whose (r, s)th block is given by �(r,s)(ζ, η) (r = 0, 1, . . . ,

di − 1, s = 0, 1, . . . , dj − 1) and �(r,s)(ζ, η) denotes the (r, s)th derivative with respect to ζ and
η of �(ζ, η).

We derive the relationship between the solution Pf and the Pick matrix Tf in the following.
Recall that Pf is uniquely determined by

�(ζ, η) − F(ζ )�F(η) = (1 − ζη)X(ζ )�Pf X(η). (25)

The (r, s)th partial derivative of (25) is given by

�(r,s)(ζ, η) − F (r)(ζ )�F (s)(η)

= X(r)(ζ )�Pf X(s)(η) − dr

dζ r
{ζX(ζ )}� Pf

ds

dηs
{ηX(η)} (26)

for r = 0, 1, . . . , di − 1, s = 0, 1, . . . , dj − 1. Since
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dl

dξ l
{ξX(ξ)} = ξX(l)(ξ) + lX(l−1)(ξ), (27)

the right hand side of (26) can be rewritten as

�(r,s)(ζ, η) − F (r)(ζ )�F (s)(η)

= (1 − ζη)X(r)(ζ )�Pf X(s)(η) − rsX(r−1)(ζ )�Pf X(s−1)(η)

− rηX(r−1)(ζ )�Pf X(s)(η) − sζX(r)(ζ )�Pf X(s−1)(η). (28)

Substituting (ζ, η) = (λ̄i , λj ) into (28) yields

�(r,s)(λ̄i , λj ) − F (r)(λ̄i)
�F (s)(λj )

= (1 − λ̄iλj )X
(r)(λ̄i)

�Pf X(s)(λj ) − rsX(r−1)(λ̄i)
�Pf X(s−1)(λj )

− rλjX
(r−1)(λ̄i)

�Pf X(s)(λj ) − sλ̄iX
(r)(λ̄i)

�Pf X(s−1)(λj ). (29)

From (29), the direct calculation of V ∗
i �ijVj yields

V ∗
i �ijVj = (1 − λ̄iλj )S

∗
i Pf Sj − L�

i S∗
i Pf SjLj − λjL

�
i S∗

i Pf Sj − λ̄iS
∗
i Pf SjLj , (30)

where

Si :=
[
X(λi) X(1)(λi) · · · X(di−1)(λi)

]
Vi. (31)

Notice that the terms involving F (r)(λ̄i)
�F (s)(λj ) vanish, because a straightforward calculation

shows

NiVi = ViLi, Ni :=




0 Im 0 · · · 0
0 0 2Im · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 (di − 1)Im

0 0 · · · 0 0


 , (32)

and (21) implies[
F(λi) F (1)(λi) · · · F (di−1)(λi)

]
Vi = 0. (33)

Pre- and post-multiplying (30) by �∗
ji and �ij , respectively, we obtain

�∗
jiV

∗
i �ijVj�ij = (1 − λ̄iλj )S

∗
i Pf Sj − 1

1 − λ̄iλj

�∗
jiL

�
i S∗

i Pf SjLj�ij . (34)

From (Lj�ij )
dj = 0, constructing the matrix Tij yields

Tij = S∗
i Pf Sj . (35)

Since (35) holds for all i, j = 1, 2, . . . , k, we obtain

Tf = S∗
f Pf Sf . (36)

In (36), Sf ∈ Cn×n is called the zero state matrix associated with f (ξ) defined by

Sf := [S1 S2 · · · Sk

]
. (37)

We can prove that Sf is non-singular under Assumption 1′. Hence, we obtain a characterization
of all unmixed solutions as a main result of this paper.
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Theorem 2. Under Assumption 1′, all unmixed solutions to the DARE (12) are parametrized by

Ric(f ) = (S∗
f )−1Tf S−1

f , f ∈ Fcop.

Proof. See Appendix B. �

Using Propositions 3, 5, and Theorem 2, the largest solution of the DARE (12) is given by Ph =
(S∗

h)−1ThS
−1
h , where h ∈ Fcop is Schur. Hence, we obtain a necessary and sufficient condition

for the existence of a non-negative definite solution of the DARE (12).

Corollary 1. Under Assumptions 1′, let h ∈ Fcop be Schur. Then, the DARE (12) has a non-
negative definite solution if and only if Th is non-negative definite.

Proof. See Appendix B. �

5. Numerical example

Consider the DARE (12) with the coefficient matrices

A =
[

0 1
1 − 3

2

]
, B =

[
1 0
0 1

]
, Q =

[
3 0
0 −1

]
, R =

[
2 0
0 0

]
, S =

[
0 0
0 1

]
.

Note that n = 2 in this case. One of the right coprime factorizations of (ξI2 − A)−1B is given by

X(ξ) =
[

1 0
0 1

]
and U(ξ) =

[
ξ −1

−1 ξ + 3
2

]
.

The corresponding two-variable polynomial and dipolynomial matrices are

�(ζ, η) =
[

3 + 2ζη −2ζ − 1
−2η − 1 4 + ζ + η

]
and ��(ξ) =

[
5 −2ξ−1 − 1

−2ξ − 1 4 + ξ + ξ−1

]
,

respectively. It is easy to verify by direct calculation that ��(eiω) > 0 for all ω ∈ [0, 2π). Since
det ��(ξ) = 3ξ + 15 + 3ξ−1, we have deg det ��(ξ) = 2 < 4 = 2n, i.e. there is a cancellation
between ξ and ξ−1. ��(ξ) has four singularities{

λ1 = −5 + √
21

2
, λ2 = −5 − √

21

2
, λ3 = 0, λ4 = ∞

}
.

Then,Fcop consists of two elements h(ξ) = h′(ξ − λ1)(ξ − λ3) and a(ξ) = a′(ξ − λ2)(ξ − λ3),
where h′, a′ > 0 satisfy h′a′ = 15.

We first choose the Schur polynomial h(ξ), and compute the corresponding solution, i.e. the
largest solution of the DARE (12). A spectral factor satisfying the biproperness condition and
det H(ξ) = h(ξ) is given by

H(ξ) =

 (4−√

21)
√

7395+1530
√

21
85 ξ −

√
7395+1530

√
21

85 ξ√
782+102

√
21

17 ξ
(−23+3

√
21)

√
782+102

√
21

340 −
√

782+102
√

21
34 ξ


 .

Solving H(λi)Vi = 0 (i = 1, 3) yield V1 =
[

1
4 − √

21

]
and V3 =

[
1
0

]
. Then, the zero state matrix Sh

and Pick matrix Th are given by Sh =
[

1 1
4 − √

21 0

]
and Th =

[
15−3

√
21

2 −1 + √
21

−1 + √
21 3

]
, respectively.
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Since the eigenvalues of Th are 47+3
√

21+
√

758−78
√

21
20 and 47+3

√
21−

√
758−78

√
21

20 , the corresponding

solution Ph is positive definite. Indeed, we obtain Ph =
[

3 −1

−1 17+3
√

21
10

]
which is positive definite.

Moreover, the closed-loop zeros are 0 and −5+√
21

2 , which coincide with the roots of h(ξ) = 0.
Thus, Ph is the stabilizing solution of the DARE (12).

Next, we choose a(ξ). Similarly to the above case, the zero state matrix and Pick matrix are

given by Sa =
[

1 1
4 + √

21 0

]
and Ta =

[
15+3

√
21

2 −1 − √
21

−1 − √
21 3

]
, respectively. We obtain the indefinite

solution as Pa =
[

3 −1

−1 17−3
√

21
10

]
, which is neither stabilizing nor anti-stabilizing solution of the

DARE (12).

6. Conclusion

In this paper, we have derived the characterization of all unmixed solutions of the DARE (12)
based on QDF. Moreover, we have obtained a necessary and sufficient condition for the existence
of a non-negative definite solution.

Using the QDF and the dipolynomial matrix associated with the DARE, we have shown that
the existence of a real symmetric solution of the DARE is equivalent to a certain biproperness
condition of a spectral factorization of the dipolynomial matrix. It appeared that the discrete-
time problem was that there does not always exist such a spectral factorization. We have solved
this problem by developing a spectral factorization algorithm satisfying the above condition, and
shown that the solvability of the DARE is equivalent to a certain dissipativity of the associated
discrete-time state space system. Also, we have shown that the singularities of the dipolynomial
matrix coincide with the generalized eigenvalues of the associated Hamiltonian pencil. Such a
relationship has never been considered from a behavioral viewpoint so far.
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Appendix A. Preliminary lemmas

We here collect some preliminary lemmas that will be used in the proofs in Appendix B.

Lemma A 1. For a given � ∈ Rm×m
s [ζ, η], we assume that ��(eiω) � 0 holds for all ω ∈ [0, 2π).

Let f0 ∈ R[ξ ] be an arbitrary polynomial satisfying det ��(ξ) = f0(ξ)∼f0(ξ) and f0(0) /= 0.

Then, there exists a polynomial matrix F0 ∈ Rm×m[ξ ] satisfying ��(ξ) = F0(ξ)∼F0(ξ),

det F0(ξ) = f0(ξ) and F0(ξ)U(ξ)−1 is proper.

Proof. It is obvious from Theorem 1 in §37 of [18] that there exists a square polynomial ma-
trix F0 ∈ Rm×m[ξ ] satisfying ��(ξ) = F0(ξ)∼F0(ξ) and det F0(ξ) = f0(ξ). Then, �0(ζ, η) :=
F0(ζ )�F0(η) induces a dissipation rate for Q�(�). Let F0(ξ) be expressed by F0(ξ) = F0,0 +
F0,1ξ + · · · + F0,r ′ξ r ′

, where F0,0, F0,1, . . . , F0,r ′ ∈ Rm×m and F0,r ′ /= 0. Since det F0,0 =
det F0(0) = f0(0) /= 0, we obtain
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rank �0(0, 0) = rank F�
0,0F0,0 = rank F̃�

0 F̃0 = rank �̃0.

Hence, by Lemma A 2 below, the storage function corresponding to the dissipation rate
Q�0(�) is given by −X(ζ)�P0X(η) for some P0 ∈ Rn×n

s . This is equivalent to the properness of
F0(ξ)U(ξ)−1 from Proposition 2. �

Lemma A 2 [8]. Suppose that X ∈ Rn×m[ξ ] induces a minimal state map for �. Let � ∈
Rm×m

s [ζ, η]. Let � ∈ Rm×m
s [ζ, η] induce a dissipation rate for Q�(�). Let � ∈ Rm×m

s [ζ, η]
induce a storage function for Q�(�) corresponding to the dissipation rate induced by �(ζ, η).

Assume that rank �̃ = rank �(0, 0). Then, there exists a symmetric matrix P ∈ Rn×n
s satisfying

�(ζ, η) = −X(ζ)�PX(η).

Lemma A 3. Let M ∈ R(n+m)×m[ξ ] be defined by (17). Then, the mapping

w0 : (Rm)Z → Rn+m, w0(�) := (M(σ)(�)) (0)

is surjective. Therefore, the coefficient matrix M̃ has full row rank.

Proof. The proof is omitted because the lemma can be proved in the same way as the continuous-
time case [5]. �

Appendix B. Proofs

Proof of Proposition 2. Let �(ζ, η) = G(ζ)���G(η), G ∈ Rrank �̃×m[ξ ] be a canonical factor-
ization, where �� ∈ Rrank �̃×rank �̃

s is non-singular. Substituting the above factorization and the
proper input–output partition of M(ξ) into (10) yield

(ζη − 1)G(ζ )���G(η) =
[
Y (ζ )

U(ζ )

]�
�

[
Y (η)

U(η)

]
− F(ζ )�F(η). (B.1)

Pre- and post-multiplying (B.1) by U(ζ )−� and U(η)−1, we get

(ζη − 1)U(ζ )−�G(ζ)���G(η)U(η)−1

=
[
Y (ζ )U(ζ )−1

Im

]�
�

[
Y (η)U(η)−1

Im

]
− U(ζ )−�F(ζ )�F(η)U(η)−1. (B.2)

Since Y (ξ)U(ξ)−1 is proper, we can see from (B.2) that G(ξ)U(ξ)−1 is strictly proper if and only
if F(ξ)U(ξ)−1 is proper. From Lemma 1, the strict properness of G(ξ)U(ξ)−1 is equivalent to
the existence of H ∈ Rrank �̃×n such that G(ξ) = HX(ξ). In this case, �(ζ, η) is expressed as
�(ζ, η) = −X(ζ)�PX(η) with P = −H���H . This completes the proof. �

Proof of Proposition 3. The dissipation equalities associated with the dissipation rates F(ζ )�
F(η) and H(ζ)�H(η) are given by

Q�(�)(t + 1) − Q�(�)(t) = Q�(�)(t) − ‖F(σ)�(t)‖2, (B.3)

Q�−(�)(t + 1) − Q�−(�)(t) = Q�(�)(t) − ‖H(σ)�(t)‖2, (B.4)

respectively. Subtracting (B.3) from (B.4) yields
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Q(�−−�)(�)(t + 1) − Q(�−−�)(�)(t) = ‖F(σ)�(t)‖2 − ‖H(σ)�(t)‖2. (B.5)

Let X ∈ Rn×m[ξ ] induce a minimal state map for �, and define x :=X(σ)�. Since both
F(ξ)U(ξ)−1 and H(ξ)U(ξ)−1 is biproper, we see from Proposition 2 that �(ζ, η) and �−(ζ, η)

can be expressed as �(ζ, η) = −X(ζ)�PX(η) and �−(ζ, η) = −X(ζ)�PhX(η) for some P ∈
Rn×n

s and Ph ∈ Rn×n
s , respectively. Thus, (B.5) can be rewritten as

x(t + 1)�(Ph − P)x(t + 1) − x(t)�(Ph − P)x(t)

= ‖F(σ)�(t)‖2 − ‖H(σ)�(t)‖2. (B.6)

We now show that there exists a latent variable satisfying H(σ)�(t) = 0 (t � 0) and x(0) =
(X(σ)�)(0) = x0 for any x0 ∈ Rn. Since X(ξ) induces a minimal state map, there exist A ∈ Rn×n

and B ∈ Rm×m satisfying

x(t + 1) = Ax(t) + Bu(t), (B.7)

where u :=U(σ)� serves as an input for �. By Lemma 1(iii), there exist a matrix Ch ∈ Rm×n and
a non-singular matrix Dh ∈ Rm×m satisfying H(ξ) = ChX(ξ) + DhU(ξ) since H(ξ)U(ξ)−1 is
biproper. This implies H(σ)�(t) = Chx(t) + Dhu(t). Then, H(σ)�(t) = 0 (t � 0) is equivalent
to

Chx(t) + Dhu(t) = 0 (t � 0). (B.8)

It is obvious that the state space equation

x(t + 1) = (A − BD−1
h Ch)x(t), x(0) = x0

has a solution for any initial state x0 ∈ Rn. By taking u(t) = −D−1
h Chx(t) (t � 0) for such a

solution, both (B.7) and (B.8) are fulfilled. This clearly implies that there always exists a latent
variable satisfying the requirements described above.

To complete the proof, we choose the latent variable so that H(σ)�(t) = 0 (t � 0). Recall
that �(t) → 0 (t → ∞) holds because H(ξ) is Schur. Hence, we get x(t) → 0 (t → ∞). Then,
summing (B.6) up from t = 0 to t = ∞ along the above trajectory yields x(0)�(Ph − P)x(0) =∑∞

t=0 ‖F(σ)�(t)‖2 � 0. Since x(0) is arbitrary, it follows that Ph − P is non-negative definite.
This is equivalent to Q�−(�)(t) � Q�(�)(t) for all � ∈ (Rm)Z and for all t ∈ Z. �

Proof of Lemma 2. (iii) ⇒ (i) We easily see from (iii) that (M(σ)�)�L(P )M(σ)� � 0 for all
� ∈ lm2 and t ∈ Z. This is the case if only if M̃�L(P )M̃ � 0, which is equivalent to L(P ) � 0
from Lemma A 3.

(i) ⇒ (iii) Summing up the dissipation equality (19) from t = −∞ to t = ∞ yields∑∞
t=−∞ Q�(�)(t) −∑∞

t=−∞ Q�(�)(t) = 0. Since Q�(�) = w�L(P )w and L(P ) � 0, we ob-
tain

∑∞
t=−∞ Q�(�)(t) =∑∞

t=−∞ Q�(�)(t) � 0.
(ii) ⇔ (iii) The equivalence of (ii) and (iii) follows immediately from the fact that �(ζ, η) and

�(ζ, η) satisfy the dissipation equality of (10). �

Proof of Lemma 3. Let P be an element of S. Since V (P ) > 0 holds from the definition of S,
it follows from (12) and the definition of L(P ) that

L(P ) = [K Im

]�
V (P )

[
K Im

]
� 0, (B.9)
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where K = V (P )−1(B�PA + S). Then, the QDF Q�(�) = w�L(P )w induced by �(ζ, η) =
M(ζ)�L(P )M(η) is a dissipation rate for Q�(�) by Lemma 2. Moreover, pre- and post-multi-
plying (B.9) by M(ζ)� and M(η) yield

�(ζ, η) = {KX(ζ) + U(ζ )}�V (P ){KX(η) + U(η)} = FP (ζ )�FP (η).

This implies that ��(ξ) = FP (ξ)∼FP (ξ) holds, because ��(ξ) = ��(ξ).
(i) It is clear that �(ζ, η) and �(ζ, η) satisfy the dissipation equality (10). It follows that they

induce a storage function and a dissipation rate for Q�(�), respectively.
(ii) By the identity[

In −X(ξ)

K U(ξ)

]
=
[
In 0
K Im

] [
In 0
0 KX(ξ) + U(ξ)

] [
In −X(ξ)

0 Im

]
,

we easily see that

det(ξIn − A) det{KX(ξ) + U(ξ)}
= det

[
ξIn − A B

0 Im

]
det

[
In −X(ξ)

K U(ξ)

]
= det

{[
ξIn − A B

0 Im

] [
In −X(ξ)

K U(ξ)

]}

= det

[
ξIn − A + BK 0

K U(ξ)

]
= det U(ξ) det(ξIn − A + BK).

Since we have assumed det U(ξ) = det(ξIn − A), we get

det FP (ξ) = det{V (P )
1
2 } det {KX(ξ) + U(ξ)} = √det V (P ) det(ξIn − AP ).

(iii) Since deg det FP (ξ) = n from (ii), we can getFP (ξ)U(ξ)−1 = V (P )
1
2 {K(ξIn − A)−1B +

V (P )
1
2 } by direct calculation using (14). Moreover, the inverse of FP (ξ)U(ξ)−1 is given by a

proper rational matrix {FP (ξ)U(ξ)−1}−1 = {I − K(ξIn − AP )−1B}V (P )− 1
2 . This implies that

FP (ξ)U(ξ)−1 is biproper. �

Proof of Proposition 4. We have only to prove the sufficiency, since the necessity immediately
follows from Lemma 3.

Let F ∈ Rm×m[ξ ] be a polynomial matrix such that ��(ξ) = F(ξ)∼F(ξ) and F(ξ)U(ξ)−1

is biproper. From Lemma 1, there exist a matrix C ∈ Rm×n and a non-singular matrix D ∈
Rm×m satisfying F(ξ) = CX(ξ) + DU(ξ). Let a dissipation rate Q�(�) be induced by �(ζ, η) =
F(ζ )�F(η). Then, by Proposition 2, the corresponding storage function is expressed as �(ζ, η) =
−X(ζ)�PX(η) for some P ∈ Rn×n

s . Furthermore, it follows from Lemma 2 that Q�(�) can
be expressed as Q�(�) = w�L(P )w, or equivalently, �(ζ, η) = M(ζ)�L(P )M(η). Hence, we
obtain

M(ζ)�
[
C D

]� [
C D

]
M(η) = M(ζ)�L(P )M(η). (B.10)

In terms of coefficient matrices, (B.10) is equivalent to M̃� [C D
]� [

C D
]
M̃ = M̃�L(P )M̃ .

Since M̃ has full row rank from Lemma A 3, it reduces to[
C D

]� [
C D

] = L(P ). (B.11)

Since D is nonsingular, we get rank L(P ) = m. We also see that V (P ) = D�D > 0 from the
(2, 2) block of (B.11), which implies that rank L(P ) = rank V (P ) = m. This is the case if and
only if the Schur complement of V (P ) in L(P ) is equal to zero, namely
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A�PA − P + Q − (A�PB + S�)V (P )−1(B�PA + S) = 0.

It is clear from this equation that P satisfies the DARE (12). This completes the proof of suffi-
ciency. �

Proof of Lemma 4. The proof is completed by showing that F(ξ)Ud(ξ)−1 is biproper for the
polynomial matrix F ∈ Rm×m[ξ ] obtained from Algorithm 1. Notice that F(ξ)Ud(ξ)−1 is proper
because, at each iteration, Wk(ξ) and Zk are chosen so that Hk+1 = lim|ξ |→∞ Fk+1(ξ)Ud(ξ)−1

be finite.
Suppose that Algorithm 1 stopped at k = l with F(ξ) = Fl(ξ) and deg det F(ξ) = n. To prove

the biproperness, we assume on the contrary that F(ξ)Ud(ξ)−1 is proper but not
biproper. In this case, we carry out Step 2 for k = l once more to obtain Fl+1(ξ) = Wl(ξ)ZlF (ξ).
It follows from the definitions of Wk(ξ) and Zk that Fl+1(ξ)Ud(ξ)−1 is proper, and hence
lim|ξ |→∞ Fl+1(ξ)Ud(ξ)−1 is finite. On the other hand, it is not difficult to see that

deg det Fl+1(ξ) =
ρl∑

i=1

µli + n > n = deg det Ud(ξ).

The strict inequality in the above equation immediately follows from the assumption that
lim|ξ |→∞ Fl+1(ξ)Ud(ξ)−1 is singular. Hence, we obtain

lim|ξ |→∞ det{Fl+1(ξ)Ud(ξ)−1} = lim|ξ |→∞
det Fl+1(ξ)

det Ud(ξ)
= ∞.

This contradicts the properness of Fl+1(ξ)Ud(ξ)−1. Therefore, the proof of this lemma is com-
pleted. �

Proof of Theorem 1. The necessity is clear from the result of Lemma 3. The sufficiency can be
shown by Proposition 4 and Lemma 4. �

Proof of Proposition 5
Proof of well-definedness: To prove the well-definedness of the map Ric, we introduce two poly-

nomial matricesFi ∈ Rm×m[ξ ] (i = 1, 2) such that��(ξ) = Fi(ξ)∼Fi(ξ), det Fi(ξ) = f (ξ), and
Fi(ξ)U(ξ)−1 is biproper for a given f ∈ Fcop.

We first show that L(ξ) :=F2(ξ)F1(ξ)−1 is a constant orthogonal matrix. Assume that L(ξ)

is a rational matrix. Then, it is biproper because Fi(ξ)U(ξ)−1 (i = 1, 2) is biproper and L(ξ) =
{F2(ξ)U(ξ)−1}{F1(ξ)U(ξ)−1}−1. Moreover, it follows from F1(ξ)∼F1(ξ) = F2(ξ)∼F2(ξ) =
��(ξ) that L(ξ) is unitary, i.e. L(ξ)∼L(ξ) = Im. Recall that, if λ ∈ C is a pole of a unitary
rational matrix L(ξ), then λ−1 is a zero of L(ξ). If the pole λ is equal to zero, then L(ξ) will have
a zero at infinity. This contradicts the biproperness of L(ξ), and hence L(ξ) does not have any
poles at ξ = 0.

Let L(ξ) = L2(ξ)L1(ξ)−1, L1, L2 ∈ Rm×m[ξ ] be a right coprime factorization of L(ξ). Then,
by the unitarity of L(ξ), we get

L2(ξ)∼L2(ξ) = L1(ξ)∼L1(ξ). (B.12)

From the above discussion, the zeros of Li(ξ) (i = 1, 2) are identical to the non-zero roots of
f (ξ) = det Fi(ξ) = 0. Suppose that λ /= 0 is a root of det L1(ξ) = 0. Then, there exists a non-
zero vector v ∈ Cm such that L1(λ)v = 0. Substituting ξ = λ into (B.12) and post-multiplying by
v yield L2(λ

−1)�L2(λ)v = L1(λ
−1)�L1(λ)v = 0. Since f (ξ) belongs to Fcop, det L1(λ) = 0
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implies det L1(λ
−1) = det L2(λ

−1) /= 0. It thus follows that L2(λ)v = 0. This contradicts the
right coprimeness of L1(ξ) and L2(ξ). Since λ is an arbitrary zero of L1(ξ), we conclude that
L1(ξ) and L2(ξ) are non-singular constant matrices, namely they do not have any zeros. This
implies that L = L2L

−1
1 is an orthogonal constant matrix.

We now complete the proof of the well-definedness of Ric. As was discussed in Section 3,
the Riccati solution Pi = Ric(f ) corresponding to Fi(ξ) (i = 1, 2) is obtained by solving the
polynomial equation

�(ζ, η) − Fi(ζ )�Fi(η) = (1 − ζη)X(ζ )�PiX(η). (B.13)

We will prove the well-definedness by showing P1 = P2. Since L = F2(ξ)F1(ξ)−1 is an orthog-
onal matrix, we have F1(ζ )�F1(η) = F2(ζ )�F2(η). It follows from (B.13) that X(ζ)�P1X(η) =
X(ζ)�P2X(η). Since X(σ) is a minimal state map for �, the map � �→ (X(σ)�)(0) is surjective.
Hence, we have x�

0 P1x0 = x�
0 P2x0 for all x0 ∈ Rn. Clearly, this implies P1 = P2.

Proof of bijectiveness: Let P be an element of S. We assume that there exist two polynomials
f1, f2 ∈ Fcop satisfying Ric(f1) = Ric(f2) = P . Let F1, F2 ∈ Rm×m[ξ ] be polynomial matrices
such that ��(ξ) = Fi(ξ)∼Fi(ξ), det Fi(ξ) = fi(ξ) and Fi(ξ)U(ξ)−1 is biproper (i = 1, 2). Then,
we obtain F1(ζ )�F1(η) = F2(ζ )�F2(η), since

�(ζ, η) − Fi(ζ )�Fi(η) = (1 − ζη)X(ζ )�PX(η)

holds for i = 1, 2. This implies that detF1(ζ )detF1(η) = detF2(ζ )detF2(η), i.e. f1(ζ )f1(η) =
f2(ζ )f2(η). Given that the highest degree coefficients of f1(ξ) and f2(ξ) are positive, it follows
f1(ξ) = f2(ξ). This concludes the proof of the injectiveness of Ric.

The surjectiveness is easily proved by taking f (ξ) = det FP (ξ), where FP (ξ) is defined in
Lemma 3. �

Proof of Theorem 2. We have only to show that Sf is non-singular under Assumption 1′.
There holds ξX(ξ) = AX(ξ) + BU(ξ) from (14). Then, it follows from (27) that ξX(l)(ξ) +

lX(l−1)(ξ) = AX(l)(ξ) + BU(l)(ξ) for l = 0, 1, . . . , di − 1. Hence, we obtain[
X(λi) X(1)(λi) · · · X(di−1)(λi)

]
(λiIdi

+ Ni)

= [A B
] [

M(λi) M(1)(λi) · · · M(di−1)(λi)
]
. (B.14)

Post-multiplying (B.14) by Vi , it follows from (31) and (32) that

λiSi + SiLi = ASi + B
[
U(λi) U(1)(λi) · · · U(di−1)(λi)

]
Vi. (B.15)

Since F(ξ)U(ξ)−1 is biproper, there exist a matrix C ∈ Rm×n and a non-singular matrix D ∈
Rm×m satisfying F(ξ) = CX(ξ) + DU(ξ) from Lemma 1. Thus, we get[

F(λi) F (1)(λi) · · · F (di−1)(λi)
]

= C
[
X(λi) X(1)(λi) · · · X(di−1)(λi)

]
+ D

[
U(λi) U(1)(λi) · · · U(di−1)(λi)

]
.

Post-multiplying this by Vi , there holds from (31) and (33) that[
U(λi) U(1)(λi) · · · U(di−1)(λi)

]
Vi = −D−1CSi. (B.16)

Substituting (B.16) into (B.15) yields

(λiIn − A + BD−1C)Si = −SiLi (i = 1, 2, . . . , k). (B.17)
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We now prove that Si has full column rank. Partition Si as Si = [Si,0 Si,1 · · · Si,di−1
]
,

Si,l ∈ Cn (l = 0, 1, . . . , di − 1). (B.17) implies that Si,0, Si,1, . . . , Si,di−1 satisfy

(λiIn − A + BD−1C)Si,l = −(l + 1)Si,l+1 (l = 0, 1, . . . , di − 2), (B.18)

(λiIn − A + BD−1C)Si,di−1 = 0. (B.19)

It is sufficient to prove that S′
i,l :=

[
Si,l Si,l+1 · · · Si,di−1

]
has full column rank for l =

di − 1, . . . , 1, 0 using a induction. For l = di − 1, (31) and (B.16) imply that there holds
M(λi)ai,di−1 = col(In, −D−1C)S′

i,di−1. Since ai,di−1 /= 0 and M(λi) has full column rank from
the observability, S′

i,di−1 /= 0, i.e. S′
i,di−1 is of full column rank. Assume that S′

i,l is of full column
rank for l = di − 1, di − 2, . . . , k. To deduce a contradiction, we also assume that S′

i,k−1 =[
Si,k−1 S′

i,k

]
does not have full column rank. Then, there exists a non-zero vector νi,k ∈ Cdi−k

satisfyingSi,k−1 = S′
i,kνi,k . Since (λiIn − A + BD−1C)S′

i,k = −S′
i,kLi,k from (B.18) and (B.19),

we see (λiIn − A + BD−1C)Si,k−1 = −S′
i,kLi,kνi,k , where Li,k ∈ R(di−k)×(di−k) is the lower

subdiagonal matrix with elements {k, k + 1, . . . , di − 1}. Since (λiIn − A + BD−1C)Si,k−1 =
−S′

i,k · col(k, 0, . . . , 0) from (B.18), we obtain S′
i,k(Li,kνi,k − col(k, 0, . . . , 0)) = 0. From the

assumption that S′
i,k is of full column rank, we have Li,kνi,k − col(k, 0, . . . , 0) = 0. This is a

contradiction, because this is not the case for any choice of νi,k . Hence, Si is of full column rank.
From (B.17) and the fact Si has full column rank, the column vectors of Si are the eigen-

vectors of A − BD−1C for the eigenvalue λi with the partial multiplicity di . Thus, if i /= j , the
column vectors of Si and Sj are linearly independent. Since i, j = 1, 2, . . . , k are arbitrary, Sf

is non-singular. �

Proof of Corollary 1. Let f ∈ Fcop be arbitrary. Under Assumption 1′, the map Ric is bijective
from Proposition 5. Thus, the polynomial matrix which induces the corresponding storage func-
tion is given by �(ζ, η) = −X(ζ)�Pf X(η), where Pf = Ric(f ). Similarly, from Proposition
3, the polynomial matrix which induces the smallest storage function is given by �−(ζ, η) =
−X(ζ)�PhX(η), where Ph = Ric(h). This implies −x�Pf x � −x�Phx for all � ∈ (Rm)Z and
t ∈ Z. Since X(σ) is a minimal state map for �, the map � �→ (X(σ)�)(0) is surjective. Hence,
we have −x�

0 Pf x0 � −x�
0 Phx0 for all x0 ∈ Rn. This implies Pf � Ph for all f ∈ Fcop. From

Theorem 2, we see that Ph = (S∗
h)−1ThS

−1
h gives the largest solution of the DARE (12). Since

the existence of non-negative definite solution of the DARE (12) is equivalent to Ph � 0, this is
the case if and only if Th � 0, which completes the proof. �
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