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Adrenomedullin (ADM) is a vasodilator and inhibits salt

appetite. An A-to-G substitution at position �1984 in the

promoter region of the ADM gene likely increases

transcription. We therefore investigated this polymorphism

in relation to blood pressure and urinary sodium in a Chinese

population. We genotyped 427 Chinese enrolled in a

family-based population study. We measured blood pressure

by conventional sphygmomanometry and ambulatory

monitoring. The frequencies of the ADM AA, AG, and GG

genotypes were 50.6, 38.2, and 11.2%, respectively. In

adjusted analyses, G allele carriers, compared to AA

homozygotes, had significantly lower conventional (45.3

versus 48.5 mm Hg, P¼ 0.004) and 24-h (42.6 versus

44.3 mm Hg, P¼ 0.03) pulse pressures and urinary sodium

excretion (143.8 versus 159.4 mmol/day, P¼ 0.03). In parents,

but not offspring, both systolic pressure and pulse pressure

were significantly (Po0.01) lower in G allele carriers. The

genotypic difference in sodium excretion was consistent

across the age range. In 68 informative offspring,

transmission of the G allele was associated with lower urinary

sodium excretion (effect size, 40.1 mmol/day, P¼ 0.01). In

81 healthy volunteers, the plasma ADM concentration

was 15.2% higher in GG homozygotes than in sex- and

age-matched AA subjects (11.4 versus 9.9 pmol/l, P¼ 0.10).

In conclusion, in Chinese, the ADM �1984G allele is

associated with lower sodium excretion and in older subjects

also with lower systolic pressure and narrower pulse pressure.
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adrenomedullin gene

Adrenomedullin (ADM) is a peptide consisting of 52 amino
acids, first isolated from human pheochromocytoma in
1993.1 It is expressed in various tissues.2 According to a
recent review of the literature,3 ADM acts as an autocrine,
paracrine, or endocrine modulator of biologically important
functions, including the endothelial regulation of blood
pressure, protection of organ damage in sepsis or hypoxia,
and the control of blood volume through the regulation of
thirst. In healthy subjects, ADM circulates at low picomolar
concentrations. In pathological conditions, such as for
instance heart failure, sepsis, and renal impairment, the
plasma concentration of ADM substantially increases.

Experimental studies showed that ADM is a vasodilator,
and via its expression in the brain and adrenals inhibits salt
appetite, thirst, and sympathetic activity.4–8 In humans, the
plasma ADM concentration rises with higher blood pressure
and associated complications.9,10 In rodent models, knockout
of the ADM gene increases blood pressure,11 whereas ADM
infusion or ADM gene transfer attenuates hypertension.12–14

In humans, the gene encoding preproadrenomedullin maps
to chromosome 11p15.4. After posttranslational modifica-
tion, the peptides proadrenomedullin and ADM are gener-
ated.15 A genetic polymorphism (A/G) in the ADM promoter
region at position �1984 has been reported (rs3814700,
http://www.ncbi.nlm.nih.gov). The A to G substitution leads
to the appearance of a binding site for the glucocorticoid
receptor (http://www.gene-regulation.com/pub/programs/
alibaba2), which stimulates the transcription of several
genes.16 We therefore hypothesized that the ADM
A�1984G polymorphism might be functional. The frequency
of the minor G allele is approximately 25% in Japanese, but
only 5% in Caucasians (http://www.ncbi.nlm.nih.gov). Given
that ADM might be an interesting candidate gene for blood
pressure regulation and sodium homeostasis, we investigated
the association between blood pressure, urinary sodium
excretion, and the ADM A�1984G polymorphism in a
Chinese population.
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RESULTS
Characteristics of the participants

The 427 participants included 223 (52.2%) women and 113
(26.5%) hypertensive patients, of whom 47 (11.0%) were
taking antihypertensive drugs. Age ranged from 12 to 85

years. Overall, the conventional and 24-h ambulatory blood
pressures averaged 125.7/78.7 and 120.8/77.1 mm Hg, respec-
tively. Table 1 provides further characteristics of the popul-
ation sample by gender. Compared to women, men more
frequently reported smoking and alcohol intake, and had
higher (Po0.05) daytime systolic blood pressure (124.1 versus
127.6 mm Hg), plasma renin activity, urinary volume, and
creatinine excretion. With cumulative adjustment applied
for sex, age, and systolic blood pressure, plasma renin activity
was inversely associated with the 24-h urinary sodium
excretion (P¼ 0.05).

Genotype and allele frequencies

The frequencies of the ADM genotypes (AA 50.6%, AG
38.2%, and GG 11.2%) did not deviate from the Hardy–
Weinberg equilibrium (P¼ 0.11). The genotype and allele
frequencies were similar in parents and offspring (P40.36),
and did not differ according to the presence or absence of
hypertension (P40.74).

Population-based analyses

With adjustment applied for sex, age, body mass index
(BMI), current smoking, alcohol intake, and the use of
antihypertensive drugs, pulse pressure measured at the
subjects’ homes as well as on 24-h and daytime ambulatory
monitoring was significantly lower in G allele carriers than
AA homozygotes (Pp0.03, Table 2). This was mainly due to
a consistently lower systolic pressure in G allele carriers,
although the difference from AA homozygotes did not reach
statistical significance (PX0.22). The night-time pulse
pressure adjusted for the same covariates was similar in G
allele carriers and AA homozygotes (41.6 versus 42.2 mm Hg,
P¼ 0.43). Furthermore, both before and after adjustment for
sex, age, and BMI, G allele carriers had a significantly lower

Table 1 | Characteristics of the study population

Characteristic Men (N=204) Women (N=223)

Age (years) 44.9715.2 43.3713.7
Body mass index (kg/m2) 22.072.7 22.973.2a

Conventional blood pressure (mm Hg)
Systolic 126.9722.6 124.6723.7
Diastolic 79.2710.8 78.2711.9
Pulse pressure 47.8716.2 46.4715.6

24-h ambulatory blood pressure (mm Hg)
Systolic 122.4714.3 119.5716.8
Diastolic 78.079.6 76.4710.0
Pulse pressure 44.477.9 43.179.5
Plasma renin activity (ng/ml/h) 1.44 (1.24–1.68) 1.13 (0.95–1.34)a

Questionnaire data N (%)
Current smoking 122 (59.8) 0a

Alcohol intake 152 (74.5) 46 (20.6)a

Taking antihypertensive drugs 22 (10.8) 25 (11.2)

24-h urinary excretion
Volume (l) 1.1470.54 0.9870.44a

Creatinine (mmol) 7.5072.89 6.3272.16a

Sodium (mmol) 147.9775.6 158.7771.5
Potassium (mmol) 24.7711.8 26.8712.9
Na+/K+ ratio 6.3772.55 6.4372.56a

Values are arithmetic mean7s.d., geometric mean (95% CI), or number of
subjects (%).
Ambulatory recordings and urinary measurements were available in 314 subjects
(138 men and 176 women) and 384 subjects (185 men and 199 women),
respectively.
aPo0.05 versus men.

Table 2 | Blood pressure and sodium excretion by adrenomedullin genotype in all subjects

Unadjusted Adjusteda

AA (N=216) AG+GG (N=211) P AA (N=216) AG+GG (N=211) P

Conventional blood pressure (mm Hg)
Systolic 127.471.7 124.071.4 0.13 126.471.4 123.571.3 0.09
Diastolic 78.670.8 78.770.8 0.94 78.270.7 78.770.7 0.64
Pulse pressure 48.871.2 45.370.9 0.02 48.571.0 45.370.8 0.004

24-h ambulatory blood pressure (mm Hg)
Systolic 121.471.3 120.171.2 0.46 120.771.1 119.070.9 0.22
Diastolic 77.170.8 77.170.8 0.99 76.770.7 76.870.7 0.99
Pulse pressure 44.370.7 43.070.7 0.18 44.370.6 42.670.6 0.03

Daytime ambulatory blood pressure (mm Hg)
Systolic 126.471.3 124.871.2 0.38 126.071.1 124.171.0 0.19
Diastolic 81.470.8 81.670.8 0.84 80.970.7 81.370.7 0.70
Pulse pressure 45.170.8 43.270.7 0.07 45.070.6 43.170.6 0.02

Urinary sodium excretionb (mmol/day) 159.875.6 144.974.8 0.05 159.475.7 143.874.9 0.03
Plasma renin activity (ng/ml/h) 1.21 (1.02 to 1.42) 1.34 (1.14 to 1.58) 0.35 1.27 (1.09 to 1.47) 1.31 (1.14 to 1.51) 0.70

Values are arithmetic mean7s.e. or geometric mean (95% CI). Ambulatory recordings and urinary measurements were available in 314 subjects (161 AA homozygotes and
153 G allele carriers) and 384 subjects (202 AA homozygotes and 182 G allele carriers), respectively.
aAdjusted for sex, age, BMI, current smoking, alcohol intake, and use of antihypertensive drugs.
bCovariates in the adjusted analysis were sex, age, and BMI.
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(P¼ 0.03) urinary sodium excretion than AA homozygotes
with no difference in plasma renin activity according to
genotype (P¼ 0.70, Table 2). In further analyses, we did not
detect a significant gene dose effect in any of the
phenotype–genotype relations (data not shown).

Sensitivity analyses revealed significant genotype-by-age
interactions in relation to systolic pressure and pulse pressure
(Figure 1). In the parent generation, G allele carriers
compared to AA homozygotes had a consistently lower
systolic pressure and pulse pressure (Pp0.01, Figure 2). On
conventional measurement, the differences amounted to
9.8 mm Hg (95% confidence interval (CI), 2.4–17.3 mm Hg;
P¼ 0.009) and 6.8 mm Hg (95% CI, 1.7–11.9 mm Hg;
P¼ 0.009), respectively. On 24-h ambulatory measurement,
the corresponding estimates were 5.5 mm Hg (95% CI,
0.3–10.7 mm Hg; P¼ 0.04) and 3.9 mm Hg (95% CI,

0.9–6.9 mm Hg; P¼ 0.01). Among offspring, systolic pressure
and pulse pressure were similar across the ADM genotypes.
On the other hand, the 24-h urinary sodium excretion
adjusted for sex, age, and BMI was consistently lower in
parents (118.6 versus 138.1 mmol/day; P¼ 0.07) and off-
spring (152.5 versus 174.7 mmol/day; P¼ 0.04) carrying the
G allele. This explained why the genotype-by-age interaction
for sodium excretion was not significant (P¼ 0.76).

Family-based analyses

Our study sample included 48 one-parent families with two
(N¼ 35) or more (N¼ 13) offspring and 25 two-parent
families with one (N¼ 3), two (N¼ 16), or more (N¼ 6)
offspring. We excluded seven subjects because of errors in
Mendelian inheritance. The orthogonal model did not reveal
significant population stratification (P40.12).

In 85 informative offspring with adjustments applied as
before, the orthogonal model did not show any significant
association between the blood pressure phenotypes and the
transmission of G allele (P 4 0.21). However, in 68 inform-
ative offspring, transmission of the G allele was associated
with lower urinary sodium excretion (effect size, 40.1 mmol/
day; P¼ 0.01).

Plasma ADM concentration in healthy volunteers

The 81 volunteers, 51.9% female, had a mean age of
52.7717.2 (s.d.) years. The geometric mean plasma con-
centration of ADM was 9.9 pmol/l (95% CI, 8.8–11.2) in AA
homozygotes, 10.1 pmol/l (95% CI, 9.0–11.4) in AG hetero-
zygotes, and 11.4 pmol/l (95% CI, 10.1–12.9) in GG
homozygotes (Figure 3). The phenotypic difference between
GG and AA homozygotes tended to be significant (P¼ 0.10).

DISCUSSION

To our knowledge, our study is the first to examine whether
at the level of the general population blood pressure and
urinary sodium excretion are related to variation in the
promoter of the ADM gene. In a Chinese population sample,
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Figure 1 | Conventional systolic pressure and pulse pressure by
ADM genotype and quartiles of age in the population study.
Values are means adjusted for sex, age, BMI, current smoking, alcohol
intake, and use of antihypertensive drugs. The P-value for interaction
(Pint) between ADM genotypes and age, analyzed as a continuous
variable, was derived from the GEE analysis.
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Figure 2 | Conventional and ambulatory blood pressure by ADM
genotype in parents recruited from the population. Means were
adjusted for sex, age, BMI, current smoking, alcohol intake, and use of
antihypertensive drugs. (|) denote s.e.’s bar. The number of subjects
contributing to each mean is given. P-values were derived from the
GEE analysis.
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we found that pulse pressure and urinary sodium excretion
were lower in �1984G allele carriers than AA homozygotes.
We also noticed an interaction between the ADM A�1984G
polymorphism and age in relation to systolic blood pressure
and pulse pressure, but not sodium excretion. Indeed, among
parents, but not offspring, G allele carriers had significantly
lower systolic pressure and pulse pressure, whereas the
urinary sodium excretion was consistently lower in G allele
carriers across the age range. Furthermore, in healthy Chinese
volunteers, the plasma ADM concentration tended to
increase with the number of �1984G alleles.

There is abundant experimental evidence that ADM plays
an important role in blood pressure regulation and sodium
homeostasis.3–14,17 The targeted null mutation of the ADM
gene was lethal, but heterozygous ADMþ /� mice were
hypertensive.11,18 Transgenic mice overexpressing the ADM
gene in the cardiovascular system had lower blood pressure
than controls.18 Chronic administration of ADM to salt-
sensitive rats significantly attenuated the development of
hypertension and prolonged survival.19,20 In hypertensive
patients, infusion of ADM at a physiological dose (2.9 and
5.8 pmol/kg/min) for 2 h significantly reduced systolic and
diastolic blood pressure.21 In addition, injection of ADM into
the central nervous system dose-dependently inhibited
sodium appetite and water drinking in rats.5 The intrarenal
infusion of ADM in rats enhanced the glomerular filtration
rate and the fractional sodium excretion and decreased the
distal tubular sodium reabsorption.22 Thus, our present
epidemiological findings concur with the evidence from
previous experimental studies.

Irrespective of age, we observed that G allele carriers had a
lower urinary sodium excretion than AA homozygotes.
However, the difference in blood pressure associated with
the ADM polymorphism was only significant in parents, but
not offspring. Although these findings must be cautiously
interpreted, they might indicate that in ADM �1984G allele
carriers, a lower salt intake early in life and continuing
throughout the age range might in the long run lead to a
lower systolic blood pressure and a narrower pulse pressure.
Indeed, age is an important determinant of the penetrance of
genetic variants.23 Older age increases sodium sensitivity,
steepens the relation between blood pressure and exchange-
able body sodium, decreases the gain of the barorecepter
reflex, reduces renal perfusion, and compromises the
buffering effects of the large arteries on both systolic and
diastolic pressure.22 At younger age, compensatory feed back
loops have a greater potential to maintain the homeostasis of
the sodium balance. These age-related mechanisms might
also contribute to the presently observed genotype-by-age
interaction in relation to blood pressure.

The present study should be interpreted within the
context of its limitations. First, our epidemiological study
demonstrated association of blood pressure and sodium
excretion with variation in the promoter of the ADM gene in
Chinese, but did not provide direct information on the
mechanisms underlying these phenotype–genotype relations.

Second, we did not measure the plasma concentration of
ADM in the JingNing study participants, but in 81 age- and
sex-matched healthy volunteers, equally distributed over the
three ADM genotypes. Although we found a weak association
between the plasma concentration of ADM and variation in
the ADM gene, the functionality of the A�1984G poly-
morphism remains to be tested in transfected cell models.
Third, we did not assess the reproducibility of the 24-h
urinary sodium excretion. A single 24-h urine collection
might be insufficient to characterize an individual’s habitual
sodium intake, but it does reproducibly reflect the average
salt consumption of groups of subjects.24 Fourth, our sample
size was relatively small, and hence the possibility of a chance
finding cannot be entirely ruled out. On the other hand, our
epidemiological observations are consistent with the large
body of evidence supporting the hypothesis that a higher salt
intake superimposed on genetic predisposition plays a pivotal
role in the pathogenesis of essential hypertension.

Conclusion

In our Chinese population sample, the ADM �1984G allele
was associated with a lower 24-h urinary sodium excretion
and in middle-aged and older subjects also with a lower
systolic pressure and a narrower pulse pressure. If replicated
in other populations, our results highlight the need for
further experimental and clinical studies to elucidate the role
of ADM in regulating salt appetite and in the pathogenesis of
primary hypertension.

MATERIALS AND METHODS
Study population
In 2003, we visited all homes in six villages randomly selected from
the JingNing County, a rural area approximately 500 km south of
Shanghai.25 Approximately 90% of the inhabitants are SHE Chinese,
and the remainder belong to the HAN ethnicity. The literacy rate
among adults is 65.5% and life expectancy is 74.7 years.25 The Ethics
Committee of Shanghai Second Medical University approved the
study.

We invited families to take part, if at least two offspring with a
minimum age of 12 years and one parent were available for
examination. Of 839 eligible individuals, 509 (61.7%) participated
after having given informed written consent. We excluded 42
subjects from the present analysis because of missing information on
genotype (N¼ 18) or phenotype (N¼ 24). There is no generally
agreed algorithm to construct the variance–covariance matrix for
correlated data within complex pedigrees using generalized
estimating equations (GEE). We therefore removed 40 participants
from the analysis, keeping within each extended pedigree the most
informative nuclear unit. These nuclei spanned two generations and
included the largest possible number of informative relatives with all
phenotypes and the ADM genotype available for analysis. Thus, the
number of subjects statistically analyzed totalled 427.

Field work
Five experienced observers visited the subjects at their homes. They
measured each participant’s blood pressure five times consecutively
by conventional sphygmomanometry, after the subjects had rested
for at least 5 min in the sitting position. These five readings were
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averaged for analysis. During the home visit, the observers
administered a standardized questionnaire to collect information on
smoking habits, alcohol consumption, and use of medications.
Hypertension was defined as a blood pressure of at least 140 mm Hg
systolic or 90 mm Hg diastolic, or as the use of antihypertensive drugs.

We programmed oscillometric SpaceLabs 90207 monitors
(SpaceLabs Inc., Redmond, WA, USA) to obtain ambulatory blood
pressure measurements with an interval of 20 min from 0800 until
2200 hours and every 45 min from 2200 to 0800 hours. The
calibration of these devices was checked monthly against a mercury
column. If the ambulatory recordings were longer than 24 h, only
the first day was used for analysis. Intraindividual means of the
ambulatory measurements were weighted by the time interval
between successive readings. We defined daytime and night-time as
the intervals ranging from 0800 to 1800 hours and from 2200 to
0400 hours, respectively.25

Within 2–3 weeks of the home visit, the participants collected a
24-h urine sample in a wide-neck plastic container for measurement
of electrolytes and creatinine. We sampled venous blood to measure
plasma renin activity and the ADM genotype.

Determination of genotype
Genomic DNA was extracted from white blood cells. From the
sequence of the human ADM gene, we amplified a 377 base pair
fragment incorporating the A�1984G polymorphic site. The
forward and reverse primers were 50-CAAGTGGAAGCTGGCGA
CAAG-30 and 50-CGGACCTGAATTCCATCTGAGG-30, respectively.
The PCR mixture (20 ml) contained 100 ng DNA, 0.5 nmol/l primers,
1.5 mmol/l MgCl2, 0.2 mmol/l dNTPs, and 1 U Taq polymerase. The
amplification conditions were 951C for 5 min, followed by 32 cycles
at 94, 68 and 721C, each for 45 s, and termination at 721C for
10 min. We determined the ADM genotype by 2.5% agarose gel
electrophoresis after digestion of 5 ml PCR product by 2.5 U
HpyCH4III (New England Biolabs, Beverly, MA, USA) at 371C for
4 h. One DNA band of 377 base pairs and two DNA bands of 241
and 136 base pairs indicate AA and GG homozygosity, respectively.
The AG heterozygotes have the combination of the three DNA
bands.

Measurement of plasma ADM in healthy volunteers
To study the plasma concentration of ADM in relation to the ADM
A�1984G polymorphism, we recruited and genotyped 454 healthy
and untreated subjects, aged 17–84 years, whose blood pressure on
conventional measurement (average of five consecutive readings)
was less than 140 mm Hg systolic and 90 mm Hg diastolic. We
selected all 27 GG homozygotes in the sample and we matched them
for sex and age (within 0.8 years) with 27 AG heterozygotes and 27
AA homozygotes.

From the 81 volunteers, we collected a venous blood sample in
the morning in chilled EDTA tubes. We measured the plasma
concentration of ADM by radioimmunoassay as described by Ohta
and co-workers.26 We obtained monoclonal antibodies from the
Navy Radioimmunoassay Centre (Beijing, China). The detection
limit of our assay was 2 pmol/l. The working range was from 2 to
72 pmol/l. The intra- and interassay coefficients of variations were
less than 10 and 15%, respectively.

Statistical analysis
For database management and statistical analysis, we used SAS
software, version 8.2 (SAS Institute, Cary, NC, USA). Continuous

measurements with a skewed distribution were normalized by
logarithmic transformation and represented by the geometric mean
and 95% CI. Means and proportions were compared by the standard
normal z-test and Fisher’s exact test, respectively. We identified
covariates of the phenotypes under study using stepwise multiple
regression with the P-value for independent variables to enter and
stay in the model set at 0.10. To account for the non-independence
of the observations within families, while controlling for covariates
and confounders, we studied genetic associations using GEE,27 as
implemented in the PROC GENMOD procedure of the SAS
package.

In family-based analyses, with similar adjustments applied as in
GEE, we performed a transmission disequilibrium test for
quantitative traits (QTDT). We evaluated the within- and
between-family components of phenotypic variance, using the
orthogonal model as implemented by Abecasis et al.28 in the
disequilibrium test for quantitative traits software, version 2.4
(http://www/sph.umich.edu/cgs/abecasis/QTDT).
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