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Abstract

In this paper, we give necessary and sufficient conditions for Talagrand’s like transportation cost in-
equalities on the real line. This brings a new wide class of examples of probability measures enjoying a
dimension-free concentration of measure property. Another byproduct is the characterization of modified
Log-Sobolev inequalities for log-concave probability measures on R.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Transportation-cost inequalities

This article is devoted to the study of probability measures on the real axis satisfying some
kind of transportation-cost inequalities. These inequalities relate two quantities: on the one hand,
an optimal transportation cost in the sense of Kantorovich and on the other hand, the relative
entropy (also called Kullback–Leibler distance). Let us recall that if α : R → R

+ is a continuous
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even function, the optimal transportation-cost to transport ν ∈ P(R) on μ ∈ P(R) (the set of all
probability measures on R) is defined by

Tα(ν,μ) = inf
π∈P(ν,μ)

∫ ∫
R×R

α(x − y)π(dx dy), (1)

where P(ν,μ) is the set of all the probability measures on R × R such that π(dx × R) = ν and
π(R × dy) = μ. The relative entropy of ν with respect to μ is defined by

H(ν | μ) =
{∫

log dν
dμ

dν if ν � μ,

+∞ otherwise.
(2)

One will say that μ ∈ P(R) satisfies the Transportation Cost Inequality (TCI) with the cost
function (x, y) �→ α(x − y) if

∀ν ∈P(R), Tα(ν,μ) � H(ν | μ). (3)

Transportation-cost inequalities of the form (3) were introduced by K. Marton in [15,16] and
M. Talagrand in [21]. After them, several authors studied inequality (3), possibly in a multidi-
mensional setting, for particular choices of the cost function α (see for example [3,4,7,9,19,23]).
The best known example of transportation-cost inequality is the so-called T2-inequality (also
called Talagrand’s inequality). It corresponds to the choice α(x) = 1

a
x2. One says that μ satisfies

T2 with the constant a if

∀ν ∈P(R), T2(ν,μ) � aH(ν | μ), (4)

writing T2(ν,μ) instead of Tx2(ν,μ).
It will be convenient to introduce a class of slightly stronger transportation-cost inequalities.

A probability measure will be said to satisfy the strong TCI with the cost function (x, y) �→
α(x − y) if

∀ν,β ∈P(R), Tα(ν,β) � H(ν | μ) + H(β | μ). (5)

Note that this inequality is a sort of symmetrized version of the usual TCI (3). Of course, since
H(μ | μ) = 0, (5) implies (3). In fact, if α is convex, these two inequalities are equivalent up
to constant factors (see Proposition 7). Strong TCIs are not new. The strong TCI (5) is in fact
equivalent to an infimal-convolution inequality. Infimal-convolution inequalities were introduced
by B. Maurey in [17]. The translation of (5) in terms of infimal-convolution inequalities will be
stated in Theorem 11.

One of the reasons of the increasing interest to transportation-cost inequalities is their links
with the concentration of measure phenomenon. Roughly speaking, a probability measure which
satisfies a TCI of the form (3) or (5) also satisfies a dimension-free concentration of measure
property. This link was first pointed out by K. Marton in [15] and M. Talagrand in [21]. If μ

verifies the strong TCI (5), then

∀n ∈ N
∗, ∀A ⊂ R

n measurable, ∀r � 0, μn
(
Ar

α

)
� 1 − 1

n
e−r , (6)
μ (A)



402 N. Gozlan / Journal of Functional Analysis 250 (2007) 400–425
where

Ar
α =

{
x ∈ R

n: ∃y ∈ A such that
n∑

i=1

α
(|xi − yi |

)
� r

}
.

For example, the T2-inequality is related to Gaussian dimension-free concentration: if μ satisfies
T2 with constant a > 0, then (6) can be restated in the following way:

∀n ∈ N
∗, ∀A ⊂ R

n measurable, ∀r � 0, μn
(
d2(·,A) � r

)
� 1 − 1

μn(A)
e−r2/a,

where d2 denotes the usual Euclidean metric on R
n.

1.2. Presentation of the results

In this paper, we will give necessary and sufficient conditions under which a probability mea-
sure μ on R satisfies a strong TCI. We will always assume that μ has no atom (μ{x} = 0 for all
x ∈ R) and full support (μ(A) > 0 for all open set A ⊂ R).

First let us define the set of admissible cost functions.

Definition 1 (Admissible cost functions). The class A will be the set of all the functions α : R →
R

+ such that:

• α is even,
• α is a continuous function, non-decreasing on R

+ with α(0) = 0,
• α is super-additive on R

+: α(x + y) � α(x) + α(y), ∀x, y � 0,
• α is quadratic near 0: α(t) = |t |2,∀t ∈ [−1,1].

One will write μ ∈ Tα(a) (respectively μ ∈ STα(a)) if μ satisfies the TCI (respectively the
strong TCI) with the cost function (x, y) �→ α(a(x − y)).

1.2.1. The main result
Our main result (Theorem 2) characterizes the strong TCIs on a large class Lip�μ1 ⊂ P(R).

Roughly speaking this set is the class of all probability measures which are Lipschitz deformation
of the exponential probability measure dμ1(x) = 1

2e−|x| dx.
To properly define Lip�μ1 let T : R → R: x �→ F−1 ◦F1(x), where F (respectively F1) is the

cumulative distribution function of μ (respectively μ1). The function T is called the monotone
rearrangement map. It transports μ1 on μ: μ = T �μ1, where T �μ1 denotes the image of μ1

under T , i.e.

∀A ⊂ R measurable, T �μ1(A) = μ1
(
T −1(A)

)
.

By definition, the class Lip�μ1 is the class of probability measures μ such that T is Lipschitz.
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Theorem 2. Let μ ∈ Lip�μ1 and α ∈ A. The probability measure μ belongs to STα(a) for some
a > 0 if and only if there is some b > 0 such that

K+(b) := sup
x�m

∫
eα(bu) dμ+

x (u) < +∞ and K−(b) := sup
x�m

∫
eα(bu) dμ−

x (u) < +∞,

where m is the median of μ and where μ+
x and μ−

x are probability measures on R+ defined as
follows:

μ+
x = L(X − x|X � x) and μ−

x = L(x − X|X � x),

with X a random variable of law μ.

Remark 3. In a more explicit way, for all bounded and measurable f defined on R
+,

+∞∫
0

f (u)dμ+
x (u) = 1

μ[x,+∞)

+∞∫
x

f (u − x)dμ(u),

+∞∫
0

f (u)dμ−
x (u) = 1

μ(−∞, x]
x∫

−∞
f (x − u)dμ(u).

In particular, the integrability conditions appearing in the preceding theorem read

K+(b) = sup
x�m

∫ +∞
x

eα(b(u−x)) dμ(u)

μ[x + ∞)
< +∞ and

K−(b) = sup
x�m

∫ x

−∞ eα(b(x−u)) dμ(u)

μ(−∞, x] < +∞.

The result furnished by Theorem 2 is quite satisfactory. Though partial, this result covers all
the ‘regular’ cases. Namely, it can be shown that whenever μ satisfies STα(a) then it satisfies
a Poincaré inequality. But if μ has a positive density of the form dμ = e−V dx, where V is a
good potential (see the definition bellow), then μ satisfies Poincaré if and only if it belongs to
Lip�μ1. We are unable to construct a potential V such that the probability measure dμ = e−V dx

satisfies Poincaré without being in Lip�μ1. However, if the density is allowed to vanish, then the

probability measures dνr(x) = 1
Zr

|x|r e−|x| dx, with r ∈ (0,1) do the job (see Section 4.1).
In the following theorem we derive from the above result an explicit condition on V ensuring

that μ belongs to STα(a) for some a > 0. This condition requires that V is regular enough:

Definition 4 (Good potentials). The class V will be the set of all the functions f : R → R of class
C2 such that:

• there is xo > 0 such that xf ′(x) > 0 for all x ∈ (−∞,−xo] ∪ [xo,+∞),
• f ′′(x)

f ′2(x)
−→

x→±∞0.
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Theorem 5. Let dμ = e−V dx with V ∈ V and α ∈ A ∩ V , then μ satisfies STα(a) for some
constant a > 0 as soon as the following conditions hold:

lim inf
x→±∞

∣∣V ′(x)
∣∣ > 0 and ∃λ > 0 such that lim sup

x→±∞
α′(λx)

V ′(x + m)
< +∞.

The first condition guaranties that μ belongs to Lip�μ1 and the second one that K+(b) < +∞
and K−(b) < +∞ for some positive b. In the particular case of T2-inequality, we recover a
sufficient condition of P. Cattiaux and A. Guillin (see [7, Proposition 5.5]).

1.2.2. The particular case of Log-concave distributions
A particularly nice case is when μ is Log-concave. Recall that μ is said to be Log-concave if

log(1 − F) is concave, F being the cumulative distribution function of μ. If μ is Log-concave
then it belongs to Lip�μ1 (see Proposition 44). The following theorem gives a complete charac-
terization of strong TCIs for Log-concave measures.

Theorem 6. Let α ∈ A and μ ∈ P(R) a Log-concave distribution. The following propositions
are equivalent:

(i) There is some constant a > 0 such that μ ∈ STα(a).
(ii) There is some constant b > 0 such that

∫
eα(bx) dμ(x) < +∞.

If α ∈ A is convex then the same is true for the TCI.

Using well known techniques, we derive from this result sufficient conditions for the modified
Logarithmic Sobolev inequalities introduced by I. Gentil, A. Guillin and L. Miclo in [9]. We
prove that under the moment condition

∫
eα(bx) dμ(x) < +∞, the Log-concave distribution μ

satisfies the following inequality

Entμ
(
f 2) � C

∫
α∗

(
t
f ′

f

)
f 2 dμ, ∀f, (7)

for some c, t > 0 (see Theorem 47 and Corollary 49). This extends and completes the results
of Gentil, Guillin and Miclo (see [9,10]). The interested reader will find other results concern-
ing modified Logarithmic Sobolev inequalities in the recent papers [2] and [13]. Using Hardy
type inequalities, F. Barthe and C. Roberto give in [2] fine estimations of optimal constants for
the one-dimensional modified Logarithmic Sobolev inequalities (7). In [13], A.V. Kolesnikov
gives necessary and sufficient conditions for modified Logarithmic Sobolev inequalities for Log-
concave distributions on R

d . His results are expressed in terms of integrability conditions of a
certain isoperimetric function.

1.2.3. A word on the method
The classical approach to study TCIs is to relate them to other functional inequalities such

as Logarithmic Sobolev inequalities. The main work on the subject is the article by F. Otto
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and C. Villani on Talagrand’s inequality (see [19]). They proved that if μ ∈ P(R) satisfies the
Logarithmic Sobolev inequality

Entμ
(
f 2) � C

∫
f ′2 dμ, ∀f

then it satisfies Talagrand’s inequality (4) with the same constant C. In fact, this result is true in
a multidimensional setting. Soon after Otto and Villani, S.G. Bobkov, I. Gentil and M. Ledoux
provided an other proof of this result (see [3]). Different authors have tried to generalize this
approach to study TCIs associated to other cost functions (see [7,9,23]). This approach has its
limits. In [7], P. Cattiaux and A. Guillin were able to construct a probability measure satisfying
T2 but not the Logarithmic Sobolev inequality.

The originality of the present paper is that transportation cost inequalities are studied without
the help of Logarithmic Sobolev inequalities. Our results rely on a simple but powerful perturba-
tion method which is explained in Section 3. Roughly speaking, we show that if μ satisfies some
(strong) TCI then T�μ satisfies a (strong) TCI with a skewed cost function. This principle en-
ables us to derive new (strong) TCIs from old ones. More precisely if μref is a known probability
measure satisfying some (strong) TCI and if one is able to construct a map T transporting μref
on an other probability measure μ, then μ will satisfy a (strong) TCI too. This principle is true in
any dimension. The reason why this paper deals with dimension one only is that transportation
of measures is extremely simple in this framework.

This paper is organized as follows. In Section 1, we recall some known results about
transportation-cost inequalities. Since in these results the dimension plays no role, we will place
ourselves in an abstract Polish setting. In Section 2, we explain the above mentioned perturbation
method. In Section 3, we apply the perturbation method to characterize strong TCIs for proba-
bility measures belonging to the class Lip�μ1. In Section 4, we use the preceding results to give
a complete characterization of strong TCIs for Log-concave probability measures.

2. Preliminary results

In this section, we recall some well-known results on TCIs, namely their dual representation,
their tensorization and their links with the concentration of measure phenomenon.

General Framework. Most of the forthcoming results are available in more general framework
which we shall now describe.

Let X be a Polish space and let c :X ×X → R
+ be a lower semi-continuous function, called

the cost function. The set of all the probability measures on X will be denoted by P(X ). The
optimal transportation cost between ν ∈ P(X ) and μ ∈P(X ) is defined by

Tc(ν,μ) = inf
π∈P(ν,μ)

∫ ∫
X×X

c(x, y)π(dx dy),

where P(ν,μ) is the set of all the probability measures on X ×X such that π(dx ×X ) = ν and
π(X × dy) = μ.
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A probability measure μ is said to satisfy the TCI with the cost function c if

∀ν ∈P(X ), Tc(ν,μ) � H(ν | μ). (8)

A probability measure μ is said to satisfy the strong TCI with the cost function c if

∀ν,β ∈P(X ), Tc(ν,β) � H(ν | μ) + H(β | μ). (9)

2.1. TCIs vs strong TCIs

We begin with elementary facts concerning TCIs and strong TCIs. In the sequel, θ : Rp → R
+

will be a symmetric function, i.e. θ(x) = θ(−x), for all x ∈ R
p . If μ ∈ P(Rp) satisfies the strong

TCI with the cost function c(x, y) = θ(a(x − y)), one will write μ ∈ STθ (a).

Proposition 7. Suppose that θ is convex. If μ ∈ Tθ (a) for some a > 0, then μ ∈ STθ̃ (a), where
θ̃ (x) = 2θ(x/2), for all x ∈ R

p .

Proof. (See also the proof of [21, Corollary 1.3].) Let π1 ∈ P(ν,μ) and π2 ∈ P(μ,β). One can
construct X,Y,Z, three random variables such that L(X,Y ) = π1 and L(Y,Z) = π2 (see for
instance [22, Gluing Lemma, p. 208]). Let c(x, y) = θ(a(x − y)) and c̃(x, y) = θ̃ (a(x − y)).
Using the convexity of θ , one has

Tc̃(ν, β) � E
[
2θ

(
a(X − Z)/2

)]
� E

[
θ
(
a(X − Y)

)] + E
[
θ
(
a(Y − Z)

)]
=

∫
c(x, y)π1(dx dy) +

∫
c(y, z)π2(dy dz).

Optimizing in π1 and π2 yields

Tc̃(ν, β) � Tc(ν,μ) + Tc(β,μ), ∀ν,β ∈ P
(
R

p
)
.

Consequently, if μ ∈ Tθ (a), then μ ∈ STθ̃ (a). �
Lemma 8. Suppose that θ(kx) � kθ(x), ∀k ∈ N, ∀x ∈ Rp . Let b1, b2 > 0 and define θ̃ (x) =
b1θ(b2x), ∀x ∈ R

p . Then, μ ∈ STθ (a) for some a > 0 if and only if μ ∈ STθ̃ (ã) for some ã > 0.

Proof. Suppose that μ ∈ STθ (a) for some a > 0. Let k ∈ N such that k � b1, then θ(ax) �
kθ(ax/k) � θ̃ (ax/(b2k)). Hence, μ ∈ STθ̃ (

a
b2k

). The other way is identical. �
Remark 9. Suppose that θ is a convex symmetric function such that θ(0) = 0, then it is easy to
check that θ(kx) � kθ(x) for all x. According to what precedes, one thus has

∃a > 0 such that μ ∈ STα(a) ⇔ ∃ã > 0 such that μ ∈ Tα(ã).

In other words, as far as convex cost functions are considered, TCIs and strong TCIs are qualita-
tively equivalent.
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2.2. Links with the concentration of measure phenomenon

The following theorem explains how to deduce concentration of measure estimates from a
strong TCI. The argument used in the proof is due to K. Marton and M. Talagrand (see [15] and
[21, the proof of Corollary 1.3]).

Theorem 10. Let (X,d) be a Polish space and c :X × X → R
+ be a continuous cost function.

Suppose that μ satisfies the strong TCI (9) with the cost function c, then

∀A ⊂ X measurable,∀r � 0, μ
(
Ar

c

)
� 1 − 1

μ(A)
e−r , (10)

where Ar
c = {y ∈ X : ∃x ∈ A such that c(x, y) � r}.

Proof. Let A,B ∈ X and define μA( · ) = μ(·∩A)
μ(A)

and μB(·) = μ(·∩B)
μ(B)

. Since μ satisfies the
strong TCI, one has:

c(A,B) � Tc(μA,μB) � H(μA | μ) + H(μB | μ) = − logμ(A) − logμ(B), (11)

with c(A,B) = inf{c(x, y): x ∈ A, y ∈ B}. Now taking B = X \ Ar
c in (11) yields the desired

result. �
2.3. Dual representation of transportation-cost inequalities

2.3.1. Kantorovich–Rubinstein theorem and its consequences
According to the celebrated Kantorovich–Rubinstein theorem, optimal transportation costs

admit a dual representation which is the following:

∀ν,μ ∈P(X ), Tc(ν,μ) = sup
(ψ,ϕ)∈Φc

{∫
ψ dν −

∫
ϕ dμ

}
, (12)

where Φc = {(ψ,ϕ) ∈ B(X ) × B(X ): ψ(x) − ϕ(y) � c(x, y), ∀x, y ∈ X } and B(X) is the set
of bounded measurable functions on X (see [12]). The dual representation (12) is in particular
true if c is lower semi-continuous function defined on a Polish space X (see for instance [22,
Theorem 1.3]).

The infimal-convolution operator Qc is defined by

Qcϕ(x) = inf
y

{
ϕ(y) + c(x, y)

}
,

for all ϕ ∈ B(X ). If c is continuous, x �→ Qcϕ(x) is measurable (in fact upper semi-continuous)
and it is easy to see that

∀ν,μ ∈P(X ), Tc(ν,μ) = sup
ϕ∈B(X )

{∫
Qcϕ dν −

∫
ϕ dμ

}
.

Since optimal transportation costs admit a dual representation, it is natural to ask if TCIs and
strong TCIs admit a dual translation too. The answer is given in the following theorem.
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Theorem 11. Suppose that c is a continuous cost-function on the Polish space X .

(i) μ satisfies the TCI (8) if and only if

∀ϕ ∈ B(X ),

∫
eQcϕ dμ · e− ∫

ϕ dμ � 1. (13)

(ii) μ satisfies the strong TCI (9) if and only if

∀ϕ ∈ B(X ),

∫
eQcϕ dμ ·

∫
e−ϕ dμ � 1. (14)

Proof. The first point is due to S.G. Bobkov and F. Götze (see [4, the proofs of Theorem 1.3 and
(1.7)]). The interested reader can also find an alternative proof of this result in [11, Corollary 1].
In this latter proof, Large Deviations Theory techniques are used. One can easily adapt the one
or the other approach to derive the dual version of strong TCIs (14). This is left to the reader. �
Remark 12. As mentioned in the introduction, inequalities of the form (14) are called infimal-
convolution inequalities. These inequalities were introduced by B. Maurey in [17]. A good
introduction on infimal-convolution inequalities can be found in [14]. In this article, we have
chosen to privilege the strong TCI (9) form, which is the primal form of (14). The reason is that
we find (9) more intuitive.

2.3.2. Application: Strong TCIs and integrability
Let us detail an important application of the infimal-convolution formulation of strong TCIs.

Proposition 13. Let c be a continuous cost function on the Polish space X . Suppose that
μ ∈ P(X ) satisfies the strong TCI with the cost function c. Let A ⊂ X be a measurable set
and define c(x,A) = infy∈A c(x, y). One has∫

ec(x,A) dμ(x) · μ(A) � 1. (15)

Remark 14. This integrability property was first noticed by B. Maurey in [17]. Note that the
inequality (15) implies the concentration estimate (10).

Proof. Define, for all p ∈ N,

ϕ
p
A(x) =

{
0 if x ∈ A,

p if x ∈ Ac.

As ϕ
p
A is bounded, one can apply (14), this yields∫

eQcϕ
p
A dμ ·

∫
e−ϕ

p
A dμ � 1.

An easy computation shows that

Qcϕ
p
A(x) = min

(
c(x,A),p

) −→ c(x,A) and e−ϕ
p
A −→ 1A.
p→+∞ p→+∞
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Using the monotone convergence theorem, one gets the desired inequality. �
The following corollary will be very useful in the sequel.

Corollary 15. Let μ be a probability measure on R satisfying the strong TCI with the cost
function c(x, y) = α(x − y), with α a continuous symmetric non-decreasing function. For all
x ∈ R, define

μ+
x = L(X − x|X � x) and μ−

x = L(x − X|X � x),

where X is a random variable with law μ. Then,

+∞∫
0

eα dμ+
x � 1

μ(−∞, x] + 1, ∀x ∈ R,

+∞∫
0

eα dμ−
x � 1

μ[x,+∞)
+ 1, ∀x ∈ R.

In particular, ∫
eα dμ � 1

μ(R+)μ(R−)
− 1.

Proof. Let A = (−∞, x]. It is easy to show that c(y,A) = α(y−x) if y � x and 0 else. Applying
(15) with this A yields(

μ(−∞, x] +
+∞∫
x

eα(y−x) dμ(y)

)
· μ(−∞, x] � 1.

Rearranging the terms, one gets

+∞∫
x

eα(y−x) dμ(y) � 1 − μ(−∞, x]2

μ(−∞, x] .

Dividing both sides by μ[x,+∞) gives the result. Working with A = [x,+∞) gives the integra-
bility property for μ−

x . Now,

∫
eα dμ = μ

(
R

+) +∞∫
0

eα dμ+
0 + μ(R−)

+∞∫
0

eα dμ−
0

� 1 + μ(R+)

μ(R−)
+ μ(R−)

μ(R+)

= 1
+ − − 1. �
μ(R )μ(R )
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2.4. Tensorization property of (strong) TCIs

If μ1 and μ2 satisfy a (strong) TCI, does μ1 ⊗ μ2 satisfy a (strong) TCI? The following
theorem gives an answer to this question.

Theorem 16. Let (Xi )i=1...n be a family of Polish spaces. Suppose that μi is a probability
measure on Xi satisfying a (strong) TCI on Xi with a continuous cost function ci such that
ci(x, x) = 0, ∀x ∈ Xi . Then the probability measure μ1 ⊗ · · · ⊗ μn satisfies a (strong) TCI on
X1 × · · · ×Xn with the cost function c1 ⊕ · · · ⊕ cn defined as follows:

∀x, y ∈ X1 × · · · ×Xn, c1 ⊕ · · · ⊕ cn(x, y) =
n∑

i=1

ci(xi, yi).

Proof. There are two methods to prove this tensorization property. The first one is due to K. Mar-
ton and makes use of a coupling argument (the so called Marton’s coupling argument). It is
explained in several places: in Marton’s original paper [15], in Talagrand’s paper on T2 [21] or
in M. Ledoux book [14, Chapter 6]. The second method uses the dual forms (13) and (14). This
approach was originally developed by B. Maurey in [17] for infimal-convolution inequalities (see
[17, Lemma 1]). In the case of TCIs, the proof is given in great details in [11, Theorem 5]. �
Remark 17. Several authors have obtained non-independent tensorization results for transporta-
tion cost inequalities and related inequalities (see [8,16,20]).

Applying Theorem 16 together with Theorem 10, one obtains the following corollary.

Corollary 18. Let c be a continuous cost function on the Polish space X such that c(x, x) = 0,
∀x ∈X . Suppose that μ ∈P(X ) satisfies the strong TCI with the cost function c. Then,

∀n ∈ N
∗, ∀A measurable, ∀r � 0, μn

(
Ar

c

)
� 1 − 1

μn(A)
e−r ,

where Ar
c = {x ∈ X n: ∃y ∈ A such that

∑n
i=1 c(xi, yi) � r}.

3. The perturbation method for (strong) TCIs

3.1. The contraction principle in an abstract setting

In the sequel, X and Y will be Polish spaces. If μ is a probability measure on X and T :
X → Y is a measurable map, the image of μ under T will be denoted by T�μ, it is the probability
measure on Y defined by

∀A ⊂ Y measurable, T�μ(A) = μ
(
T −1(A)

)
.

In this section, we will explain how a (strong) TCI is modified when the reference probability
measure μ is replaced by the image T�μ of μ under some map T .
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Theorem 19. Let T :X → Y be a measurable bijection. If μref satisfies the (strong) TCI with a
cost function cref on X , then T�μref satisfies the (strong) TCI with the cost function cT

ref defined
on Y by

cT
ref(y1, y2) = cref

(
T −1y1, T

−1y2
)
, ∀y1, y2 ∈ Y .

In other word, T�μref satisfies the (strong) TCI with a skewed cost function.

Proof. Let us define Q(y1, y2) = (T −1y1, T
−1y2), ∀y1, y2 ∈ Y . Let ν,β ∈ P(Y) and take π ∈

P(ν,β), then ∫
cT

ref(y1, y2) dπ =
∫

c(x, y) dQ�π,

so

TcT
ref

(ν,β) = inf
π∈Q�P (ν,β)

∫
c(x, y) dπ.

But it is easily seen that Q�P (ν,β) = P(T −1
� ν, T −1

� β). Consequently

TcT
ref

(ν,β) = Tcref

(
T −1

� ν, T −1
� β

)
.

If μref satisfies the strong TCI with the cost function cref, then

Tcref

(
T −1

� ν, T −1β
)
� H

(
T −1

� ν | μref
) + H

(
T −1

� β | μref
)
.

But

H
(
T −1

� ν | μref
) = H

(
T −1

� ν | T −1
� T�μref

) = H(ν | T�μref),

where the last equality comes from the following classical invariance property of relative entropy:
H(S�ν1 | S�ν2) = H(ν1 | ν2). Hence

∀ν,β ∈ P(Y), TcT
ref

(ν,β) � H(ν | T�μref) + H(β | T�μref).

The proof works in the same way for TCI. �
The corollary below explains the method we will use in the sequel to derive new (strong) TCIs

from known ones.

Corollary 20 (Contraction principle). Let μref be a probability measure on X satisfying a
(strong) TCI with a continuous cost function cref. In order to prove that a probability measure
μ on Y satisfies the (strong) TCI with a continuous cost function c, it is enough to build an
application T :X → Y such that μ = T�μref and

c(T x1, T x2) � cref(x1, x2), ∀x1, x2 ∈ X .



412 N. Gozlan / Journal of Functional Analysis 250 (2007) 400–425
This contraction property of strong TCIs (written in their infimal-convolution form) was first
observed by B. Maurey (see [17, Lemma 2]).

Proof. We assume that μref satisfies the strong TCI with the cost function cref. Let ϕ :Y → R be
a bounded map. Then, for all x1 ∈X

Qcϕ(T x1) = inf
y∈Y

{
ϕ(y) + c(T x1, y)

}
� inf

x2∈X
{
ϕ(T x2) + c(T x1, T x2)

}
� inf

x2∈X
{
ϕ ◦ T (x2) + cref(x1, x2)

} = Qcref(ϕ ◦ T ).

Thus,

∫
eQcϕ dμ ·

∫
e−ϕ dμ =

∫
eQcϕ ◦ T dμref ·

∫
e−ϕ◦T dμref

�
∫

eQcref (ϕ◦T ) dμref ·
∫

e−ϕ◦T dμref

� 1,

where the last inequality follows from (14). �
Remark 21. If T is invertible, the proof above can be simplified using Theorem 19. Namely,
according to Theorem 19, μ satisfies the (strong) TCI with the cost function cT

ref. But, by hypoth-
esis, c � cT

ref, so μ satisfies the (strong) TCI with the cost function c.

3.2. The contraction principle on the real line

3.2.1. Monotone rearrangement
We are going to apply the contraction principle to probability measures on the real line. The

reason why dimension one is so easy to handle is the existence of an explicit and computable
map T which pushes forward μref on μ: the monotone rearrangement.

Theorem 22 (Monotone rearrangement). Let μref and μ be probability measures on R and let
Fref and F denote their cumulative distribution functions:

Fref(t) = μref(−∞, t], ∀t ∈ R, and F(t) = μ(−∞, t], ∀t ∈ R.

If Fref and F are continuous and increasing (equivalently μref and μ have no atom and full
support), then the map T = F−1 ◦ Fref transports μref on μ, that is T�μref = μ.

The proof of this theorem is elementary. From now on, T will always be the map defined in
the preceding theorem.
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3.2.2. About the exponential distribution
The reference probability measure μref will be the symmetric exponential distribution μ1

on R:

dμref(x) = dμ1(x) := 1

2
e−|x| dx.

Theorem 23 (Maurey, Talagrand). The exponential measure μ1 satisfies the (strong) TCI with
the cost function 1

κ
c1, for some constant κ > 0, with c1 defined by

c1(x, y) := α1(x − y), ∀x, y ∈ R, where α1(t) = min
(|t |, t2), ∀t ∈ R.

Remark 24.

(1) One can take κ = 36.
(2) B. Maurey proved the strong TCI with the sharper cost functions c(x, y) = α̃1(x −y), where

α̃1(x) = 1/36x2 if |x| � 4 and 2/9(|x| − 2) otherwise (see [17, Proposition 1]). One can
show that α̃1 � 1/36α1.

(3) M. Talagrand proved independently that μ1 satisfies the TCI with the cost functions
cλ(x, y) = γλ(x − y) where γλ(x) = ( 1

λ
− 1)(e−λ|x| − 1 + λ|x|) for all λ ∈ (0,1) (see [21,

Theorem 1.2]).

Transportation-cost inequalities associated to the cost function c1 were fully characterized by
S. Bobkov, I. Gentil and M. Ledoux in [3] in terms of Poincaré inequalities:

Theorem 25 (Bobkov–Gentil–Ledoux). A probability measure μ on R
p satisfies the TCI with the

cost function (x, y) �→ λmin(|x − y|2, |x − y|22), for some λ > 0 (where | · |2 is the Euclidean
norm on R

p) if and only if it satisfies a Poincaré inequality, that is if there is some constant C > 0
such that

Varμ(f ) � C

∫
Rp

|∇f |22 dμ, ∀f. (16)

3.2.3. Application of the contraction principle on the real line
A nice feature of the exponential distribution is that its cumulative distribution function can

be explicitly computed:

F1(x) =
{

1 − 1
2e−|x| if x � 0,

1
2e−|x| if x � 0

and F−1
1 (t) =

{
− log(2(1 − t)) if t � 1

2 ,

log(2t) if t � 1
2 .

(17)

Suppose that μ is a probability measure on R having no atom and full support, then its cumulative
distribution function F is invertible, and the map T transporting μ1 on μ can be expressed as
follows:

T (x) =
{

F−1(1 − 1
2e−|x|) if x � 0,

F−1( 1e−|x|) if x � 0
and
2
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T −1(x) =
{− log(2(1 − F(x))) if x � m,

log(2F(x)) if x � m,
(18)

where m denotes the median of μ.
Let us introduce the following quantity:

ωμ(h) = inf
{∣∣T −1x − T −1y

∣∣: |x − y| � h
}
, ∀h � 0.

Proposition 26. If μ ∈ P(R) is a probability measure with no atom and full support, then μ

satisfies the strong TCI with the cost function cμ(x, y) = 1
κ
α1 ◦ ωμ(|x − y|), where α1(t) =

min(t, t2), ∀t � 0.

Proof. By definition of ωμ, |T −1x − T −1y| � ωμ(|x − y|), for all x, y ∈ R. Thus, cT
1 (x, y) �

α1(ωμ(|x − y|)), for all x, y ∈ R. This achieves the proof by Corollary 20 and Theorem 23. �
To better understand ωμ it is good to relate it to the continuity modulus of T .

Definition 27 (The class UC�μ1). The set of all probability measures μ on R, with no atom and
full support, such that the monotone rearrangement map transporting the exponential measure
dμ1(x) = 1

2e−|x| dx on μ is uniformly continuous is denoted by UC�μ1.

The proof of the following proposition is left to the reader.

Proposition 28. Suppose μ ∈ UC�μ1, then the continuity modulus Δμ of T is defined by Δμ(h) =
sup{|T x − Ty|: |x − y| � h}, ∀h � 0. It is a continuous increasing function and

ωμ = Δ−1
μ .

Remark 29.

(1) All the elements of UC�μ1 enjoy a dimension-free concentration of measure property.
Namely, if μ ∈ UC�μ1, then μ satisfies the strong TCI with the cost function cμ(x, y) =
αμ(x − y), where αμ(x) = 1

κ
α1 ◦ ωμ(|x|). Thus according to Corollary 18, one has

∀n ∈ N
∗, ∀A ⊂ R

n, ∀r � 0, μn
(
Ar

αμ

)
� 1 − 1

μn(A)
e−r ,

with Ar
αμ

= {x ∈ Rn: ∃y ∈ A such that
∑n

i=1 αμ(xi − yi) � r}.
(2) The class of all the probability measures on R satisfying a dimension-free concentration of

measure property is not yet identified. In [6], S.G. Bobkov and C. Houdré studied probability
measures enjoying a weak dimension-free concentration property (roughly speaking one can
estimate μn(Ar∞) independently of the dimension, where Ar∞ denotes the blow-up of A with
respect to the norm |x|∞ = maxi |xi |). They proved that a probability measure has this weak
property if and only if the map T generate a finite modulus, which means that Δμ(h) < +∞
for some (equivalently for all) h ∈ R.

In order to obtain explicit concentration properties, one has to estimate ωμ.
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Proposition 30. Define

ω+
μ (h) = inf

{∣∣T −1x − T −1y
∣∣: |x − y| � h, x, y � m

}
,

ω−
μ (h) = inf

{∣∣T −1x − T −1y
∣∣: |x − y| � h, x, y � m

}
then

ωμ(h) � min

(
ω+

μ

(
h

2

)
,ω−

μ

(
h

2

))
.

Proof. Let x, y ∈ R with x � m � y and y − x � h � 0. One has

∣∣T −1y − T −1x
∣∣ = T −1y − T −1x = (

T −1y − T −1m
) + (

T −1m − T −1x
)

� ω+
μ (y − m) + ω−

μ (m − x).

Since y − x � h and m ∈ [x, y], one has y − m � h
2 or m − x � h

2 , thus

∣∣T −1y − T −1x
∣∣ � min

(
ω+

μ

(
h

2

)
,ω−

μ

(
h

2

))
. �

Let X be a random variable with law μ and define

μ+
x = L(X − x | X � x) ∈P(R+), ∀x � m, (19)

μ−
x = L(x − X | X � x) ∈P(R+), ∀x � m. (20)

In the following proposition, the quantities ω+
μ and ω−

μ are expressed in terms of the cumulative
distribution functions of the probability measures μ+

x and μ−
x .

Proposition 31.

ω+
μ (h) = inf

{− logμ+
x [h,+∞): x � m

}
,

ω−
μ (h) = inf

{− logμ−
x [h,+∞): x � m

}
, ∀h � 0.

Proof. It is easy to see that ω+
μ (h) = inf{T −1(x + h) − T −1(x): x � m}. Using (18) one sees

that

T −1(x + h) − T −1(x) = − log

(
1 − F(x + h)

1 − F(x)

)
= − logμ+

x [h,+∞),

which gives the result for ω+
μ (h). The proof is identical for ω−

μ (h). �
The proof of the following corollary is immediate.
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Corollary 32. Let ω : R
+ → R

+ a continuous non-decreasing function with ω(0) = 0. In order
to show that cμ(x, y) � 1

κ
α1 ◦ ω(

|x−y|
2 ), it is enough to show that

sup
x�m

μ+
x [h,+∞) � e−ω(h), ∀h � 0, (21)

sup
x�m

μ−
x [h,+∞) � e−ω(h), ∀h � 0. (22)

4. Characterization of strong TCIs on Lip�μ1

In this section, we give a characterization of strong TCIs for probability measures belonging
to a certain class Lip�μ1 which we shall now define.

4.1. The Lipschitz images of the exponential measure

4.1.1. Description of Lip�μ1
Definition 33 (The class Lip�μ1). The set of all probability measures μ on R, with no atom and
full support, such that the monotone rearrangement map transporting the exponential measure
dμ1(x) = 1

2e−|x| dx on μ is Lipschitz is denoted by Lip�μ1.

The following proposition describes the elements of Lip�μ1.

Proposition 34. Let μ ∈ P(R) with no atom and full support and let T be the monotone re-
arrangement transporting μ1 on μ. The map T is 1/a-Lipschitz if and only if one has

sup
x�m

μ+
x [h,+∞) � e−ah, ∀h � 0, (23)

sup
x�m

μ−
x [h,+∞) � e−ah, ∀h � 0. (24)

If μ is of the form dμ(z) = e−V (z) dz where V is a continuous function, then T is 1/a-
Lipschitz if and only if

A+ := sup
x�m

(
1 − F(x)

)
eV (x) � 1

a
and A− := sup

x�m

F(x)eV (x) � 1

a
. (25)

Furthermore, if V is of class C1, a sufficient condition for A+ and A− to be finite is that

lim inf
x→+∞V ′ > 0 and lim sup

x→−∞
V ′ < 0. (26)

Proof. It is easy to see that the map T is 1/a-Lipschitz if and only if

T −1z − T −1y � a(z − y), ∀z � y. (27)

This is equivalent to
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T −1(x + h) − T −1x � ah, ∀x � m, ∀h � 0 and

T −1x − T −1(x − h) � ah, ∀x � m, ∀h � 0.

Using the fact that

T −1(z) =
{− log(2(1 − F(z))) if z � m,

log(2F(z)) if z � m,

one sees immediately that these conditions are equivalent to (23) and (24).
If dμ(z) = e−V (z) dz with a continuous V , T −1 is differentiable. Observe that (27) means that

z �→ T −1z − az is non-decreasing and this is equivalent to supz∈R dT −1/dz(z) � a. Computing
dT −1/dz, one obtains immediately (25).

Finally, let us show that the condition lim infx→+∞ V ′ > 0 implies that A+ is finite. Under this
assumption, there is v0 > 0 and z0 > m such that for all z � z0, one has V ′(z) � v0. If z � z0,
one thus has

e−V (z) =
+∞∫
z

V ′(y)e−V (y) dy � v0

+∞∫
z

e−V (y) dy = v0
(
1 − F(y)

)
.

So, supz�z0
(1 − F(z))eV (z) � 1

v0
. Since supm�z�z0

(1 − F(z))eV (z) < +∞, one concludes

that A+ < +∞. The same reasoning shows that the condition lim supz→−∞ V ′ < 0 implies
A− < +∞. �
4.1.2. The class Lip�μ1 and the Poincaré inequality

According to Corollary 20, one concludes that a sufficient condition for a probability measure
to satisfy the inequality STα1(a) for some constant a is that μ belongs to Lip�μ1. But, according
to Theorem 25, one knows that μ ∈ STα1(a) for some a > 0 if and only if μ satisfies the Poincaré
inequality (16) for some constant C > 0. For a large class of probability measures, μ satisfies
Poincaré if and only if μ ∈ Lip�μ1. This is explained in the next proposition.

We refer to the introduction for the definition of the class V of ‘good’ potentials.

Proposition 35. Let dμ = e−V dx with V ∈ V , then

μ satisfies Poincaré ⇔ lim inf
x→+∞V ′(x) > 0 and lim sup

x→−∞
V ′(x) < 0 ⇔ μ ∈ Lip�μ1.

Proof. According to the celebrated Muckenhoupt criterion (see [18] and [1, Theorems 6.2.1 and
6.2.2]), a probability measure dμ = hdx with a continuous h satisfies (16) for some constant
C > 0 if and only if

D+ := sup
x�m

(
1 − F(x)

) ·
x∫

1

h(y)
dy < +∞ and D− := sup

x�m

F(x) ·
m∫

1

h(y)
dy < +∞,
m x
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m being the median of μ. Applying Proposition 40, one shows that

(
1 − F(x)

) ·
x∫

m

eV (y) dy ∼x→+∞
1

V ′2(x)
and

(
1 − F(x)

) · eV (x) ∼x→+∞
1

V ′(x)
.

From this one easily concludes that A+ and D+ are finite if and only if

lim inf
x→+∞V ′(x) > 0. �

In fact, there are probability measures satisfying Poincaré inequality which do not be-
long to Lip�μ1. For example, it is not difficult to see that the probability measure dνr(x) =
1
Zr

|x|r e−|x| dx with r ∈ (0,1) verifies Muckenhoupt criterion. But since the density vanishes at
zero, one gets T ′(0) = +∞ and so T is not Lipschitz.

We end this section with a result of S.G. Bobkov and C. Houdré which makes the link between
Lip�μ1 and L1-Poincaré type inequalities (see [5, Theorem 1.2]).

Theorem 36 (Bobkov–Houdré). A probability measure μ ∈ P(R) belongs to Lip�μ1 if and only
if there is C > 0 such that

∀f,

∫ ∣∣f (x) − m(f )
∣∣dμ(x) � C

∫ ∣∣f ′(x)
∣∣dμ(x), (28)

where m(f ) is the median of f under μ.

The L1-Poincaré type inequality (28) has a dimension-free tensorization property and is
equivalent to Cheeger type isoperimetric inequality (see [5]).

4.2. Characterization of strong TCI on Lip�μ1

Proof of Theorem 2. Assume first that μ satisfies STα(a) for some a > 0. Then according to
Corollary 15, one has∫

eα(az) dμ+
x (z) � 1

μ(−∞, x] + 1 � 3, ∀x � m,∫
eα(az) dμ−

x (z) � 1

μ[x,+∞)
+ 1 � 3, ∀x � m.

Thus K+(a) < +∞ and K−(a) < +∞.
Now let us assume that K+(b0) < +∞ and K−(b0) < +∞ for some b0 > 0 and let us prove

that μ satisfies STα(a) for some a > 0. According to Corollary 32, if there is some a > 0 such
that

sup
x�m

μ+
x [h,+∞) � e−α−1

1 ◦α(ah), ∀h � 0, (29)

sup μ−
x [h,+∞) � e−α−1

1 ◦α(ah), ∀h � 0, (30)

x�m
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then μ satisfies the strong TCI with the cost function 1
κ
α(a|x −y|/2) � α(a|x −y|/(2κ)). Hence

it is enough to prove (29) and (30).
Let us prove (29) (the proof of (30) will be the same). To prove (29), it is enough to find a > 0

such that {
μ+

x [h,+∞) � e−ah, ∀h � 1
a
,

μ+
x [h,+∞) � e−α(ah), ∀h � 1

a
,

(31)

holds for all x � m. Since μ ∈ Lip�μ1, there is a0 > 0 such that

sup
x�m

μ+
x [h,+∞) � e−a0h, ∀h � 0.

By hypothesis K+(b0) := supx�m

∫
eα(b0z) dμ+

x (z) < +∞. Using Markov’s inequality, one gets

K+(b0) � eα(b0h)μ+
x [h,+∞), ∀h � 0.

Thus, using the super-additivity of α, one has

μ+
x [h,+∞) � K+(b0)e

−α(b0h) �
[
K+(b0)e

−α(b0h/2)
]
e−α(b0h/2) � e−α(b0h/2),

as soon as h � 2
b0

α−1(logK+(b0)). It is now easy to check that (31) holds with

a = min

(
a0, b0/2,

[
2

b0
α−1(logK+(b0)

)]−1)
. �

In the following proposition, we derive from Theorem 2 a perturbation result.

Proposition 37. Let μ = e−V dx, with V continuous, be in Lip�μ1. If μ satisfies STα(a) for
some a > 0, then for every bounded and continuous function h : R → R, the probability measure
μ̃ = 1

Z
eh · μ satisfies STα(ã) for some ã > 0.

Proof. Using obvious notations, one observes that

sup
x�m

(1 − F̃ )ZeV −h � eOsc(h) sup
x�m

(1 − F)eV

and that

sup
x�m

∫
eα(bu) dμ̃+

x (du) � eOsc(h) sup
x�m

∫
eα(bu) dμ+

x (du),

where Osc(h) = sup(h)− inf(h) is the oscillation of h. Applying Proposition 34 and Theorem 2,
one concludes that μ̃ satisfies STα(ã), for some ã > 0. �
Remark 38. We do not know how to prove this result directly. The same perturbation property
holds for Logarithmic Sobolev or Poincaré inequalities without restriction, and in this case, the
proof is completely immediate.
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4.3. Tractable sufficient condition for good potentials

Theorem 39. Let dμ = e−V dx with V ∈ V and α ∈A∩ V . If μ ∈ Lip�μ1 and if

∃λ > 0 such that lim sup
u→±∞

α′(λu)

V ′(u + m)
< +∞, (32)

where m is the median of μ, then μ satisfies the inequality STα(a) for some a > 0.

To prove this theorem, we will use the following lemma.

Lemma 40. Let Φ ∈ V , then

+∞∫
x

e−Φ(t) dt ∼ e−Φ(x)

Φ ′(x)
and

x∫
0

e−Φ(t) dt ∼ eΦ(x)

Φ ′(x)
, as x goes to +∞.

Proof. See [1, Corollary 6.4.2]. �
Proof of Theorem 39. Let μ̃ = L(X − m), where X is a random variable with law μ. The
density of μ̃ with respect to Lebesgues measure is e−Ṽ , with Ṽ (x) = V (x + m),∀x ∈ R. As
x �→ x + m is 1-Lipschitz, it follows from Corollary 20 that μ satisfies STα(a) if and only if
μ̃ satisfies STα(a). Observe that μ̃ ∈ Lip�μ1. According to Theorem 2, to prove that μ̃ satisfies
STα(a) for some a > 0, it suffices to prove that there is b > 0 such that

K+(b) = sup
x�0

∫
eα(bu) dμ̃+

x (u) < +∞ and K−(b) = sup
x�0

∫
eα(bu) dμ̃−

x (u) < +∞,

where μ̃+
x = L(X̃ − x|X̃ � x) and μ̃−

x = L(x − X̃|X̃ � x) with X̃ of law μ̃.
The proof of K−(b) < +∞ being similar, we will only prove that K+(b) < +∞ for some

b > 0. One can suppose without restriction that λ = 1 in (32). Define

K(b,x) =
∫

eα(bt) dμ̃+
x (t)

=
∫ +∞
x

eα(b(u−x))e−Ṽ (u) du∫ +∞
x

e−Ṽ (u) du
, ∀x � 0, ∀b � 0.

Let us show that there is k ∈ N
∗ such that K(k−1, x) < +∞ for all x � 0. Since α is super-

additive and non-decreasing, one gets

K
(
k−1, x

)
�

∫ +∞
0 ek−1α(u)e−Ṽ (u) du∫ +∞

e−Ṽ (u) du
.

x
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Since lim supu→+∞
α′(u)

Ṽ ′(u)
< +∞, there are M > 0 and u∗ > 0 such that Ṽ ′(u) � 2Mα′(u), for

all u � u∗. Integrating yields

Ṽ (u) � 2Mα(u) + C, ∀u � u∗,

where C is a constant. Let k∗ be a positive integer such that k∗ � 1
M

. Then one has

ek−1∗ α(u)−Ṽ (u) � e−Mα(u)−C � e−M(u−1)−C, ∀u � u∗,

where the last inequality follows from the inequality α(u) � α(1)(u − 1) = u − 1,∀u � 0 which
is easy to establish using the fact that α ∈ A. From this follows easily that K(k−1∗ , x) < +∞ for
all x � 0.

Now, let us show that supx�0 K(k−1∗ , x) < +∞. Since the map x �→ K(k−1∗ , x) is continuous,
it suffices to check that lim supx→+∞ K(k−1∗ , x) < +∞. Using the super-additivity of α, one gets

α(u − x) � α(u) − α(x), ∀u � x � 0.

So

K
(
k−1∗ , x

)
� e−k−1∗ α(x)

∫ +∞
x

ek−1∗ α(u)−Ṽ (u) du∫ +∞
x

e−Ṽ (u) du
.

Applying Lemma 40, with Φ = Ṽ − k−1∗ α, and then with Φ = Ṽ , one gets

e−k−1∗ α(x)

∫ +∞
x

ek−1∗ α(u)−Ṽ (u) du∫ +∞
x

e−Ṽ (u) du
∼ e−k−1∗ α(x) ek−1∗ α(x)−Ṽ (x)

Ṽ ′(x) − k−1∗ α′(x)
eṼ (x)Ṽ ′(x) = 1

1 − k−1∗ α′(x)

Ṽ ′(x)

.

Since

lim sup
x→+∞

1

1 − k−1∗ α′(x)

Ṽ ′(x)

< +∞,

one deduces that lim supx→+∞ K(k−1∗ , x) < +∞, which ends the proof. �
5. The particular case of Log-concave distributions

5.1. Proof of Theorem 6

To prove Theorem 6, one needs to recall the notion of stochastic domination.

Definition 41 (Stochastic domination). Let ν1, ν2 ∈ P(R+); one says that ν1 is stochastically
dominated by ν2, and one writes ν1 ≺st ν2 if ν1(h,+∞) � ν2(h,+∞), for all h � 0.

The following proposition is well known.
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Proposition 42. Let ν1, ν2 ∈ P(R+). Then ν1 ≺st ν2 if and only if
∫

f dν1 �
∫

f dν2, for all
non-decreasing f : R+ → R

+.

Proof. For all f : R+ → R
+, one has

∫
f dν1 = ∫ +∞

0 ν1(f > t) dt . If f is non-decreasing and
ν1 ≺st ν2, one thus has ν1(f > t) � ν2(f > t) for almost all t and so

∫
f dν1 �

∫
f dν2. �

Log-concave distributions are examples of NBU distributions (“New Better than Used”), this
is explained bellow.

Proposition 43. If μ ∈P(R) is a Log-concave distribution, then

μ+
x ≺st μ+

m, ∀x � m and μ−
x ≺st μ−

m, ∀x � m.

Proof. Let us show that μ+
x ≺st μ+

m for all x � m. By definition, this means that μ+
x (h,+∞) �

μ+
m(h,+∞),∀h � 0,∀x � m and this is equivalent to

1 − F(x + h)

1 − F(x)
� 1 − F(m + h)

1 − F(m)
, ∀h � 0, ∀x � m.

Defining F+
m(h) = 1−F(m+h)

1−F(m)
,∀h � 0, the preceding inequality is equivalent to

F+
m(x − m + h) � F+

m(x − m) × F+
m(h), ∀h � 0, ∀x � m.

In other word, μ+
x ≺st μ+

m if and only if the function logF+
m is sub-additive. Since μ is Log-

concave, the function logF+
m is concave. It is easy to check that every concave function defined

on R
+ and vanishing at 0 is sub-additive. This achieves the proof. �

Now let us show that Log-concave distributions belong to Lip�μ1.

Proposition 44. Log-concave distributions on R belong to Lip�μ1.

Proof. According to Proposition 34, it is enough to show that (23) and (24) hold. But using
Proposition 43, one just has to check that there is some a > 0 such that μ+

m(h,+∞) � e−ah and
μ−

m(h,+∞) � e−ah, for all h � 0. Let us prove this for μ+
m. Let ϕ = log(1 − F). The function ϕ

is concave, so

ϕ(m + h) � ϕ(m) + ϕ′
r (m)h, ∀h � 0,

where ϕ′
r (m) is the right derivative of ϕ at point m. If ϕ′

r (m) < 0, then one can take a = −ϕ′
r (m).

Now, let us prove that ϕ′
r (m) < 0. Since ϕ is non-increasing, ϕ′

r (m) � 0. The function ϕ being
concave, ϕ′

r is non-increasing. Consequently, if ϕ′
r (m) = 0, then ϕ′

r (x) = 0, for all x � m. This
would imply that 1 − F is constant on (−∞,m], which is absurd. �
Proof of Theorem 6. (i) ⇒ (ii). If μ satisfies STα(a), then according to Corollary 15, one has∫

eα(az) dμ(z) < +∞.
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Hence, (ii) holds with b = a.
(ii) ⇒ (i). According to Propositions 42 and 43,

∫
eα(bu) dμ+

x (u) �
∫

eα(bu) dμ+
m(u). Thus the

constants K+(b) and K−(b) of Theorem 2 are finite. Since μ belongs to Lip�μ1, one concludes
that μ satisfies STα(a) for some a > 0. �
5.2. Links with modified Log-Sobolev inequalities

Recall the definition of the entropy functional:

Entμ(f ) :=
∫

f logf dμ −
∫

f dμ log
∫

f dμ.

Definition 45. Let β : R → R
+ be an even convex function with β(0) = 0. One says that μ ∈

P(R) satisfies the modified Logarithmic Sobolev inequality LSIβ(C, t) if

Entμ
(
f 2) � C

∫
β

(
t
f ′

f

)
f 2 dμ,

for all smooth f > 0.

Note that if β(x) = x2, one recovers the classical Logarithmic Sobolev inequality. The links
between transportation cost inequalities and Logarithmic Sobolev inequalities have been studied
by several authors (see the works by Otto and Villani [19], Bobkov, Gentil and Ledoux [3] and
more recently Gentil, Guillin and Miclo [9]). The usual point of view is to prove TCI using Log-
Sobolev type inequalities. Here we will do the opposite and derive Log-Sobolev inequalities from
TCIs. To this end we will use the following result.

Theorem 46. Let α ∈ A be a convex function. If μ = e−V dx ∈ P(R) with V : R → R a convex
function satisfies the inequality Tα(a), then it satisfies LSIα∗( λ

1−λ
, 1

aλ
), for all λ ∈ (0,1), where

α∗ is the convex conjugate of α:

α∗(s) = sup
t∈R

{
st − α(t)

}
, ∀s ∈ R.

Proof. The proof of Theorem 46 can be easily adapted from the one of [9, Theorem 2.9]. The reg-
ularity issue mentioned by the authors during the proof, is irrelevant in our framework. Namely,
in dimension one, the Brenier map is simply the monotone rearrangement map, and the regularity
of this latter can be easily checked by hand. �

The following result follows immediately from Theorems 6 and 46.

Theorem 47. Let α ∈ A be a convex function and μ = e−V dx ∈ P(R) with V convex. If∫
eα(b|x|) dμ(x) < +∞, for some b > 0, then μ satisfies the inequality LSIα∗(C, t) for some

C, t > 0.
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Remark 48. Let θp be defined by

θp(x) =
{

x2 if |x| � 1,
2
p
|x|p + 1 − 2

p
if |x| � 1, ∀p ∈ [1,2].

In [9], I. Gentil, A. Guillin and L. Miclo proved that the measure dμp(x) = 1
Zp

e−|x|p dx with
p ∈ [1,2] satisfies the inequality LSIθ∗

p
(C, t) for some C, t > 0. Using classical tools, one can

show that

∃C, t > 0 s.t. μ satisfies LSIθ∗
p
(C, t) ⇒ ∃b > 0 s.t.

∫
eθp(ax) dμ(x) < +∞.

Consequently, a Log-concave measure μ satisfies the inequality LSIθ∗
p
(C, t) if and only if there

is some b > 0 such that
∫

eθp(ax) dμ(x) < +∞.

Suppose that dμ = e−V dx with V a convex and symmetric function. It is tempting to take
α = V in the above theorem. To do this one has to modify the potential V near 0. Define

Ṽ (x) =
{

x2 if |x| � 1,

V (a0x) + 1 − V (a0) if |x| � 1.

Choosing a0 > 0 such that a0V
′(a0) = 2 (which is always possible), one obtains a convex func-

tion. Furthermore, it is clear that one can find some b > 0 such that
∫

eṼ (bx) dμ(x) < +∞.
Applying the above theorem, one obtains the following result.

Corollary 49. With the above notations, μ satisfies the inequality LSIṼ ∗(C, t) for some C, t > 0.

Remark 50. In [10], Gentil, Guillin and Miclo have obtained the preceding corollary under the
following additional assumption on V :

∃ε ∈ [0,1/2], ∃M > 0, ∀x � M, (1 + ε)V (x) � xV ′(x) � (2 − ε)V (x).

This hypothesis seems to be useless.
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