
Science of Computer Programming 46 (2003) 283–306
www.elsevier.com/locate/scico

A B model for ensuring soundness of a large
subset of the Java Card virtual machine

Antoine Requet
Gemplus Research Laboratory, Av du Pic de Bertagne, 13881 G�emenos cedex BP 100, France

Abstract

Java Cards are a new generation of smart cards that use the Java programming language. As
smart cards are usually used to supply security to an information system, security requirements
are very strong. The byte code interpreter and veri+er are crucial components of such cards,
and proving their safety can become a competitive advantage. Previous works have been done
on methodology for proving the soundness of the byte code interpreter and veri+er using the
B method. It re+nes an abstract defensive interpreter into a byte code veri+er and a byte code
interpreter. However, this work had only been tested on a very small subset of the Java Card
instruction set. This paper presents a work aiming at verifying the scalability of this previous
work. The original instruction subset of about 10 instructions has been extended to a larger subset
of more than one hundred instructions, and the additional cost of the proof has been managed by
modifying the speci+cation in order to group opcodes by properties. c© 2002 Elsevier Science
B.V. All rights reserved.

Keywords: B method; Java card; Formal speci+cation

1. Introduction

A smart card is a small embedded system generally used to supply security to an
information system. Traditionally, the application and the operating system were de-
veloped in a secure environment by the card issuer. For few years, platforms (e.g.,
Java Card, MultOS and Smart Card for Windows) have provided new facilities for
application developers. They allow dynamic storage and execution of downloaded

E-mail address: antoine.requet@gemplus.com (A. Requet).

0167-6423/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167 -6423(02)00095 -3

284 A. Requet / Science of Computer Programming 46 (2003) 283–306

executable content. Those platforms are based on a virtual machine both for portability
across multiple smart card micro-controllers and for security reasons. Such architec-
ture introduces new risks: the most important one is the possibility to attack the card
from an applet by exploiting some implementation faults. In order to avoid such a
risk, card manufacturers have a fairly extensive quali+cation process. Quality insurance
requirements for smart cards are very strong. To convince the customer that the sys-
tem is secure enough, card manufacturers propose to evaluate their system through a
certi+cation process.
This certi+cation is a means for the card issuer to promote its products against its

competitors. Sometimes the customer or the targeted market requires the certi+cation.
For example, the German market requires each product that uses an electronic signature
to be certi+ed at the E4 level of the ITSEC scheme. According to the certi+cation rule
and the requested level, the card issuer must provide all the elements needed by the
authority to guarantee the quality of the development process. At some high levels, it
is required to use formal methods and to provide the proof that security mechanisms
satisfy the security policy. One of the trickiest problems is to prove the coherence of
the diAerent security mechanisms of the system. Since there are strong size constraints
on the chip, the amount of memory is small. This leads Java Card to modify the secu-
rity scheme. It becomes more crucial to be able to prove the correctness of the whole
system security.
After a brief presentation of the Java Card security mechanisms, we sum up the

state-of-the art on the formal veri+cation of the Java byte code semantics. We then
introduce the B method and emphasise the proof of the static and dynamic semantics
coherence using our approach. Then, we conclude with the extension of our work and
its integration in the whole Java Card model.

2. Security of the Java Card

The Java Card 2.1 standard [19] de+nes the CAP +le (Converted APplet) i.e., the
structure of the input +les. For each byte code, the standard de+nes the conditions
required for a correct execution, but not the way to ensure that those conditions are
met. The Java Card virtual machine is specially designed for smart card; several features
have been removed, compared to the Java virtual machine, while other features have
been added (e.g., the applet +rewall). The Java Card API is a set of tools or services
aimed to help programmers designing Java Card applets. Due to the limited resources of
the smart card (CPU, memories.), most of the tests (the veri+er and part of the loader)
must be done statically, outside the card. A secure link mechanism allows the card
to check the integrity of the cap +le; i.e., after having veri+ed the signature, the card
can safely assume that the downloaded program has the required properties, and that
a valid veri+er has checked it. Of course the certi+cate can only be provided by a
trusted third-party authority.
In fact, the security provisions are scattered across diAerent components: a veri+er,

a converter, an on-card loader, a +rewall and an interpreter (see Fig. 1). Moreover
a speci+c applet is used to manage the applets: the Java Card runtime environment

A. Requet / Science of Computer Programming 46 (2003) 283–306 285

Java
compiler

*.java *.class

*.cap

Java Card Virtual Machine
On-card parts

Byte code verifier and
converter

off-card loader

Off-card parts

On-card
LoaderInterpreter

Firewall Linker

Fig. 1. Java Card environment.

(JCRE). It is used to select and deselect applets, and also contain the registers of the
selected applets and of the currently active applet.
The byte code veri+er performs a static analysis of Java class +les in order to verify

some basic security properties. The main property veri+ed is type correctness, but other
additional checks are performed: for example it is checked that the maximum runtime
stack size correspond to the declared one. Performing those tests allows suppressing
the corresponding runtime tests from the interpreter. This improves the interpreter per-
formances, and reduces its memory usage.
While the virtual machine ensures Java language-level security, the +rewall performs

additional runtime checks. This mechanism is in charge of the applet isolation and of
the control of object accesses. For example, it prevents unauthorised accesses to the
+elds and the methods of class instances. An applet may share objects with other
applets, so the applet +rewall must control the access to the shareable interface of
these objects. This component is of prime importance for the system security.
The security policy has to express the correct con+nement of the applets and the

correct access to shared objects. Respecting the typing rules associated to the access
rules of the +rewall guarantees this security policy. Thus, we have to verify that the
elements performing those checks are correctly implemented and that they are consis-
tent. A formal speci+cation of these mechanisms must be done even if the formal proof
is costly. Several elements have already been modelled: the veri+er [4] and partially the
JCRE with an emphasis on the +rewall [13]. We present here a method guaranteeing
that the consistency between the byte code veri+er and the interpreter.

3. Related work

There has been much work on a formal treatment of Java but no work has been done
in order to formally verify whether a given security policy is correctly implemented

286 A. Requet / Science of Computer Programming 46 (2003) 283–306

by a virtual machine. All the works on Java and the Java byte code focus on a
formal de+nition of the semantics. At the Java language level [14,20] de+ne a formal
semantics for a subset of Java in order to prove the soundness of its type system. Qian
[17] considers a subset of the byte code and aims at proving the runtime correctness
from its static typing. Then, he proposes the proof of a veri+er that can be deducted
from the virtual machine speci+cation.
An interesting work has been done by Cohen [5]. He proposes a formal implementa-

tion of a defensive virtual machine. It is possible to prove that his model is equivalent
to an oAensive interpreter plus a sound byte code veri+er. Posegga and Vogt [15]
propose a veri+cation mechanism based on a model checker. They have shown the
easiness of the proof process using the SMV tool. Goldberg [9] proposes a formal
speci+cation of the byte code veri+er for the data Hows analysis. His approach is close
to the implementation but he simpli+es the problem by neglecting to check subrou-
tines. In the Bali project [16], Push proves a part of the Java Virtual Machine using
the prover Isabelle=HOL. In [17], Qian gives a speci+cation of the byte code veri+er
and then proves its correctness.
Other works are more speci+cally targeted at Java Card. Using the B method [2],

Lanet and Requet [11] proves the correctness of byte code optimisations performed by
the Java Card applet converter, by specifying the optimised byte code as a re+nement
of the original code. A complementary work has been done by Denney and Jensen [6].
They prove the correctness of the Java Card conversion using the Coq proof assistant.
Java Card is not the only environment that has been subject to formal studies. The

+rst formal treatment of a smart card operating system has been published in [3]. The
interpreter of the windows for smart card runtime environment has been modelled in
[10]. The authors uses abstract state machines to describe the operational semantic of
the interpreter and proves that a program will not read or write to illegal memory
locations. A similar property is proved in [18], where the author describes how they
used Z to prove segregation between applets in a smart card operating system.

4. The approach used

The main purpose of our approach is to ensure the soundness of the type system.
Principles described in [4] are used to formally specify the Java byte code interpreter.
The main idea is to use a formal description of an abstract defensive byte code inter-
preter operating on types. This abstract interpreter de+nes the checks needed to ensure
a type safe byte code execution and de+nes the expected security policy. It acts as a
gluing speci+cation ensuring consistency between the interpreter speci+cation and the
speci+cation of the veri+er (Fig. 2).
The runtime checks performed by the defensive interpreter are then removed and

converted to static constraints on the byte code during the re+nement process. During
this process, the proof obligations of the re+nement ensure the validity of the static
constraints speci+ed.
At the last re+nement step, the machine is used to merge a byte code veri+er,

which enforces the static constraints, and an aggressive interpreter, corresponding to

A. Requet / Science of Computer Programming 46 (2003) 283–306 287

Aggressive abstract interpreter
and static constraints

Defensive abstract interpreter

refinement

Merging of verifier and
interpreter

inclusion

Verifier specification

Verifier implementation Interpreter implementation

Interpreter specification

refinementsrefinements

refinement

.

Fig. 2. Overview of the approach.

the implementation of the Java Card virtual machine. The re+nement proofs ensure that
the properties de+ned in the abstract interpreter are preserved by the aggressive one.
This approach ensures the soundness of the byte code veri+er and the interpreter. That

is, the byte code interpreter relies only on tests that are performed. Moreover, from the
veri+er point of view, this proves that the properties veri+ed are enough to guarantee a
safe byte code execution: a property that would not have been veri+ed would generate
proof obligations impossible to prove in the veri+er part. Lastly, generating the code
for the interpreter and the veri+er should provide strong assurance in the correctness
of the implementation.
Initially, a small instruction set composed of about ten instructions and a simpli+ed

lattice has been used. This approach was suitable for this small instruction set, but
extending it to the whole Java Card instruction set did not scale well. Surprisingly, the
main scalability problem was not the increased complexity implied by new features of
the virtual machine, but the size of the speci+cation and the amount of similar manual
proofs required.
More exactly, each instruction needed several manual proofs and both the response

time and memory requirement of the prover were too large to completely demonstrate
the proofs. The next part of this paper focuses on describing how the approach has
been extended for a large subset of the Java Card virtual machine.

5. Machine considered

5.1. Instruction set

The Java Card subset considered consists of all the stack manipulation instructions,
most of the control How instructions and instructions manipulating local variables.

288 A. Requet / Science of Computer Programming 46 (2003) 283–306

As the aim of this work was to verify the scalability of the approach, instructions that
would drastically increase the complexity of the model have been left out. Especially,
those instructions include the instructions used for subroutines, for method calls and
for objects handling. The diKculties implied by those instructions have already been
widely studied [1,7,8], and there are known solutions for handling them. Moreover,
those diKculties usually involve few instructions, and are not subject to the same
scalability problems. The handling of exceptions and subroutines will be added later,
when the scalability of the model will be resolved. We will use a model developed as
an extension of [11] based on [1] and very close to [8]. Such an extension will however
require adding more information than is currently available (for example, subroutines
labelling).
Other points, such as subtyping can be added in a straightforward manner, by mod-

ifying the de+nitions used to compare types.
So, the chosen instruction set is neither representative of the full Java Card instruction

set nor representative of the tricky parts of the full instruction set. However, it appears
as a valid choice for studying the problems that are encountered when extending a
10-instruction subset to the full instruction set.
In order to simplify the speci+cation and the proof process, the opcodes are grouped

by properties. Sets are de+ned to contain opcodes with similar properties. For example,
the following sets are used:

• OP NEXT : This set contains opcodes that can go to the next instruction after exe-
cution. This includes nearly all the instruction, except for unconditional jumps.

• OP BRANCH and OP BRANCH W : the set of opcodes that may perform a relative
branch, where the target is de+ned by the +rst parameter. There are two sets, since
the branch can be de+ned by a signed byte parameter (OP BRANCH) or a signed
short parameter (OP BRANCH W).

• OP NEXT FRAME READ: the set of opcodes reading a value from the local
variables.

A given opcode can be part of several sets. For example, instructions that perform
conditional branch are both elements of OP NEXT and OP BRANCH . Although every
Java Card opcodes cannot +t in a group, such a grouping scheme highly simpli+es the
speci+cation. The opcodes that do not +t into groups have to be handled as special
cases.
A subset of instructions manipulating the stack is created. Each of those instruc-

tions behaviour is modelled as +rst removing elements from the stack, and adding
new elements to the resulting stack. For example, the instruction iadd, which adds
the two topmost elements of the stack together, and replaces them by the result, is
considered as being an instruction that pops two integers from the stack and pushes an
integer.
To represent this, two constants have been added: tpushed and tpopped. Those con-

stants are de+ned as partial maps from opcodes to sequence of types. tpopped de+nes
the types that are expected to be removed from the top of the stack, and tpushed
de+nes the types to be pushed onto the stack when the instruction is executed. In the

A. Requet / Science of Computer Programming 46 (2003) 283–306 289

max locals∈NAT∧
max stack ∈NAT∧
method ∈ seq1(BYTE)∧
opcode locations ⊆ dom(method)

Fig. 3. Constants used to represent a method.

previous example, tpushed(iadd) is equal to the one element sequence [integer], and
tpopped(iadd) is equal to the sequence [integer, integer].
One drawback of the grouping scheme is that it generates more complicated proof

obligations that require increased manual interaction. However, an advantage is that
those proof obligations are more generic and can usually be used to discharge nearly
all the proof obligations corresponding to the opcodes within the group.

5.2. State of the machine

We consider the execution of one method. This is enough to verify the consistency
between the interpreter and the veri+er. Thus the veri+cation can be performed a method
at a time, provided that some information about the global context is accessible. This
information corresponds to the content of the class +le’s constant pool.
An abstract set BYTE is de+ned, the method being considered as a sequence of

BYTE. Since its contents do not change during the interpretation, it is de+ned as a
constant. Method is assigned the B type seq1(BYTE), that correspond to nonempty se-
quences of bytes. This low-level representation allows treating cases where the method
is not syntactically correct. For example cases where the method contains invalid
instructions, or jumps into the middle of an instruction.
Some additional information on the method is added: max stack corresponds to the

maximum size of the local stack during the execution of the method, and max local to
the maximum number of local variables used. Lastly, the set opcode locations corre-
sponds to the set of valid addresses within the method. As this last information is not
directly available within the Java class +le, it has to be computed before the method
is executed. B sequences are functions, allowing specifying that opcode locations is
a subset of the domain of the sequence method. Fig. 3 provides the corresponding
fragment of the B speci+cation.
For the most abstract speci+cation, we are only interested in the types contained in

the stack and the frame. So, the state consists of:

• the program counter, which points to the instruction currently being executed,
• the typing of the runtime stack,
• the typing of the frame.

This state is de+ned by the variables shown in Fig. 4. For now, the variable
frame type contains the content of the frame, and is de+ned as a partial map from
integer to type (more exactly, from the interval 0 to the maximum variable number

290 A. Requet / Science of Computer Programming 46 (2003) 283–306

frame type∈ 0::max locals-1 |→ TYPE ∧
stack type∈ seq(TYPE)∧
size(stack type)6max stack ∧
apc∈ opcode locations

Fig. 4. Variables representing the state of the machine.

BYTE to OPCODE ∈BYTE→OPCODE ∧
BYTE to signed∈BYTE→ INT∧
BYTE2 to signed : (BYTE × BYTE)→ INT

Fig. 5. Functions handling byte conversions.

to type). The variable stack type represents the content of the stack, and is de+ned
as a sequence of types. apc is de+ned as being a value in opcode locations, always
ensuring the applet con+nement. An additional invariant ensures that the stack never
overHows.
Since we manipulate byte, and not more abstract data types, we need some functions

converting bytes to opcodes or values. Fig. 5 lists some of the B functions de+ned. The
functions BYTE to signed and BYTE2 to signed allow converting a byte or a short into
a signed value useable within the speci+cation. Those functions are de+ned as constants,
and are used to get the opcodes and the parameters from the method.

6. The defensive interpreter

The defensive interpreter performs an abstract execution of the method, and ensures
that every instruction can be executed in a safe way using runtime tests. Each Java
opcode has an associated B operation describing the expected semantics.
To simplify the speci+cation, a few more convenience de+nitions are introduced.

They are shown in Fig. 6.
The +rst de+nition corresponds to a function returning the opcode for the speci+ed

location in the method. The second one is used to access parameters associated to
opcodes. The next one computes the address of the next instruction based on the
number of additional parameters of the opcode. It uses the function parameters size
which provides for each opcode the number of bytes used by its parameters. The
last de+nition is a predicate ensuring that the stack can be updated according to the
de+nition of the current opcode. That is, it ensures that the execution of the instruction
will not introduce stack underHow or overHow, and that the types expected are present
on top of the stack. This de+nition uses the B high restriction operator (↑), which
restricts a sequence to the given number of its +rst elements. More exactly, if s is a
sequence and n is an integer less than the size of s, then s ↑ n is a list corresponding
to the n +rst elements of s.

A. Requet / Science of Computer Programming 46 (2003) 283–306 291

opcode(pc) == BYTE to OPCODE(method(pc));
parameter(pc; xx) == method(pc + xx);
succ pc(pc) == pc + parameters size(opcode(pc)) + 1;
can update stack(pc) == size(stack type)¿ size(tpopped(opcode(pc)))∧

size(stack type)-size(tpopped(opcode(pc))) + size(tpushed(opcode(pc)))
6 max stack ∧

stack type ↑ size(tpopped(opcode(pc))) = tpopped(opcode(pc))

Fig. 6. De+nitions.

op iload =
SELECT

opcode(apc)= ILOAD
THEN

IF
BYTE to unsigned(parameter(apc, 1)) ∈ 0::max locals-1∧
frame type(BYTE to unsigned(parameter(apc, 1))) =

frame type used(opcode(apc))∧
succ pc(apc) ∈ opcode locations∧
can update stack(apc)

THEN
apc := succ pc(apc)‖
stack type := tpushed(opcode(apc))

∧(stack type ↓ size(tpopped(opcode(apc))))
END

END;

Fig. 7. Speci+cation of the operation corresponding to the iload opcode.

To specify the operations, we use event driven B, and associate a guard correspond-
ing to the expected opcode of the operation. The operation will be triggered when the
guard is true, that is, when the corresponding opcode is encountered.
Each operation performs tests ensuring that it can safely be executed and then updates

the state of the machine. For example, the speci+cation of the iload instruction, which
loads an integer local variable onto the stack is given in Fig. 7. The low restriction
operator ↓ is similar to the high restriction operator previously described, but is used
to restrict a sequence to its last elements, and the ∧ operator is used to concatenate
two sequence.
In this example, the content of the SELECT clause means that this operation will

be triggered when an iload opcode is encountered within the method. Then, the tests
within the IF clause correspond to the runtime tests performed when executing the
instruction: the two +rst checks ensure that the local variable exists and is de+ned,
and that the types it uses match with the expected types, ensuring correct typing. The
next checks ensure the con+nement of the applet execution, by testing if the program
counter is still within the method body after the operation is performed. The last check
tests for the stack underHow and overHow, and ensures that the types expected within

292 A. Requet / Science of Computer Programming 46 (2003) 283–306

op i/e =
SELECT

opcode(apc)= IFLE
THEN

CHOICE
IF

succ pc(apc)∈ opcode locations∧
can update stack(apc)

THEN
apc := succ pc(apc)‖
stack type := tpushed(opcode(apc))

∧(stack type ↓ size(tpopped(opcode(apc))))
END

OR
IF

apc + parameter(apc; 1)∈ opcode locations∧
can update stack(apc)

THEN
apc := apc + parameter(apc; 1)‖
stack type := tpushed(opcode(apc))

∧(stack type ↓ size(tpopped(opcode(apc))))
END

END
END;

Fig. 8. Speci+cation of the operation corresponding to the iHe opcode.

the stack match with the types found. If all the tests are successful, the state of the
interpreter is updated: the program counter is set to the next instruction, and the content
of the frame is modi+ed. The function frame type used is used to get the expected
type of the local variable used, and is similar to the functions tpopped and tpushed.
As this defensive interpreter only operates on types, its speci+cation cannot be de-

terministic: some instruction behaviour may depend on the values stored in the stack
or within the variables. An example of this is the instructions performing conditional
branch depending on stack values. As only the type of those values is known, it is not
possible to decide if the branch is taken. Instead, it is speci+ed that, either the jump
is performed, or the execution continues to the next instruction.
The speci+cation of the i;e instruction is given in Fig. 8. The B substitution CHOICE

represents a nondeterministic choice. When the operation is called either the sub-
stitutions between CHOICE and OR, either the substitutions between OR and END
are executed. However, this substitution does not de+ne which one will be executed
yet.
The +rst part of the clause represents the case where the execution continues to the

next instruction and the second to the case where the execution continues to the branch
target. Determinism will be added later within the interpreter speci+cation, since the
values stored within the stack are not available yet, and it is not necessary to know
which branch will be taken for performing the veri+cation.

A. Requet / Science of Computer Programming 46 (2003) 283–306 293

frame type s ∈ seq(0::max locals-1 |→ TYPE)∧
stack type s ∈ seq(seq(TYPE))∧
stack type s(apc)= stack type ∧
frame type s(apc)= frame type

Fig. 9. De+nition of the static variables.

7. Replacement of runtime tests by static properties

The replacement of runtime tests by static properties corresponds to the +rst re+ne-
ment of the defensive interpreter as previously described in Fig. 2. This new re+nement
introduces new variables that are used to express the properties, and to state whether
those properties are met by the method or not. Then, the speci+cation of the operation
is updated to remove the dynamic tests.

7.1. Introduction of new variables

Expressing the static properties requires adding additional information about the
method. Speci+cally, we need to express properties of the typing content of the stack,
and of the potentially used local variables for each instruction.
This information will be computed and checked later by the veri+er. The veri+er

can perform such a type inference, because of constraints imposed on all valid Java
programs [12]. This constraint allows Java programs to be veri+ed in a +nite time.
Java veri+ers would reject any program where this information could not be computed.
Two new variables are introduced (Fig. 9): stack type s and frame type s, represent-

ing typing information for the stack and the frame. For each instruction of the method,
they de+ne the expected content of the stack and the frame. These variables are linked
to the state of the interpreter, by stating that the current state of the interpreter must
match the stack and frame content of stack type s and frame type s for the current
instruction.

7.2. De=nition of the static properties

We are considering three diAerent static properties. These properties correspond to
properties on the control How (applet con+nement), on the stack (correct typing and
no underHow=overHow), and on the validity of local variables access (correct typing).
These static properties are expressed as invariants of the machine, by predicates de+ning
properties that must be true before the instruction is executed, so that the execution of
this instruction leads to another safe state. They can be compared to preconditions that
must be enforced before the program is executed.
The con+nement property is expressed by de+ning properties that must be enforced

for opcodes of diAerent groups. The only requirements needed to be expressed for the
con+nement property relates to the program counter. Fig. 10 describes the invariant
corresponding to the con+nement property.

294 A. Requet / Science of Computer Programming 46 (2003) 283–306

static ;ow checked ==
∀pc:((pc ∈ opcode locations ∧ opcode(pc) ∈ OP NEXT)

⇒
succ pc(pc) ∈ opcode locations)∧

∀pc:((pc ∈ opcode locations ∧ opcode(pc) ∈ OP BRANCH)
⇒
pc + BYTE to signed(method(pc + 1)) ∈ opcode locations)∧

∀pc:((pc ∈ opcode locations ∧ opcode(pc) ∈ OP BRANCH W)
⇒
pc + BYTE2 to signed(method(pc + 1); method(pc + 2)) ∈ opcode locations)

Fig. 10. Static properties for con+nement.

static stack checked ==
:::
∀pc:((pc ∈ opcode locations ∧ opcode(pc) ∈ OP BRANCH)
⇒
size(stack type s(pc))− size(tpopped(opcode(pc))) + size(tpushed(opcode(pc)))

6 max stack ∧
size(tpopped(opcode(pc)))6 size(stack type s(pc))∧
stack type s(pc) ↑ size(tpopped(opcode(pc))) = tpopped(opcode(pc))∧
stack type s(pc + 1 + BYTE to signed(method(pc + 1))) =

tpushed(opcode(pc))∧ (stack type s(pc) ↓ size(tpopped(opcode(pc)))))∧
:::

Fig. 11. Stack property for branching opcodes.

The stack properties are expressed in a similar way. They relate the content of
the static typing stacks before the instruction to the content of those stacks after the
instruction is executed. For example, in the case of branching opcode, it is stated
that:

• the size of the stack after the execution of the instruction is less than max stack,
• the stack does not underHow during the execution of the instruction,
• the resulting stack does not underHow,
• the static stack for the branch target matches the resulting stack.
The property associated to the stack for branching opcodes are given in Fig. 11.
The last set of properties ensures the consistency of the frame accesses. The cor-

responding de+nition for opcodes reading the frame and going to the next instruction
is given Fig. 12. As the function frame type s is only de+ned for usable variables,
it is stated that the next frame has to be included in the current frame, ensuring that
information on variables is either unchanged, either lost.
Three boolean variables are de+ned: ;ow checked, stack checked and frame

checked. Those variables correspond to the result of the veri+er, and are set to true
only if the program has the corresponding property. Invariants are added to link those
values to the static properties de+ned as shown in Fig. 13.

A. Requet / Science of Computer Programming 46 (2003) 283–306 295

static frame checked ==
∀pc:((pc ∈ opcode locations ∧ opcode(pc) ∈ OP NEXT FRAME READ)
⇒
BYTE to unsigned(method(pc + 1)) ∈ 0::max locals− 1∧
frame type s(pc)(BYTE to unsigned(method(pc + 1)))

= frame type used(opcode(pc))∧
frame type s(succ pc(apc)) ⊆ frame type s(pc))

Fig. 12. Frame property for opcodes reading the frame.

;ow checked ∈ BOOL∧
(;ow checked = TRUE⇒ static ;ow checked)∧
stack checked ∈ BOOL∧
(stack checked = TRUE⇒ static stack checked)∧
frame checked ∈ BOOL∧
(frame checked = TRUE⇒ static frame checked)

Fig. 13. Invariant de+ning static properties.

op iload =
SELECT

opcode(apc) = ILOAD∧
;ow checked = TRUE ∧ stack checked = TRUE ∧ frame checked = TRUE

THEN
apc := succ pc(apc)‖
stack type := tpushed(opcode(apc))∧ (stack type ↓ size(tpopped(opcode(apc))))

END;

Fig. 14. Re+nement of the iload operation.

The speci+cation of the operations is nearly the same as the defensive one. The
diAerence is that tests against the values of the checked variable are placed within the
guard, and that the dynamic tests are removed. For example, the speci+cation of the
iload operation is given in Fig. 14.
The re+nement mechanism ensures that every re+ned operation can occur only in a

state corresponding to one in which the abstract operation could occur, and that the
re+ned operation behaves as the abstract operation. So, proving that the new speci+-
cation is a valid re+nement of the defensive interpreter ensures the soundness of the
byte code veri+er and the interpreter.
The main diAerence between the defensive interpreter and the re+ned interpreter,

apart the fact that no runtime tests are performed is that there is not a strict corre-
spondence between the operations triggered by the defensive interpreter and the re+ned
one. If the method can be checked, then the operations triggered will be the same as
the abstract ones. However, if the method contains an error, the abstract operations

296 A. Requet / Science of Computer Programming 46 (2003) 283–306

will be called until the program counter reach the error, but no re+ned operation will
be called at all. Such a diAerence is made possible by using event driven B, which
allows strengthening the guards of the operations. So, re+ned operations are potentially
triggered less often than the abstract operations, but they have to conform to their
abstract speci+cation.

8. Inclusion of the veri5er and the interpreter

This re+nement corresponds to the merging of veri+er and interpreter shown in
Fig. 2. It is used to include both the veri+er and a “real” interpreter. By real, we mean
an interpreter that does not perform an abstract interpretation of the method based on
the types of the values, but only uses values. At this point, most of the variables used
previously are removed from this machine, and linked with invariant to the variables
introduced by the veri+er and the interpreter machines.

8.1. Veri=er speci=cation

The veri+er speci+cation contains only one operation, which performs the byte code
veri+cation, and returns a boolean value corresponding to the result of the veri+cation.
Since the veri+er computes the content of the variables stack type s and frame type s,
those variables are removed from the defensive machine re+nement, and declared in the
veri+er machine. This introduces an implicit gluing invariant ensuring that the content
of those variables still matches the content de+ned in the defensive machine.
A simpli+ed speci+cation of the verify method corresponding to the previously de-

scribed properties is given in Fig. 15.
The veri+er machine is included in the re+nement, and called during the initialisation

to de+ne the values of the variables ;ow checked, stack checked and frame checked
as shown in Fig. 16.
The implementation of the veri+er performs the type inference using a +xpoint com-

putation as described in [4]. The presence of embedded loops increases the diKculty
of the proof process. However, the fact that this model does not include subtyping
greatly simpli+es the veri+er. Splitting the implementation in several small operations
allows the automatic prover to discharge up to 95% of the proof obligations. However,
proving the remaining 5% proof obligations still remains costly.

8.2. Interpreter speci=cation

The interpreter is de+ned as a machine similar to the abstract interpreter, excepted
that it is an aggressive interpreter, and that it operates on values instead of types. Its
state consists of a pointer to the current instruction executed (dpc, for dynamic program
counter), the values stored in the stack (stack value) and the values stored in the frame
(frame value).
Note that the program pointer is no longer restricted to the set opcode locations:

this restriction will be enforced by the gluing invariant relating the value of apc to the

A. Requet / Science of Computer Programming 46 (2003) 283–306 297

;ow ok, stack ok, frame ok← verify method =
ANY ; ok, st ok, fr ok WHERE

; ok ∈BOOL∧ st ok ∈BOOL∧ fr ok ∈BOOL∧
(; ok=TRUE⇒ static ;ow checked)∧
(st ok=TRUE⇒ static stack checked)∧
(fr ok=TRUE⇒ static frame checked)

THEN
;ow ok, stack ok, frame ok := ; ok, st ok, fr ok

END

Fig. 15. Speci+cation of the verify method operation.

INITIALISATION
;ow checked, stack checked, frame checked← verify method‖
...

Fig. 16. Call of the verify method operation.

dpc∈NAT∧
stack value∈ seq(INT)∧
frame value∈ 0::max locals |→ INT

Fig. 17. State of the interpreter.

value of dpc. Removing this restriction from the interpreter abstract machine simpli+es
later proof in this machine (Fig. 17).
To ensure the consistency between the abstract interpreter and the concrete inter-

preter, we have to glue the state of the abstract interpreter to the state of the concrete
interpreter using additional invariants. For the stack, it is ensured that both the stack
containing the values and the stack containing the types have the same size. That is,
every de+ned value has a type, and every type has a value. The invariant relating the
types frame to the values frame is not as simple: it is stated that the domain of the
typing frame has to be included within the domain of the value frame. That is, every
variable that may be used is de+ned.
The domain value frame can be larger than the domain of type frame, since every

local variable has a value even if its type is not de+ned. Last, the current instruction
executed must be the same for both interpreters. Those three invariants, shown in
Fig. 18 ensure that we have not speci+ed two diAerent and unrelated interpreters.
The guards corresponding to the operations are unchanged. However, the body of

the operation now only calls the associated operation of the interpreter. For example,
Fig. 19 shows the operation op iload that calls the corresponding operation int iload
of the interpreter.
int iload is the operation corresponding to the opcode iload within the interpreter

machine (Fig. 20). It pushes the value contained in the speci+ed local variable onto

298 A. Requet / Science of Computer Programming 46 (2003) 283–306

apc= dpc∧
size(stack type)= size(stack value)∧
dom(frame type)⊆ dom(frame value)

Fig. 18. Gluing invariant for the interpreter.

op iload=
SELECT

opcode(dpc)= ILOAD∧
;ow checked =TRUE∧ stack checked =TRUE∧ frame checked =TRUE

THEN
int iload

END;

Fig. 19. iload operation for the second re+nement.

int iload=
PRE
succ pc(dpc)∈NAT∧
size(stack value)¡max stack ∧
BYTE to unsigned(parameter(dpc; 1))∈ dom(frame value)

THEN
dpc := succ pc(dpc)‖
LET var value BE
var value= frame value(BYTE to unsigned(parameter(dpc,1)))

IN
stack value := var value→ stack value

END
END;

Fig. 20. iload operation for the interpreter.

the stack. This is done using the arrow operator, which adds a value to the beginning
of a sequence. As this interpreter is implemented in a separate machine that has no
knowledge of the constraints enforced on the byte code, the preconditions ensuring that
the execution can be performed have to be provided. Preconditions are speci+cation
substitutions that specify the conditions that have to be true when the operation is
called. They are used to generate proof obligations, and to achieve the proof.
The consistency between those preconditions and the byte code veri+cation is ensured

by the proof obligations generated when the operation int iload is called from the
operation op iload: it will be needed to prove that the content of the op iload guard
implies the int iload precondition.
Another point is that, instead of using a diAerent machine, the interpreter could

have been treated as a re+nement of the abstract defensive machine, in a way similar
to what has been done in [11]. However, separating the interpreter from the abstract

A. Requet / Science of Computer Programming 46 (2003) 283–306 299

op swap=
SELECT

opcode(apc)=SWAP
THEN

IF
size(stack type)¿=2∧
succ pc(apc)∈ opcode locations

THEN
apc := succ pc(apc)‖
stack type := stack type /−{

1 �→ stack type(2),
2 �→ stack type(1)

}
END

END;

int swap=
PRE
succ pc(dpc)∈NAT∧
size(stack value)¿=2

THEN
dpc := succ pc(dpc)

END;

Fig. 21. Incorrect, but provable speci+cation.

speci+cation seems to be a better solution, since less proof obligations will be generated:
proofs are needed when the interpreter is included within the re+nement, but not in
later re+nements of the interpreter, allowing to focus on the interpreter implementation.
Moreover, implementing the interpreter as distinct machines allows to clearly separate
the proof of consistency from the implementation.

8.3. Limitation of the approach

A limitation of this approach corresponds to the gluing invariant between the real
interpreter and the abstract interpreter. This invariant speci+es that each variable of the
interpreter has a type. However, although this invariant ensures that the veri+er modi+es
existing variables, it does not ensure that the interpreter modi+es the variables according
to their types. Special care must be taken to check that the defensive machine really
describes the typing rules within the interpreter.
Fig. 21 shows an erroneous speci+cation that could be proved. The op swap operation

corresponds to the speci+cation of the swap instruction in the defensive machine, and
int swap to an incorrect speci+cation in the interpreter machine.
The swap instruction exchanges the two values on top of the stack using the B

function-overloading operator. The speci+cation in the defensive machine speci+es that
the types contained within the stack are swapped. However, the corresponding inter-
preter operation is incorrect and does not modify the content of the stack. In this case,
there is an inconsistency between the behaviour of the abstract interpreter and the be-
haviour of the real interpreter that will not be detected during the proof, since the
number of variables is unchanged.
A suggested extension was to specify a full typed defensive machine, that would

operates both on values and types instead of an abstract defensive machine only con-
sidering types, and remove the typing information during the re+nement. However,

300 A. Requet / Science of Computer Programming 46 (2003) 283–306

this would incur the same risks in the abstract machine, where the speci+ed behaviour
would have to be consistent with the modi+cations performed on types. It would be
similar to the currently used approach, but would be more complicated since the ab-
stract speci+cation would be larger. Such an approach may, however, reduce the risks of
speci+cation errors by placing both the typing information and the machine behaviour
in the same machine.
Although we present this as a limitation of the approach, this is more a speci+cation

error. In the previous example, the speci+ed swap instruction does not correspond to
the Java virtual machine instruction that swaps the two topmost values on the stack.
Instead, it corresponds to an unsafe type conversion instruction that exchanges the type
of the two topmost values. The proof that would be performed still ensures that the
interpreter complies with its speci+cation, however the speci+cation would not conform
to the Java virtual machine speci+cation.

9. Proof of the speci5cation

The speci+cation of the defensive virtual machine and its re+nement is about 10 000
lines of B speci+cation. The Atelier B tool, that we used for this speci+cation generates
nearly 3000 proof obligations. It should be noted; however, that the proofs are not com-
plicated by themselves. The main diKculty lies in their number: proving the correctness
of the speci+cation corresponds to discharge a lot of simple proof obligations.

9.1. The defensive machine

The proof obligations generated for this re+nement corresponds to prove the preser-
vation of the invariant: that is ensuring that the program counter points to a valid
opcode location in the method, and that the stack never overHows. It ensures, how-
ever, that no runtime test possibly breaking the invariant has been forgotten. Since
defensive tests are performed before the instruction is executed, the proof is trivial,
and all the proof obligations can be discharged by the Atelier B automatic prover.

9.2. The aggressive interpreter

The re+nement corresponding to the replacement of runtime tests by static properties
generates most of the proof obligations. Two kinds of proof obligations are generated
for each instruction, corresponding to the case where the defensive tests pass and to
the case where the defensive tests fails.
For the +rst case, the remaining proof obligations require proving that the invariant

relating the content of the dynamic and static frames to the static ones still holds.
That corresponds to prove that the new stack and the new frame are equal to the
static stack and the static frame for the new program counter. Such a proof obligation
corresponding to the iload opcode is given Fig. 22.
Using the fact that the ILOAD opcode belongs to the OP NEXT group, and

using the fact the stack checked implies static stack checked. The demonstration is

A. Requet / Science of Computer Programming 46 (2003) 283–306 301

opcode(apc)= ILOAD∧
;ow checked =TRUE∧
stack checked =TRUE∧
frame checked =TRUE
⇒
stack type s(succ pc(apc))=

tpushed(opcode(apc))∧ (stack type ↓ size(tpopped(opcode(apc))))

Fig. 22. Example proof obligation for stack invariant preservation.

opcode(apc)= ILOAD∧
;ow checked =TRUE∧ (1)
stack checked =TRUE∧ (2)
frame checked =TRUE∧ (3)
¬(BYTE to unsigned(parameter(apc; 1))∈ 0::max locals-1∧
frame type(BYTE to unsigned(parameter(apc; 1)))=

frame type used(opcode(apc))∧
succ pc(apc)∈ opcode locations∧
can update stack(apc)) (4)
⇒
apc= succ pc(apc)

Fig. 23. Proof obligation for dynamic tests removal.

straightforward (although requiring user interaction). The other proof obligations are
similar and require using ;ow checked, stack checked or frame checked and the cor-
responding implied properties. Those proof obligations allow verifying the consistency
between the behaviour of the defensive machine and the static constraints expressed as
invariant.
The second type of proof obligation handle the case where the defensive tests fail.

This case cannot happen, and the proof can be performed by +nding a contradiction
within the hypothesis. An example of such a proof obligation is given in Fig. 23.
In this proof obligation, (4) correspond to the negation of the test performed by the

defensive tests. The proof can be discharged by proving that this implies a contradiction
with (1), (2), and (3): if the method has been successfully veri+ed, then the predicate
(4) is true. This corresponds to prove that no runtime error can occur for this instruction
if the program has been successfully checked.

9.3. Proof of the veri=er and interpreter inclusion

As for the proof of the static checks, we can distinguish between two distinct kinds
of proof obligations: proof obligations that aim to ensure that the preconditions of the
called interpreter operations are true, and proof obligations ensuring that the gluing
invariant still holds after the operation is performed. Fig. 24 corresponds to a proof
obligation enforcing the precondition of the called operation.
This proof obligation can be demonstrated using the hypothesis (1), (2) or (3),

and using the de+nition of static ;ow checked, static frame checked or static stack

302 A. Requet / Science of Computer Programming 46 (2003) 283–306

opcode(dpc)= ILOAD∧
;ow checked =TRUE∧ (1)
stack checked =TRUE∧ (2)
frame checked =TRUE (3)
⇒
succ pc(dpc)∈NAT

Fig. 24. Proof obligation enforcing preconditions.

opcode(dpc)= ILOAD∧
var value= frame value(BYTE to unsigned(parameter(dpc; 1)))∧
;ow checked =TRUE∧ (1)
stack checked =TRUE∧ (2)
frame checked =TRUE (3)
succ pc(dpc)∈NAT
var value→ stack value∈ seq(INT)∧
⇒
size(tpushed(opcode(apc))
∧(stack type ↓ size(tpopped(opcode(apc)))))= size(var value→ stack value)

Fig. 25. Proof obligation enforcing gluing invariant.

size([integer]) + (size(stack value)-size([])) = 1 + size(stack value)

Fig. 26. Rewritten goal.

checked. In this case, from the de+nition of static ;ow checked, the hypothesis (1), and
since apc is equal to dpc, it is clear that succ pc(dpc) is included in opcode locations.
The demonstration can then be carried out by showing that opcode locations is a subset
of the natural numbers.
A sample proof obligation ensuring the invariant conservation for the iload instruction

is given in Fig. 25. The proof requires using the gluing invariant size(stack type) =
size(stack value), and the images of tpushed and tpopped for the iload opcode. By
replacing tpopped(opcode(apc)) and tpushed(opcode(apc)) by their values, and using
the previous gluing invariant, the goal can be rewritten as shown in Fig. 26.
From this, it is clear that the proof obligation holds. However, achieving the proof

from this point still involves quite a number of proof commands, especially if the
demonstration has to be generalised.

9.4. Proof generalisation

For this speci+cation, the main goal is to limit the cost of the proof process. We
focus on obtaining similar proof obligations, so that a single demonstration could be
used to demonstrate several similar proof obligations. This is achieved by specifying

A. Requet / Science of Computer Programming 46 (2003) 283–306 303

PO without groups PO with groups

(1.1) ∀pc:((pc∈ dom(method)∧ (2.1) OP NEXT ={ : : : ; ILOAD; : : :}∧
opcode(pc)= ILOAD) (2.2) ∀pc:((pc∈ dom(method)∧
⇒ opcode(pc)∈OP NEXT)
pc + 1∈ opcode locations)∧ ⇒

(1.2) opcode(apc)= ILOAD∧ succ pc(pc)∈ opcode locations)∧
(1.3) apc∈ dom(method) (2.3) opcode(apc)= ILOAD∧

⇒ (2.4) apc∈ dom(method)
apc + 1∈ opcode locations ⇒

succ pc(apc)∈ opcode locations

Fig. 27. Comparison between proof obligations with and without using group.

opcodes properties and constraints in a generic way. This involves grouping opcodes by
properties, but also using generic description. For example, using the functions tpushed
and tpopped allows specifying nearly all operations that manipulate the stack in the
same way.
To illustrate the advantages of using a generic speci+cation, Fig. 27 depicts two

simpli+ed proof obligations: the +rst one corresponds to a speci+cation that does not
group opcodes, and the second one to the speci+cation previously described.
Discharging the proof obligation without grouping is quite straightforward: it in-

volves using hypothesis (1.2) and (1.3) with hypothesis (1.1). However, in the Java
Card case, there will be one hypothesis similar to (1.1) by opcode, and the automatic
prover will not be able to choose the right one, requiring user interaction. Moreover, as
the opcode considered is explicitly used, this interaction will be required for every op-
codes. For the complete Java Card interpreter, this means that proving this property for
each opcode will need approximately 200 diAerent, but very similar proofs with user
interaction.
In the case where groups are used, the hypothesis opcode(apc)∈OP NEXT (2.5)

can be added. This hypothesis is automatically accepted by the prover thanks to (2.1)
and (2.3), and user interaction will not be needed. The new hypothesis (2.5) can then
be used with hypothesis (2.2) to discharge the goal. The important point is that the
commands used to demonstrate this goal does not consider the opcode names, and can
be directly reused to prove similar proof obligations for opcodes that are elements of
the set OP NEXT. This means that there will be one user interaction for nearly two
hundred proof obligations. This is all the more important, since the response times of
the interactive prover can be very large for such a speci+cation. Another important
point with opcode groups is that it also reduces the number of predicates within the
invariant. This reduction drastically increases the performance of the tool.

9.5. Impact of the tool used

Although the application of B on such a large system was successful, there are some
points that have been encountered with the tool used and that could be improved for
using B more eKciently with large or complex speci+cations.

304 A. Requet / Science of Computer Programming 46 (2003) 283–306

Especially, it seems that a more elaborated proof language would greatly simplify
handling such cases where lots of similar proofs have to be performed. For example,
the current language has support for applying a sequence of proof commands to each
proof obligation, or to each subgoal. However, it has no conditional constructs, so
the diAerent proof obligations have to be proved with exactly the same sequence of
commands. An extended language would greatly simplify the writing of generic proofs,
and would allow handling complicated proofs without resorting to add new rules or
theories to the prover.
Another point with the prover used is that it is very well automated, and can easily

discharge simple proof obligations. This is a useful feature for handling large speci+ca-
tions, since it allows discharging lots of trivial proof obligations. However, it appears
that this advantage can turn into a disadvantage, since the automated prover can spend
large amount of time on proof obligations that are too complicated to prove. Thus,
paradoxically, other tools that are less automated, but provide more control on the
proof process could be more appropriate for handling such speci+cations.
The prover also impacted how the speci+cation has been formulated. For example,

some invariants have been rewritten to better suit the normalisation used by the prover.
This improved the eKciency of the proof process by simplifying the proofs. However
the speci+cation was sometime less readable, and in some cases this lead to tradeoAs
between the readability of the speci+cation and its ease of proof. So, writing speci+-
cations that are too much geared towards the prover used may lead to maintainability
problems. For small speci+cations we found better to keep highly readable speci+ca-
tions, even at the expense of a more expensive proof phase. For larger speci+cations,
although compromises can be made, it seems better to extend the prover with additional
rules proved manually.
A similar trick that has fewer impacts on readability is introduced by redundant

invariants. Those invariants correspond to properties that have explicitly been added as
invariant, although they could have been deduced from the existing invariants. They
can be used to improve the automatic prover’s eKciency, or to simplify the interactive
proof, by providing additional hypothesis. Such invariants have been added in the
speci+cation when this was more eKcient than demonstrating them.

10. Conclusion

This study shows that it is possible to model large systems with B. The main solution
used to handle scalability issues was to group opcodes by properties in order to obtain
generic proofs, while retaining an individual description of opcodes encompassing their
implementation details.
However, those gains have to be balanced by the fact that the proof obligations are

often more complicated to prove, and the initial proof can take some time to be carried
out. Moreover, all the Java Card opcodes cannot +t in a group, and some opcodes will
still need to be treated as special cases. However, using groups allows us to treat
all similar opcodes in a uni+ed manner, and to focus on opcodes that need special
treatment. Such uni+ed handling will be especially useful when adding special case

A. Requet / Science of Computer Programming 46 (2003) 283–306 305

opcodes, such as those dedicated to subroutine handling. It will allow treating those
instructions peculiarities speci+cally, while treating the other ones in a generic manner.
Another point is that it appears that machine checked proofs are more diKcult to

achieve than hand written proofs: a proof step in an hand written proof can correspond
to several proof steps in a machine checked proof. However, although they are more
tedious to achieve, machine checked proofs still remain safer than hand written proofs:
proving the speci+cation using the Atelier B tool allowed us to +nd a few minor errors
in proofs previously done by hand. Although the erroneous proofs were not formally
written proofs, but proofs mostly used as preliminary sketch of the machine checked
proof, this emphasized the usefulness of performing machine checked veri+cation.
Proving the correctness and the soundness of the type system is a +rst step to a cer-

ti+cation of Java Card. Other parts of the security policy are implemented by diAerent
functions such as the +rewall, that controls access policies. As one of the common
criteria requirements is to guarantee the coherence of all the security mechanisms, it
is needed to integrate this model into a more generic model encompassing the whole
security policies.
Future works will focus on integrating the +rewall speci+cation de+ned in [13] with

the interpreter. Then, the model will be extended in order to model the complete Java
Card interpreter. This will allow, not only proving the soundness of the byte code ver-
i+er and of the interpreter, but also will ensure the correctness of their implementation.

Acknowledgements

Thanks to G. Mornet and L. Casset for their work on the model, discussions and
feedback.

References

[1] M. Abadi, R. Stata, A type system for byte code subroutines, in: Proc. 25th ACM Symp. on Principle
of Programming Languages, January 1998.

[2] J.R. Abrial, The B Book, Assigning Programs to Meanings, Cambridge University Press, Cambride,
1996.

[3] M. Alberda, P. Hartel, E. de Jong, Using formal methods to cultivate trust in Smart Card operating
system, in: Proc. Second Smart Card Research and Advanced Applications Conference (CARDIS’96),
Amsterdam, Netherlands, September 1996, pp. 111–132.

[4] L. Casset, J.-L. Lanet, A formal speci+cation of the Java byte code semantics using the B method, in:
Proc. ECOOP’99 Workshop on Formal Techniques for Java Programs, June 1999.

[5] Cohen, Defensive Java Virtual Machine Speci+cation, URL: http://www.cli.com/software/djvm.
[6] E. Denney, T. Jensen, Correctness of Java Card method lookup via logical relations, in: Smolka

(Ed.), European Symp. on Programming (ESOP 2000), Lecture Notes in Computer Science, vol. 1782,
Springer, Berlin, March 2000, pp. 104–118. URL: http://www.irisa.fr/lande/jensen/papers/esop00.ps.

[7] S.N. Freund, J.C. Mitchell, A type system for object initialization in the Java byte code language, in:
Proc. ACM Conf. on Object-Oriented Programming Systems, Languages and Applications, October
1998.

[8] S.N. Freund, J.C. Mitchell, Speci+cation and veri+cation of Java bytecode subroutines and exceptions,
Stanford Computer Science Technical Note, August 1999.

http://www.cli.com/software/djvm
http://www.irisa.fr/lande/jensen/papers/esop00.ps

306 A. Requet / Science of Computer Programming 46 (2003) 283–306

[9] A. Goldberg, A Speci+cation of Java Loading and Byte Code Veri+cation, Kestrel Institute, December
1997. URL: http://www.kestrel.edu/HTML/people/goldberg.

[10] Y. Gurevitch, C. Wallace, Speci+cation and veri+cation of the windows card runtime environment
using abstract state machines, Microsoft Research Technical Report. http://www.eecs.umich.edu/
gasm/papers/wincard.html.

[11] J.L. Lanet, A. Requet, Formal proof of smart card applets correctness, in: Quisquater, Schneier (Eds.),
Third Smart Card Research and Advanced Application Conference (CARDIS’98), Louvain-la-Neuve,
Belgium, September 1998, Lecture Notes in Computer Science, vol. 1820, Springer, Berlin,
pp. 85–97.

[12] T. Lindholm, F. Yellin, The Java Virtual Machine Speci+cation, Addison Wesley, Reading, MA, 1996.
[13] S. MotrUe, Formal Proof of the Applet Firewall, AFADL 2000, Grenoble, France, February 2000.

URL: http://www-lsr.imag.fr/afadl/Programme/Articles/.
[14] T. Nipkow, D. Oheimb, Javalight is type-safe-de+nitely, in: 25th Proc. ACM Symp. on Principle of

Programming Languages, January 1998.
[15] J. Posegga, H. Vogt, Byte code veri+cation for Java Smart Cards based on model checking, in:

Quisquater, Deswarte, Meadows, Gollmann (Eds.), Proc. 5th European Symp. on Research in Computer
Security (ESORICS 98), Louvain-la-neuve, Belgium, September 1998, Lecture Notes in Computer
Science, vol. 1485, Springer, Berlin, pp. 175–190.

[16] C. Pusch, Proving the soundness of a Java bytecode veri+er speci+cation in Isabelle=HOL, in:
Cleaveland (Ed.), TACAS 1999, Amsterdam, The Netherlands, March 1999, Lecture Notes in
Computer Science, vol. 1579, Springer, Berlin, pp. 89–103, URL: http://www.in.tum.de/∼pusch/.

[17] Z. Qian, Least types for memory locations in Java byte code, Kestrel Institute, Technical Report, 1998.
[18] S. Stepney, D. Cooper, Formal methods for industrial products, in: Bowen, Dunne, Galloway, King

(Eds.), ZB’2000, New York, England 2000, Lecture Notes in Computer Science, vol. 1878, Springer,
Berlin, pp. 364–393.

[19] Sun Microsystems, Java Card 2.1 Virtual Machine Speci+cation, March 1999.
[20] D. Syme, Proving Java type soundness, Technical Report, University of Cambridge, Computer

Laboratory, 1997.

http://www.kestrel.edu/HTML/people/goldberg
http://www.eecs.umich.edu/
mailto:gasm/papers/wincard.html
http://www-lsr.imag.fr/afadl/Programme/Articles/
http://www.in.tum.de/~pusch/

	A B model for ensuring soundness of a large subset of the Java Card virtual machine
	Introduction
	Security of the Java Card
	Related work
	The approach used
	Machine considered
	Instruction set
	State of the machine

	The defensive interpreter
	Replacement of runtime tests by static properties
	Introduction of new variables
	Definition of the static properties

	Inclusion of the verifier and the interpreter
	Verifier specification
	Interpreter specification
	Limitation of the approach

	Proof of the specification
	The defensive machine
	The aggressive interpreter
	Proof of the verifier and interpreter inclusion
	Proof generalisation
	Impact of the tool used

	Conclusion
	Acknowledgements
	References

