
p ()
URL: http://www.elsevier.nl/locate/entcs/volume82.html 13 pages

The development of generic definitions of
hyperslice packages in Hyper/J

Youssef Hassoun 1

School of Computer Science and Information Systems
Birkbeck College, University of London

London, United Kingdom

Constantinos A. Constantinides 2

School of Computer Science and Information Systems
Birkbeck College, University of London

London, United Kingdom

Abstract

In this paper we investigate the notion of reusability of aspect definitions. We
discuss the development of generic aspects in Hyper/J and compare it with the
AspectJ approach. In doing that, we follow the design principle of “developing with
hyperslice packages” and we show that hyperspace structure, concern mapping, hy-
perslice defintions and merging stategies exhibit well-defined patterns. An approach
to constructing and merging generic aspects with base core concerns in Hyper/J is
presented.

1 Introduction

Applying well-established principles of software engineering in order to im-
prove separation of concerns, like modularity, abstraction, anticipation of
change and incremental development will increase the level of reusability and
adaptability and consequently the quality of software. AspectJ 3 [2] [7] and
Hyper/J [9] seem to be two of the most notable technologies that provide
mechanisms to support a disciplined way to applying the principle of separa-
tion of concerns. However, each technology follows a different approach.

1 Email: yhassoun@dcs.bbk.ac.uk
2 Email: cc@dcs.bbk.ac.uk
3 AspectJ is a trademark of PARC.

c©2003 Published by Elsevier Science B. V.

8

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Hassoun and Constantinides

On one hand, AspectJ is a general-purpose aspect-oriented language 4 and
it constitutes an extension to the Java 5 language by providing new language
constructs to explicitly capture crosscutting concerns (aspects). In the As-
pectJ language one models aspects as separate modules that are combined
with components (regular Java classes) at compile-time using a weaver tool.
There are three general constructs supported by AspectJ:

• Joinpoint specifications refer to well defined points in the execution of the
program. Joinpoints may be grouped into pointcuts.

• An advice forms an action to be performed once a corresponding set of
joinpoints is reached.

• Introductions may enhance components with state and behavior.

On the other hand, Hyper/J does not offer new language constructs, but
it follows a different approach to support multi-dimensional separation and
composition of concerns. Developers build regular Java classes by choosing
the most appropriate decomposition for a program. Java classes are then
combined at compile-time by specifying a series of composition rules.

Of interest to this study is the notion of reusability of aspect definitions.
The importance of reuse lies on the fact that it can speed up the development
process, it cut down costs thus increasing productivity as well as it can improve
the quality of software.

The popularity of AspectJ resulted in a relatively large number of pro-
posals to provide a higher level of reuse of aspect definitions, ranging from
proposals to modify the language (the structure of aspect definitions) to lan-
guage frameworks 6 . In [6] we discussed the problem of visibility of aspect
definitions over components in the context of AspectJ by presenting differ-
ent types of visibility relationships, and proposed a language framework that
decreases the level of coupling between aspects and components.

In this paper we will address the development of generic reusable aspects
(hyperslice definitions) in the context of Hyper/J. The rest of the paper is
organized as follows: Section 2 illustrates a motivating example that involves
an aspect that introduces bean behavior to a component, where we show how
aspect reusability is addresed by AspectJ. In Section 3 we take the example of
the previous section and we discuss the notion of generic aspects in the context
of Hyper/J. In Section 4 we discuss another example where we address the
aspect of exception handling. In Section 5 we provide a discussion on our
approach. In Section 6 we discuss related work. We conclude this study in
Section 7.

4 The popularity of AspectJ and its influence over the design dimensions of other general-
purpose aspect-oriented languages make it a representative technology for this study.
5 Java is a registered trademark of Sun Microsystems.
6 In [6] we present a literature survey of the different proposals to increase the level of
reusability of aspect definitions in AspectJ.

9

Hassoun and Constantinides

2 Motivating example

Consider an example application where a requirement dictates that bean be-
havior is to be added to an abstract data type (a class) with setter and getter
fields. Our goal would be to be able to catch and fire events of a change of
state on an object whenever a set method is executed.

A traditional object-oriented solution to this requirement would be to in-
sert the necessary code to fire the event in every setter function in order to
inform all listener objects of the state change. Immediately one can realize
that the outcome of this would be code scattering and code tangling, which
is highly undesirable.

In [6] we proposed an AspectJ approach to implement this requirement
in order to support a low level of coupling between aspect and component.
The abstract aspect BeanAspect in Figure 1 includes an abstract pointcut
and provides an advice where a change of state is fired based on calls to
setter methods of any object that implements the IPropertyChangeSupport

interface. Aspect BaseBeanAspect in Figure 2 inherits from BeanAspect and
it is assigned two responsibilities:

• To provide a concrete pointcut that refers to the execution of any setter
method on any arbitrary type BaseObjectType (part of the system core
concerns)

• To extend the behavior of objects of type BaseObjectType by introducing
bean behavior (semantics).

The AspectJ implementation supports a level of genericity in the sense that
the realized functionality of catching and firing an event of a change of state
is independent of the specifics of the clients (base code objects). The only
provision for base objects is that they implement IPropertyChangeSupport

which is handled by the introduction of this interface over the target class in
AspectJ.

The question we now would like to address is how to implement bean
behavior in pure Java (i.e. without adopting new language constructs as
those provided by AspectJ) and how to merge this behavior with a base object
using the composition rules of Hyper/J. We will address this question in the
subsequent sections.

3 Hyper/J and generic aspects

To support multi-dimensional separation and integration of concerns in Java,
Hyper/J introduces the notion of a hyperspace. In essence, a hyperspace is a
multidimensional concern space where each dimesion represents one concern
and contains the units needed to address that concern. A concern is a module,
which deals with and encapsulates a particular area of interest whereas a unit

10

Hassoun and Constantinides

import java.lang.reflect.*;
public abstract aspect BeanAspect {

abstract pointcut setter(IPropertyChangeSupport obj);
void around(IPropertyChangeSupport p): setter(p) {
String property =

thisJoinPoint.getSignature().getName().substring("set".length());
Method[] meths=p.getClass().getDeclaredMethods();
for (int i=0; i<meths.length; i++) {
if (meths[i].getName().toLowerCase().indexOf("set")!=-1) {

Method getMeth=getGetMethod(p, property);
Object oldVal=null;
Object newVal=null;
try {

oldVal = getMeth.invoke(p, null); // getMethods have no parameters
proceed(p);
newVal=getMeth.invoke(p, null);

} catch (java.lang.IllegalAccessException iae) {
iae.printStackTrace();

} catch (java.lang.reflect.InvocationTargetException ite) {
ite.printStackTrace();

}
p.firePropertyChange(property, oldVal, newVal);

}
}

}
protected Method getGetMethod(IPropertyChangeSupport p, String property) {
Method[] meths=p.getClass().getDeclaredMethods();
for (int i=0; i<meths.length; i++) {
if ((meths[i].getName().toLowerCase().indexOf("get")!=-1) &&

(meths[i].getName().indexOf(property)!=-1)) {
return meths[i];

}
}
return null;

}
}

Fig. 1. Aspect BeanAspect as a generic realization of catching and firing an event
of a change of state

is a syntatctic constuct in Java, as for example, a method, an instance variable,
a class or a package.

Generic aspects can be conceived as reusable pieces of code that can be
added to a base program through a weaving mechanism (as in AspectJ) or
through the specification of composition rules (as in Hyper/J). As a result
the hyperspace involving such one aspect is, in its most general form, a two-
dimensional space, where the aspect, as one concern, is represented by one
dimension and the base code, as the sum of all units of the application compo-
nents, is considered as one concern and is represented by the other dimension
in the hyperspace. Figure 3 illustrates the structure of such a hyperspace.
Note that the base code and the aspect code are also physically separated in

11

Hassoun and Constantinides

import java.beans.PropertyChangeSupport;
import java.beans.PropertyChangeListener;
public aspect BaseBeanAspect extends BeanAspect {

pointcut setter(IPropertyChangeSupport obj): execution(* set*(*)) &&
target(obj);

declare parents: <BaseObjectType> implements IPropertyChangeSupport;
PropertyChangeSupport <BaseObjectType>.support =

new PropertyChangeSupport(this);
public void <BaseObjectType>.addPropertyChangeListener

(PropertyChangeListener listr){
support.addPropertyChangeListener(listr);

}
public void <BaseObjectType>.removePropertyChangeListener

(PropertyChangeListener listr) {
support.removePropertyChangeListener (listr);

}
public void <BaseObjectType>.firePropertyChange (String p,

Object oldval,
Object newval){

support.firePropertyChange(p, oldval, newval);
}

}

Fig. 2. Pseudocode for a concrete aspect needed to weave in the advice code of its
super abstract aspect

Hyperspace genericAspectBaseHyperspace
composable class base.*;
composable class genericAspect.*;

Fig. 3. Two-dimensional hyperspace including base and generic aspect code

package base : Feature.base
package genericAspect : Feature.genericAspect

Fig. 4. Base and generic aspect concern file

two locations, i.e. in two separate Java packages.

The concern mapping (Figure 4) reflects the existence of two concerns, the
base concern and the aspect concern. Each mapping indicates that all classes
and interfaces and all of their members that are part of the package address
the one concern in the corresponding dimension. The concern mapping adds
no new dimensions to the hyperspace. The base code is considered as one
concern and we are interested in merging this concern with a generic aspect,
which constitutes the other concern.

Figure 5 illustrates the definition of bean behavior in pure Java. The
code wraps every set method with the corresponding get method and to
subsequently fire the event with the obtained value.

We notice that in order to be able to use the generic function of Fig-
ure 5, the client object on the base side must be of IPropertyChangeSupport

12

Hassoun and Constantinides

pakage bean;
import java.lang.reflect.*;
public class BeanAspect {

public void invokeMethod(IPropertyChangeSupport p,
Method setMethod, Object[] params) {
String property =setMeth.getName().substring("set".length());
// use introspection to find the corresponding get method;
Method getMethod= getGetMethod(p, property);
Object oldVal=null; Object newVal=null;
try {
oldVal = getMethod.invoke(p, null);
setMethod.invoke(p, params);
newVal=getMethod.invoke(p, null);
} catch (java.lang.IllegalAccessException iae) {
} catch (java.lang.reflect.InvocationTargetException ite) {

}
p.firePropertyChange(property, oldVal, newVal);

}
}

Fig. 5. Implementing base method calls wrapped within try-catch block

type. Since this is part of a bean feature, we need to add this type to our
base as an abstract interface. Moreover, because every set method call is
to be substituted by method invokeMethod(), the base client must provide
a dummy implementation for this method. This way, we secure separation
of concerns and guarantee “declarative completeness”, which is an important
requirement to encapsulate concerns and to eliminate coupling between hyper-
slices. Declarative completeness is related to the notion of a hyperslice and it
is supported by the mechanism of abstract declarations provided by Hyper/J.
Declaring IPropertyChangeSupport as an abstract interface and providing
a dummy implementation for invokeMethod() in the base hyperslice are ex-
amples of applying the mechanism of abstract declarations. This way, base
and aspect hyperslices remain self-contained. Furthermore, each concern is
confined to a Java package and at the same time it defines a hyperslice. In [9]
a design approach with such hyperslice packages is referred to as “developing
with hyperslice packages.”

Having established the hyperspace structure and concern mapping, we now
address the question of defining the hyperslices and the composition strategies
and rules that will merge them together. A hyperslice is a set of concerns that
is declaratively complete, which means that it must declare everything which
it refers to. Since we are dealing with only two concerns, it is reasonable
to define two hyperslices, one for each concern (Figure 6). The next step is
to write the Hyper/J hypermodule file to integrate the bean class code with
the base code. A merging mechanism is proposed in Figure 6 (Note that
Feature.genericAspect of Figure 3 is renamed to Feature.bean to fit the
example implementation).

The concern mapping identifies two features to be composed, a base and

13

Hassoun and Constantinides

hypermodule beanHyperModule
hyperslices:
Feature.bean, Feature.base;

relationships:
mergeByName;
equate class Feature.base.XPoint, Feature.bean.BeanAspect;

end hypermodule;

Fig. 6. Hypermodule to merge base and generic aspect code

a generic aspect. The code of each concern is confined to one package and
implemented completely separately from the code of the other concern. Each
package defines a hyperslice and encapsulates one concern. To merge both
concerns, we first need to extend the Point class by adding bean behavior to it,
which essentially amounts to implementing the interface IPropertyChangeSupport,
and then to provide “dummy” implementation for needed methods, which
marks them as required by the base hyperslice package but not defined within
it.

Class XPoint is a base client of type IPropertyChangeSupport, which ex-
tends the abstract data type Point and provides a dummy implementation for
method invokeMethod() (See Figure 7). Furthermore, since IPropertyChangeSupport
is part of the aspect concern, a corresponding abstract interface type with the
same name must be declared on the base side.

Calling a set method on an XPoint instance triggers a change of state
and the concrete and generic method invokeMethod() of the aspect will be
called with the actual parameters defined in the set method on the base side.
Identifying the concrete method invokeMethod() and matching the concrete
IPropertyChangeSupport with the corresponding method and abstract type
in the other hyperslice is realized with the merging mechanism of Hyper/J.

To merge the base concern with the bean concern, we need to build a cor-
respondence between the units XPoint and BeanAspect belonging to different
hyperslices. The merging relationship equate is used to build such correspon-
dence and the merging strategy mergeByName establishes the merging link
between the two classes as well as between the abstract and concrete interface
IPropertyChangeSupport types (Figure 6).

4 Addressing exception handling

In this section we consider the provision of exception handling in a Java pro-
gram and we apply the same merging procedure of the previous section. We are
particularly interested in RuntimeExceptions of Java, which can be thrown
during the normal operation of the Java Virtual Machine. Essentially, such
exceptions are bugs and the Java compiler does not enforce exception specifi-
cations for them. However, if the program is supposed to handle some of them,
such as catching NumberFormatExceptions and IndexOutOfBoundsExceptions

for methods involving vector or array operations and expecting an integer pa-

14

Hassoun and Constantinides

package base;
import java.beans.*;
import java.lang.reflect.*;
public class XPoint extends Point implements IPropertyChangeSupport

protected PropertyChangeSupport sup=new PropertyChangeSupport(this);
public void addPropertyChangeListener(PropertyChangeListener lis) {
sup.addPropertyChangeListener(lis);

}
public void removePropertyChangeListener(PropertyChangeListener lis) {
sup.removePropertyChangeListener(lis);

}
public void firePropertyChange(String pty, Object oval, Object nval) {
sup.firePropertyChange(pty, oval, nval);

}
public void xsetx(int newX) {
try {
Method setx=getClass().getMethod("setx", new Class[]{Integer.TYPE});
invokeMethod(this, setx, new Object[]{new Integer(newX)});

} catch (Exception e) { e.printStackTrace();}
}
public void invokeMethod (IPropertyChangeSupport support,

Method setMeth, Object[] params) {
throw new com.ibm.hyperj.UnimplementedError();

}
}

Fig. 7. Class XPoint provides a dummy implementation of invokeMethod() on the
base side

rameter, the code becomes tangled with repetitive try-catch blocks. To
avoid this kind of code repetition, which is a consequence of the traditional
object-oriented solution, we may follow the same aproach as with the previous
example.

Initially, we look for a Java function, which wraps every method call (in-
volving vector-array operations) in a try-catch block. The code is shown in
Figure 8. Method newInteger() handles the cases where the input string is
of a wrong format.

The hyperspace and concern mapping are similar to those of the bean
example of the previous section. Figure 9 sketches a base class Demo using the
services of the generic aspect class RTExceptionHandling, which represents
the runtime exception handling concern.

Note that Demo provides dummy implementations of two methods, invokeMethod()
and newInteger() and it includes no handling code for runtime NumberFormatExceptions
and IndexOutOfBoundsExceptions. Method setIndex() needs to call method
initElementAt() with an integer value, which is expected to be within the
range of 1..10.

The hypermodule file needed to integrate the base concern with the ex-
ception handling concern is similar to that of the previous section (Figure 6)
and is illustrated in Figure 10. There are two hyperslices where each contains

15

Hassoun and Constantinides

package eh;
import java.lang.reflect.Method;
public class RTExceptionHandling {

public void invokeMethod(Object obj, String mname,
Class[] ptypes, Object[] params) {

try {
Method method =obj.getClass().getDeclaredMethod(mname, ptypes);
method.invoke(obj, params);
} catch (Exception e) {
System.out.println("Exception in " + mname + ": " + e);
// handle the exception

}
}
public Object[] newInteger(String param) {
try {
Object[] parameters=new Object[]{new Integer(param)};
return parameters;
} catch (Exception e) {
System.out.println("Invalid parameter " + param": " + e);
return new Object[] {new Integer(0)};

}
return null;

}
}

Fig. 8. Generic methods to avoid tangled runtime exception handling code

one concern and both are self-contained. The base hyperslice needs to provide
dummy implementations for methods invokeMethod() and newInteger().
The correspondence between the units Demo and RTExceptionHandling, each
of which belongs to a different hyperslice, is realized by using the merging
relationship equate and the merging strategy mergeByName establishing the
link between the two units. This way, Hyper/J identifies the methods with
dummy implementations on the base side with the corresponding concrete
methods on the aspect side.

5 Discussion

In general, the approach to merge generic aspect code with an application
code followed in the previous examples consists of two steps:

• Deploy the reflection API of Java in order to encapsulate generic behavior
within an aspect class.

• Follow the design principle of “developing with hyperslice packages.”

With the reflective capabilities of the Java language like introspection and
method invocation, it is reasonable to assume that the first step is applica-
ble in general. The second step involves the definition of a two-dimensional
concern hyperspace and a concern mapping that builds the package struc-
ture one-to-one as two Features, where each concern is associated with one

16

Hassoun and Constantinides

package base;
import java.lang.reflect.Method;
public class Demo {

public Demo() {}
public void setIndex(String sint) {
MyInteger mii=new MyInteger();
Class[] paramtypes=new Class[]{Integer.TYPE};
Object[] params=newInteger(sint);
invokeMethod(mii, new String("initElementAt"), paramtypes, params);

}
public static void main(String[] args) {
Demo de=new Demo();
de.setIndex(new String("95"));

}
public void invokeMethod(Object o, String mname, Class[] ptypes,
Object[] params) {
throw new com.ibm.hyperj.UnimplementedError();

}
public Object[] newInteger(String param) {
throw new com.ibm.hyperj.UnimplementedError();

}
}
class MyInteger {

Integer[] v=new Integer[10];
...
public void initElementAt(int i) {
v[i]=new Integer(0);

}
}

Fig. 9. A base class using the exception handling package after merging

hypermodule expHandlingHyperModule
hyperslices:
Feature.base, Feature.eh;

relationships:
mergeByName;
equate class Feature.base.Demo, Feature.eh.RTExceptionHandling;

end hypermodule;

Fig. 10. Hypermodule to merge base and generic aspect code of exception handling

hyperslice. Furthermore, to satisfy the requirement of declarative complete-
ness of hyperslices, the base concern must, if necessary, be supplemented with
abstract classes and it must provide dummy implementations of the generic
methods of the aspect class.

We notice that the framework suggested in [6] is also applicable in case of
Hyper/J as an implementation language providing a merging mechanism to
support multi-dimensional separation of concerns. According to this frame-
work and in the case of the bean example, the “aspect domain” is represented
by the BeanAspect and is related to the “base domain” through the usage
of the IPropertyChangeSupport type. Class XPoint establishes the contact

17

Hassoun and Constantinides

between the two domains, first by being of IPropertyChangeSupport type
(through the implements relationship) and second by providing a dummy
implementation of the method invokeMethod().

In this study we followed the design principle of developing with “hyper-
slice packages” to keep the generic aspect and the base code separated. To
satisfy the requirement of declarative completeness within this context, we
needed to supplement the base code with abstract classes and methods. More
specifically, in the case of the bean aspect, we had to provide the base package
with an abstract data type IPropertyChangeSupport and a dummy imple-
mentation of the aspect method invokeMethod().

The integration mechanism of Hyper/J consists of a merging tool together
with a script-language in order to specify the merging strategy and relation-
ships between the various elements of the hyperslices. This mechanism seems
to be relatively straightforward and it has the advantage of programming
in one language (Java). However, Hyper/J is still under development and
the existing limitations on some merging strategies and relationships lead to
a decrease in the possible implementation choices. On the other hand, the
joinpoint model of AspectJ provides a flexible and powerful weaving mech-
anism.

6 Related work

In [4] Chavez, Garcia and Lucena suggest a transformation algorithm from
AspectJ into Hyper/J, where they explicitly specify the steps necessary to
transform an AspectJ code into a Java code that fits the integration mech-
anism of Hyper/J. They also outline the structure of the hypermodule file.
However, this algorithm is confined to some initial conditions that restrict its
applicability to generic aspects. Among these conditions are, for example,
the non-existence of around advices and the definition of the pointcuts being
limited to the execution to single methods (with no wildcards).

In [5] Clarke and Walker stress the principle of separation of concerns
throughout the software lifecycle. They consider the Observer design pattern
as a composition pattern at the design level and implement it in AspectJ and
Hyper/J at that level as a step before applying it to a library design application
at the base level. The authors notice that the mapping of the Observer design
pattern to Hyper/J as an implementation language reduces the reusability and
extensibility of the code because of the restrictions imposed by the merging
mechanism.

7 Conclusion

There are a number of different approaches to implement the principle of sep-
aration of concerns. In this paper we considered AspectJ and Hyper/J as
possible tools that support the implementation of this principle. AspectJ is

18

Hassoun and Constantinides

an extension to the Java language that provides linguistic constructs that can
explicitly capture aspects. Hyper/J, on the other hand, provides a frame-
work, where the system units, implemented in Java, can be distributed over
different concerns and hyperslices. By specifying merging rules, the different
concerns can be composed to provide the desired functionality. In this study
we investigated the issue of using Hyper/J to separate and subsequently merge
generic aspects with base code and compared this approach with AspectJ. Hy-
per/J supports a clean separation between generic aspects, as reusable pieces
of code, and base code components. AspectJ, on the other hand, being a
programming language with a powerful joinpoint model and new constructs
provides a flexible mechanism to weave in aspect code into base components.

Among a large number of proposals, other aspect-oriented technologies
include Composition Filters [3] and XML-based (DOM-tree) manipulation [8].
Interested readers may refer to the Aspect-Oriented Software Development
(AOSD) community home page [1] that maintains links to AOSD resources.

Further developments to this study will include investigation of reusability
issues into other approaches like the Composition Filters approach and the
XML-based (DOM-tree) manipulation system.

References

[1] AOSD community home page located at http://aosd.net

[2] AspectJ home page located at http://www.eclipse.org/aspectj/

[3] Bergmans, B., and M. Aksit, Composing multiple concerns using composition
filters, Communications of the ACM, 44(10):51–57, October 2001.

[4] Chavez, G. F. C., A. F. Garcia, and C. J. P. Lucena, Some insights on the use of
AspectJ and Hyper/J, Tutorial and Workshop on Aspect-Oriented Programming
and Separation of Concerns, Lancaster, August 23-24, 2001.

[5] Clarke, S., and R. J. Walker, Mapping composition patterns to AspectJ and
Hyper/J, ICSE 2001 Workshop on Advanced Separation of Concerns in Software
Engineering, Toronto, May 15, 2001.

[6] Hassoun, Y., and C. A. Constantinides, Considerations on component visibility
and code reusability in AspectJ, 3rd Workshop on Aspect-Oriented Software
Development, Essen, March 4-5, 2003.

[7] Kiczales, Gregor, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold, Getting started with AspectJ, Communications of the ACM,
44(10):59–65, October 2001.

[8] Schonger, Stefan, Elke Pulvermüller, and Stefan Sarstedt, Aspect-oriented
programming and component weaving: using XML representations of abstract
syntax trees, 2nd Workshop on Aspect-Oriented Software Development, Bonn,
February 21-22, 2002.

19

Hassoun and Constantinides

[9] Tarr, P., and H. Ossher, “Hyper/J User and Installation Manual”, IBM
Research, 2000.
URL: http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

20

