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SUMMARY

The discovery of drugs that cause the degradation of
their target proteins has been largely serendipitous.
Here we report that the tert-butyl carbamate-pro-
tected arginine (Boc3Arg) moiety provides a general
strategy for the design of degradation-inducing
inhibitors. The covalent inactivators ethacrynic acid
and thiobenzofurazan cause the specific degrada-
tion of glutathione-S-transferase when linked to
Boc3Arg. Similarly, the degradation of dihydrofolate
reductase is induced when cells are treated with
the noncovalent inhibitor trimethoprim linked to
Boc3Arg. Degradation is rapid and robust, with
30%–80% of these abundant target proteins con-
sumed within 1.3–5 hr. The proteasome is required
for Boc3Arg-mediated degradation, but ATP is not
necessary and the ubiquitin pathways do not appear
to be involved. These results suggest that the
Boc3Arg moiety may provide a general strategy to
construct inhibitors that induce targeted protein
degradation.

INTRODUCTION

Several authors have suggested that the ideal drug dissociates

slowly from its target protein, so that new target synthesis

must occur to restore function (Copeland et al., 2006; Swinney,

2004; Zhang and Monsma, 2009). Such perfection usually

requires very high affinity binding or covalent modification, which

accounts for the current resurgence of interest in covalent drugs

(Singh et al., 2011). Intriguingly, several drugsmeet this metric by

inducing the degradation of their targets. Selective estrogen

receptor downregulators (SERDs) such as fulvestrant are the

best-characterized examples of this phenomenon (Howell,

2006). These compounds induce degradation of the estrogen

receptor via the ubiquitin/26S proteasome pathways. In cell

culture, the level of estrogen receptor is decreased by 45%–

83% in 4 hr (Wittmann et al., 2007). Importantly, tamoxifen-

resistant breast cancer cells remain sensitive to fulvestrant and

other SERDs, illustrating the advantage of this strategy. Similar

degradation of the androgen receptor is observed with bicaluta-

mide treatment (Waller et al., 2000), and the success of the reti-

noic acid/arsenic trioxide combination in acute promyelocytic
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leukemia therapy derives from its ability to induce the degrada-

tion of the oncogenic fusion protein PML-RARA (Nasr et al.,

2009). These examples illustrate the therapeutic potential of

small molecules that induce protein degradation. In addition,

such compounds could have broad utility as reagents in protein

knockdown experiments. A robust, broadly applicable strategy

for the design of degradation-inducing small molecule inhibitors

has yet to emerge. Given that inhibitor binding generally stabi-

lizes protein structure, the principles of such design are not

obvious.

One approach to this problem is proteolysis targeting chimeric

molecules (PROTACs) developed by Crews and colleagues

(Raina and Crews, 2010). PROTACs contain a ligand that recog-

nizes the target protein linked to a ligand that binds to a specific

E3 ubiquitin ligase. Degradation of methionine aminopeptidase,

androgen receptor, estrogen receptor, and the aryl hydrocarbon

receptor has been reported (Lee et al., 2007; Rodriguez-Gonza-

lez et al., 2008; Sakamoto et al., 2001). In many cases, the E3

ligase-targeting ligand is a peptide, which can limit therapeutic

use. More importantly, the ubiquitin pathways are extremely

complicated and poorly understood (Clague and Urbé, 2010;

Finley, 2009). The details of tissue expression, cellular localiza-

tion, and regulation are known in only a tiny fraction of the over

600 putative E3 ligases in humans (Deshaies and Joazeiro,

2009). Such observations suggest that the reliable manipulation

of these pathways may prove challenging.

Conditional protein knockdown is an invaluable tool for delin-

eating protein function. In addition to RNAi, several methods

have been developed that rely on small molecule ligands (Raina

and Crews, 2010). The most common strategy involves expres-

sion of fusion proteins that couple the target to an unstable

‘‘degron’’ domain. The degron domain is usually stabilized by

the presence of a ligand; removal of the ligand induces degrada-

tion (Banaszynski et al., 2006; Dohmen et al., 1994; Iwamoto

et al., 2010; Lévy et al., 1999; Pratt et al., 2007; Stankunas

et al., 2003). These techniques have proven to be very useful,

but are limited by the requirement for the constant presence of

ligand to maintain protein levels. Several systems have been

developed to address this problem. One method uses a small

molecule to localize a target fusion protein directly to the protea-

some (Janse et al., 2004). Importantly, the success of this

strategy demonstrates that proteasome localization is sufficient

to induce degradation. A similar strategy has been used to

target protein degradation in bacteria (Davis et al., 2009). In

another clever variation, a small molecule has been used to

unmask a cryptic degron (Bonger et al., 2011). Recently,

a system based on the covalent attachment of hydrophobic
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Figure 1. Degradation of HA-Tagged GST-a1

(A) Structures of EA and EA-Boc3Arg and the reaction of

GST with EA derivatives.

(B) EA and EA-Boc3Arg inactivate GST-a1 with similar

potency. Purified recombinant GST-a1 (200 nM) was

incubated with EA or EA-Boc3Arg and assayed for activity.

(C and D) The degradation of EA-Boc3Arg-modified GST-

a1. Purified recombinant C-terminally HA-tagged GST-a1

(0.2 mg/ml) was inactivated by EA or EA-Boc3Arg (80 mM)

and diluted 50-fold into HeLa cell lysates supplemented

with an ATP regenerating system. Samples were analyzed

by immunoblotting for the HA tag. Inosine mono-

phosphate dehydrogenase (IMPDH) was used as

a loading control. (C) A representative immunoblot. (D)

Average of four experiments. Error bars show standard

errors.

(E) Structure of Fur-Boc3Arg.

(F) Degradation of GST-a1 by Fur-Boc3Arg. Purified

C-terminally HA-tagged GST-a1 was modified with Fur-

Boc3Arg (40 mM) and added to NIH 3T3 cell lysates sup-

plemented with an ATP regenerating system.
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tags to dehalogenase fusion proteins has also been reported

(Neklesa et al., 2011). However, although these systems can

effectively modulate levels of transgenic fusion proteins, they

cannot be used to reduce the levels of endogenous proteins.

We have discovered that inhibitors linked to a tert-butyl carba-

mate-protected arginine (Boc3Arg) moiety induce selective

degradation of their target proteins. Remarkably, this process

appears to be ATP- and ubiquitin-independent. We propose

that Boc3Arg-induced degradation provides a strategy to induce

protein degradation for both conditional protein knockdown and

chemotherapeutic applications.

RESULTS

EA-Boc3Arg Induces the Degradation of GST-a1
in Cell Lysates
GST isozymes, especially GST-p, are potential targets for anti-

cancer chemotherapy (Laborde, 2010; Sau et al., 2010). These

proteins are well characterized with several readily modified

inhibitors such as ethacrynic acid (EA) and thiobenzofurazan

(Fur) (Ploemen et al., 1993; Ricci et al., 2005). Therefore, we initi-

ated an investigation of protein degradation using C-terminally

hemagglutinin (HA)-tagged glutathione-S-transferase a1 (GST-

a1) as the target protein. HA-tagged proteins are widely used

reagents because horseradish peroxidase-coupled anti-HA anti-

body provides a sensitive assay with a dynamic range of >100.

Our plan was to link EA to an arginine residue, reasoning that

such an inhibitor would induce protein degradation via the

N-end rule pathways (Tasaki and Kwon, 2007). Some indication
630 Chemistry & Biology 19, 629–637, May 25, 2012 ª2012 Elsevier Ltd All rights rese
that the N-end rule pathways can be exploited in

this manner is present in the patent literature

(Kenten and Roberts, 2001). EA alkylates the

active site Cys residue in GST (Figure 1A); the

inhibitor’s carboxylate moiety can be readily

modified without perturbing this reaction

(Figure 1B) (Shi et al., 2006). One of the

compounds produced during the synthetic

route was EA-Boc3Arg (Figure 1A), which
contains N,N,N-triBoc-protected arginine moiety linked to EA

via a 1,6-diaminohexane linker. Unfortunately, removal of the

Boc groups to produce the unprotected arginine derivative

was unsuccessful. Surprisingly, EA-Boc3Arg-modified GST-a1

was readily degraded in HeLa cell lysates (Figures 1C and 1D).

No degradation was observed in the absence of EA-Boc3Arg,

with unmodified EA (Figure 1D) or with EA linker (data not shown).

Similar degradation of EA-Boc3Arg-modified GST-a1 was

observed in NIH 3T3 cell lysates. These results suggested that

the Boc3Arg moiety targets the protein for degradation.

Fur-Boc3Arg Induces the Degradation of GST-a1
in Cell Lysates
To test the generality of this degradation phenomenon, we

synthesized a second Boc3Arg-linked GST inactivator, Fur-

Boc3Arg (Figure 1E). Fur also forms a covalent adduct with

GST; this molecule can be modified at the indicated positions

with retention of activity (Ricci et al., 2005). Fur-Boc3Arg-modi-

fied GST-a1 was readily degraded in lysates from NIH 3T3 cells

(Figure 1F). These results demonstrate that Boc3Arg-induced

degradation does not depend on the nature of the ligand inter-

acting with GST-a1.

TMP-Boc3Arg Induces the Degradation of eDHFR
in Cell Lysates
To determine if Boc3Arg-dependent degradation is a unique

property of GST-a1, we turned to the Escherichia coli dihydrofo-

late reductase/trimethoprim (eDHFR/TMP) system developed by

Cornish (Calloway et al., 2007). TMP is a specific inhibitor of
rved



Figure 2. TMP-Boc3Arg Induced Degradation of

HA-Tagged eDHFR in Cell Lysates

(A) Structures of TMP and derivatives.

(B and C) Purified recombinant eDHFR-HA (0.2 mg/ml)

was incubated with TMP derivatives (80 mM) and diluted

50-fold into Cos-1 cell lysates supplemented with an ATP

regenerating system. (B) Representative immunoblot

showing degradation of eDHFR-HA in the presence of

TMP and TMP-Boc3Arg. (C) Combined data from two

experiments after 4 hr incubation. Bar graphs show the

average and the range of values.
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eDHFR with much lower affinity for mammalian DHFRs (Kd =

20 pM versus 4 mM for bacterial andmammalian DHFRs, respec-

tively). Importantly, the interaction between eDHFR and TMP is

noncovalent, although dissociation is very slow (T1/2 �20 min)

(Dunn and King, 1980). TMP can be modified at the 4 position

of the B ring with retention of potency and selectivity (Figure 2A)

(Calloway et al., 2007). This strategy has been used to fluores-

cently label eDHFR fusion proteins in lysates and whole cells

(Calloway et al., 2007).

We synthesized a Boc3Arg derivative of TMP using modified

published methods (Figure 2A; see Experimental Procedures

for synthetic procedures) (Calloway et al., 2007; Long et al.,

2011). As above, eDHFR contained a C-terminal HA-tag to facil-

itate detection. While eDHFR degraded slowly in Cos-1 cell

lysates, the eDHFR-TMP complex was stable, as expected

(Figures 2B and 2C). The deprotected compound TMP-Arg

also stabilized eDHFR (Figure 2C). In contrast, the DHFR-TMP-

Boc3Arg complex was readily degraded. Similar TMP-Boc3Arg-

dependent degradation of eDHFR was observed in HeLa and

NIH 3T3 cell lysates (data not shown). Importantly, these

observations demonstrated that the Boc3Arg moiety does not

need to be covalently attached to the target protein to induce

degradation.

Boc3Arg Induces Protein Degradation in Whole Cells
We constructed a variety of GST and eDHFR fusion proteins

to determine the efficacy of Boc3Arg-mediated protein degra-

dation in mammalian tissue culture cells. Importantly, TMP-

Boc3Arg has no effect on cell viability at concentrations up to

135 mM over the course of these experiments (Figures S1A

and S1B available online). Likewise, no toxicity was observed

when Cos-1 cells were treated with EA-Boc3Arg (100 mM),

although HeLa cells displayed some sensitivity (Figures S1C

and S1D). Endogenous GST isozymes are abundant proteins,

so we chose to focus our initial efforts on ectopically expressed

eDHFR fusion proteins. As noted above, the eDHFR/TMP

system is used to selectively label proteins in cells (Calloway

et al., 2007), which suggested that the TMP-Boc3Arg would
Chemistry & Biology 19, 629–637, May 25
induce the degradation of eDHFR fusion

proteins in whole cells.

Boc3Arg-initiated protein degradation was

monitored using a modified global protein

stability (GPS) assay (Yen et al., 2008). GFP-

fusion proteins are co-expressed with

Discosoma sp. red fluorescent protein (RFP) in

a bicistronic construct under control of a CMV
promoter, with GFP-fusion protein translation occurring at the

internal ribosome binding site. Thus, a single mRNA is respon-

sible for the production of both RFP and GFP-fusion proteins,

so that both proteins are produced in a constant ratio in all trans-

fected cells (Yen et al., 2008). Changes in the relative intensities

of red and green fluorescence are measured by flow cytometry,

providing a facile and quantitative measure of the protein

stability in living cells and real time. This assay has been used

to monitor the stability of �8000 human proteins to identify

substrates of the proteasome and E3 ligases (Yen and Elledge,

2008; Yen et al., 2008).

In the present application, an eDHFR-HA-GFP fusion protein is

expressed with translation occurring at the internal ribosome

binding site. The ratio of GFP/RFP does not change in the pres-

ence of TMP (Figure 3A). In contrast, the GFP/RFP ratio

decreases in the presence of TMP-Boc3Arg (Figures 3B and

3C). We confirmed the degradation of eDHFR-HA-GFP with

both anti-HA and anti-GFP blotting (Figure 3D). Approximately

30%–40% of the GFP signal was lost over 5 hr. Similar

decreases in GFP/RFP ratios were observed in MCF-7 cells.

These experiments demonstrate that Boc3Arg-induced degra-

dation is sufficiently robust to compete with CMV-driven protein

expression.

In the context of a whole cell, depletion of target protein levels

will be a function of the rate of protein synthesis, the rate of degra-

dation, and the rate of uptake of the Boc3Arg ligand. To further

gauge the contribution of new protein synthesis to the extent

of protein knockdown, we monitored TMP-Boc3Arg-induced

degradation in the presence of cycloheximide, which blocks

the synthesis of new proteins. Under these conditions, eDHFR-

HA-GFP levels are reduced to �10% within 3 hr in cells treated

with TMP-Boc3Arg (Figure 4). No degradation was observed

when cells were treated with dimethyl sulfoxide (DMSO) alone

or with TMP, demonstrating that degradation is induced by the

Boc3Arg degron. Given that eDHFR-HA-GFP expression is

driven by a CMV promoter, and that GFP is a very stable protein,

these observations suggest that Boc3Arg-induced degradation

will be sufficiently efficient to knock down most proteins.
, 2012 ª2012 Elsevier Ltd All rights reserved 631



Figure 3. Degradation of eDHFR Fusion Proteins in

Whole Cells

(A and B) Global protein stability assay. HeLa cells co-

express RFP and eDHFR-HA-GFP from a bicistronic

construct. Red and green fluorescence was measured by

flow cytometry. (A) TMP (80 mM). (B) TMP-Boc3Arg

(80 mM).

(C) Quantitation of four independent GPS experiments.

Bar graphs show the average and the standard deviation.

(D) Degradation of eDHFR-GFP was confirmed by anti-HA

and anti-GFP immunoblotting.

See also Figure S1.

Figure 4. Degradation of eDHFR Fusion Proteins in Cycloheximide-

Treated Cells

(A) Experiment as in Figure 3, but HeLa cells were incubated with 0.2 mg/ml

cycloheximide for 20 min prior to TMP-Boc3Arg treatment. The rightmost

panel is an independent blot.

(B) Quantitation of three independent experiments. Bar graphs show the

average and the standard deviation.
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EA-Boc3Arg Induces Degradation of Endogenous GST-p
Encouraged by the above results, we investigated whether

EA-Boc3Arg could cause the degradation of endogenous

GST-p. This protein is abundant; its concentration can be as

high as 50 mM in cancer cells (Ricci et al., 2005). Moreover,

alkylators induce the expression of GST (Hu et al., 2006a;

Thimmulappa et al., 2002), so this is another demanding test of

the efficacy of Boc3Arg-mediated degradation. Cos-1 cells

were incubated with EA or EA-Boc3Arg for 3 hr. EA treatment

increased the level of endogenous GST-p by 30% relative to

the DMSOcontrol (Figure 5A). In contrast, EA-Boc3Arg treatment

reduced the levels of endogenous GST-p by 30% relative to the

DMSO control and by 50% relative to EA treatment (Figure 5A).

GST-p is a bona fide anticancer target (Raj et al., 2011; Sau

et al., 2010), so this experiment provides proof of concept with

a pharmaceutically relevant protein.

EA-Boc3Arg Induces Degradation of Ectopic Proteins
in Whole Cells
Compounds such as EA are known to amplify the expression of

GST-p (Higgins andHayes, 2011), so it is possible that the rate of

GST-p synthesis was increasing over the course of the above

experiment. Therefore, we ectopically expressed GST-a1-fusion

proteins under control of a CMV promoter to ensure that

the target protein would be expressed at a constant rate.

Gratifyingly, treatment with EA-Boc3Arg caused the rapid

and robust degradation of eDHFR-HA-GST-a1. Fusion protein

levels decreased by �70% within 2 hr (Figures 5B and 5C). As

observed with GST-p, eDHFR-HA-GST-a1 levels increased

when cells were treated with EA alone, suggesting that the

unmodified inhibitor stabilized the protein. Degradation was

dose-dependent, with 10 mM causing �50% degradation in

1.2 hr (Figure 5D). Preincubation of cells with EA protected

eDHFR-HA-GST-a1 against degradation, confirming the speci-

ficity of EA-Boc3Arg (Figure S2).

The eDHFR-HA-GST-a1 fusion protein allows the direct

comparison of degradation induced by EA-Boc3Arg and TMP-

Boc3Arg. While 80 mM EA-Boc3Arg induces nearly complete

degradation of the fusion protein in under 2 hr, only�25%degra-
632 Chemistry & Biology 19, 629–637, May 25, 2012 ª2012 Elsevier Ltd All rights rese
dation is observed in 5 hr when cells are treated

with the same concentration of TMP-Boc3Arg

(data not shown). Although it is possible that

the superior efficacy of EA-Boc3Arg derives

from better cellular uptake, these results may

also indicate that a covalent attachment
between the target protein and ligand is the preferred design

strategy.

Degradation Requires the Proteasome, but Not
Ubiquitylation
The ubiquitin-proteasome system is the major route for intracel-

lular protein degradation (Xie, 2010). SERD-induced degradation

of the estrogen receptor utilizes these pathways (Howell, 2006),

and the degradation of dehalogenase fusion proteins with hydro-

phobic tagging also has been shown to require the proteasome

(Neklesa et al., 2011). Therefore, we investigated whether

Boc3Arg-induced degradation also utilized the ubiquitin-protea-

some system. The specific proteasome inhibitor bortezomib

blocks the Boc3Arg-mediated degradation of eDHFR and

endogenous GST-a1-GFP in whole cells (Figures 4A and 5A).

Lactacystin, a second specific proteasome inhibitor, blocks

Boc3Arg-induced degradation in Cos-1 cell lysates (Figure 6A),

as does the less specific inhibitor MG132 (Figure 6D). However,

we failed to observe the accumulation of highermolecular weight

forms of any of the proteins in the presence of proteasome

inhibitors, even when deubiquitylating enzyme inhibitors were

included with proteasome inhibitors. The experiment with ubiq-

uitin aldehyde addition is shown Figure 6C; similar results were

obtained with IU1, an inhibitor of USP14 (data not shown; Lee
rved



Figure 5. EA-Boc3Arg-Induced Degradation of

Endogenous and Ectopic GST in Whole Cells

(A) Degradation of endogenous GST-p when Cos-1 cells

are treated with EA and EA-Boc3Arg for 3 hr (n = 4). Bar

graphs show the average and the standard deviation.

(B) Degradation of eDHFR-HA-GST-a1 in HeLa cells. Cells

expressing eDHFR-HA-GST-a1 were treated with EA-

Boc3Arg (80 mM) over 1.8 hr. Protein was measured by

both anti-GST and anti-HA immunoblotting (n R 3). Bar

graphs show the average and the standard deviation.

(C) HeLa cells expressing eDHFR-HA-GST-a1 were

treated with: triangles, EA (80 mM); squares, EA-Boc3Arg

(8 mM); and diamonds, EA-Boc3Arg (80 mM). At the indi-

cated time points, the eDHFR-HA-GST-a1 was quanti-

tated and normalized to GAPDH (n = 2). Bar graphs show

the average and the range of values.

(D) HeLa cells expressing eDHFR-HA-GST-a1 were

treated with a range of concentrations of EA-Boc3Arg or

just dimethyl sulfoxide. After 1.2 hr, the amount of eDHFR-

HA-GST-a1 was quantitated (n = 2). Bar graphs show the

average and the range of values.

See also Figure S2.
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et al., 2010). ATP is required both for ubiquitylation and for the

degradation of ubiquitylated proteins by the 26S proteasome,

but omission of the ATP regenerating system did not inhibit

Boc3Arg-induced degradation (Figure 6B). Although it can often

be difficult to detect ubiquitylation (Jariel-Encontre et al., 2008),

these observations suggest that the Boc3Arg group induces

degradation of the target protein by a mechanism that is inde-

pendent of the ubiquitin pathways.

DISCUSSION

The Boc3Arg Moiety Provides a General Strategy
for the Design of Degradation-Inducing Inhibitors
The use of small molecules to stabilize misfolded proteins is

a promising approach for the treatment of several inherited

diseases (Bernier et al., 2004; Ringe and Petsko, 2009). Such

chemical/pharmacological chaperones exploit the common

ability of inhibitor binding to stabilize protein structure. In

contrast, the experiments described above demonstrate that

the Boc3Arg moiety provides a general strategy for the construc-

tion of small molecules that induce protein degradation. Impor-

tantly, a covalent interaction between the inhibitor and target is

not required, which suggests that the Boc3Arg-induced degra-

dation design may be broadly applicable. EA is a diuretic,

GST-p has an essential role in the development of colon cancer

(Dang et al., 2005), TMP is a widely used antibiotic, and DHFR is

an important target for cancer, immunosuppressive, and antimi-

crobial chemotherapy, so this work demonstrates proof of

concept with therapeutically relevant inhibitors and targets.

Boc3Arg-induced degradation can be rapid and robust: our

work demonstrates that as much as 30%–80% of an abundant

protein can be consumed in 2–5 hr. Haploinsufficiency is
Chemistry & Biology 19, 629–637, May 25
a frequent cause of autosomal dominant disor-

ders, which suggests that such levels of protein

knockdown should be sufficient to observe

a phenotype. Further, similar levels of estrogen

receptor knockdown are observed when tissue
culture cells are treated with SERDs (Wittmann et al., 2007),

demonstrating that Boc3Arg-induced degradation should be

sufficient to make a pharmacological impact. Boc3Arg-induced

protein knockdown is more rapid than RNAi, which typically

requires several days to deplete the target mRNA. Of course,

the extent of protein knockdown will depend on the rate of

synthesis and the intrinsic structural stability of the protein

target, but these issues also determine the efficacy of RNAi.

The structure-activity profile of Boc3Arg-induced degradation

has not been defined, and our work toward this end is ongoing.

The Boc3Arg and linker together have a molecular weight

approaching 600 Da, with a polar surface area of more than

150 Å2. Although the linker requirements are likely to be target-

specific, more effective degronsmay be obtainedwith an optimi-

zation program that seeks to reduce the size of the Boc3Arg

moiety. The properties of the recognition ligand must also be

defined. We expect that Boc3Arg-induced degradation will

have a bell-shaped dependence on the affinity of the recognition

ligand. If this interaction is too weak, the association will not be

long enough for the target to transit to the proteasome. If the

interaction is too strong, the target will not unfold and enter the

proteolytic chamber. It seems reasonable to expect that more

effective examples of inhibitor-mediated degradation will be

realized.

The Pharmacological Potential of Boc3Arg-Mediated
Degradation
Drugs that induce protein degradation are likely to have different

pharmacological effects than those that simply obstruct

a binding site. For example, inhibition of the kinase activity of

the Bcr-Abl kinase is not sufficient to block activation of its

downstream signaling pathways (Hu et al., 2006b); obviously,
, 2012 ª2012 Elsevier Ltd All rights reserved 633



Figure 6. Mechanism of Boc3Arg-Induced Degra-

dation

(A) Effect of lactacystin (50 mM) on the TMP-Boc3Arg-

induced degradation of eDHFR in Cos-1 cell lysates sup-

plemented with an ATP regeneration system.

(B) Degradation of GST-a1 (0.2 mg/ml) was modified by

EA-Fur-Boc3Arg (40 mM) then diluted 50-fold into NIH 3T3

cell lysates. Closed diamonds, standard assay buffer

containing ATP regenerating system; closed squares, ATP

regenerating system omitted.

(C) Effect of lactacystin (50 mM) and ubiquitin aldehyde

(20 mM) on the degradation of eDHFR-TMP-Boc3Arg in

Cos-1 lysates.

(D) Effect of MG132 (100 mM) on the EA-Boc3Arg-induced

degradation of GST-a1 in Cos-1 cell lysates supple-

mented with an ATP regeneration system.
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such kinase-independent signaling would be eliminated if Bcr-

Abl was degraded. Treatment of botulinum toxin (BoNT) intoxi-

cation highlights another advantage of this strategy. BoNT has

a half-life of 90 days, so patients must be kept on respirators

for many months (Foran et al., 2003); a small molecule inhibitor

of BoNT would also have to be administered for many months,

but an agent that could induce the degradation of BoNT would

require a much-reduced treatment schedule. The degradation

of aberrant proteins also provides a novel and much-needed

strategy for treating many hereditary diseases. For example,

mutations in IMPDH1 cause retinitis pigmentosa, an inherited

blindness resulting from the degeneration of rod photoreceptors.

IMPDH1 knockout mice display only a mild retinopathy (Aherne

et al., 2004), suggesting that the removal of the mutant protein

will prevent disease.

The knockdown of GST-p illustrates the potential of inhibitor

mediated protein degradation. EA increased the level of GST-p

relative to the DMSO-treated control. In contrast, EA-Boc3Arg

decreased the levels of GST-p, so that only 50% of the protein

is present relative to EA-treated cells. In both cases, the active

site of GST-p is blocked, disrupting phase-II detoxification and

protein glutathionylation reactions. However, GST-p has addi-

tional functions that appear to be independent of the active

site (Tew and Townsend, 2011), including a ‘‘ligandin’’ activity

that binds large planar aromatic anions outside the active site.

This ligandin activity may serve to prevent the generation of reac-

tive oxygen species. GST-p also forms a complex with c-Jun

N-terminal kinase 1 to negatively regulate MAP kinase signaling.

Lastly, GST-p forms higher-level oligomers under conditions of

cellular stress, although the functional consequences of oligo-

merization are not known. These processes are likely to be

regulated by the levels of GST-p, which suggests that the phar-

macology of EA and EA-Boc3Arg treatment will be distinct.

Mechanism of Boc3Arg-Induced Degradation
The three tert-butyl groups of Boc3Arg create a large hydro-

phobic surface that may cause degradation in a similar manner
634 Chemistry & Biology 19, 629–637, May 25, 2012 ª2012 Elsevier Ltd All rights rese
to the hydrophobic tagging of dehalogenase

fusion proteins recently reported by Neklesa

et al. (Neklesa et al., 2011). The exposure of

hydrophobic surfaces is also believed to be

the underlying cause of SERD-induced degra-
dation of the estrogen receptor, oxidized protein degradation,

and unfolded protein degradation (Breusing and Grune, 2008;

Howell, 2006). Although the characterization of these processes

is far from complete, it is already clear that multiple pathways

are at work. SERD-induced degradation involves additional

estrogen receptor cofactors such as SRC3/AIB1 and requires

polyubiquitylation and the 26S proteasome (Calligé and

Richard-Foy, 2006). Further, each SERD exposes a distinct

hydrophobic surface (Wittmann et al., 2007; Wu et al., 2005),

suggesting that different sets of cofactors/ubiquitylation

enzymes could be utilized in each case. The degradation of

oxidatively damaged proteins is similarly complex. The ubiquitin

pathways are needed when damage occurs to newly synthe-

sized proteins (Medicherla and Goldberg, 2008), while the 20S

proteasome degrades the majority of oxidized proteins in an

ubiquitin- and ATP-independent process (Jung et al., 2009;

Shringarpure et al., 2001). Unfolded proteins are also substrates

for the 20S proteasome (Asher et al., 2006; Breusing and Grune,

2008). In addition, protein cofactors such as HSP90 can act

in concert with the 20S proteasome to promote degradation

(Whittier et al., 2004).

Boc3Arg-mediated degradation requires the proteasome, but

appears to be ubiquitin- and ATP-independent. These observa-

tions suggest that the 20S proteasomemay be involved. The 20S

proteasome accounts for approximately 40%of the total protea-

some pool in cells (Tanahashi et al., 2000), so a large proteolytic

capacity is available for ubiquitin-independent degradation.

Proteasome inhibitors also block the hydrophobic tagging/

dehalogenase degradation system (Neklesa et al., 2011),

although it is not yet known if this is a ubiquitin- and ATP-inde-

pendent process. Enzyme-inhibitor complexes are generally

more stable than unliganded enzymes, which makes degrada-

tion all the more curious. One possibility is that the Boc3Arg

moiety might enter the proteasome and drag the rest of the

protein into the proteolytic chamber. Although such a process

is easily envisioned with a covalently attached inhibitor, it is

difficult to understand how this mechanism could work with
rved
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noncovalent interaction. Another possibility is that the Boc3Arg

group intercalates into the target protein, exposing a hydro-

phobic surface that then interacts with the 20S proteasome, or

perhaps Boc3Arg interacts with other protein factors such as

HSP90. Which of these mechanisms is operable has important

implications for the optimization of Boc3Arg-induced degrada-

tion. How the Boc3Argmoiety targets proteins to the proteasome

remains to be elucidated.

SIGNIFICANCE

Drugs such as fulvestrant cause the degradation of their

target proteins. Such compounds generally display superior

pharmacodynamic properties relative to analogs that do not

induce degradation. However, the discovery of compounds

with this property has been largely serendipitous and

a robust general strategy for the design of small molecules

that cause protein degradation has yet to emerge. Given

that inhibitor binding generally stabilizes protein structure,

the principles of such a design are not obvious. We have

discovered that Boc3Arg-linked inhibitors induce degrada-

tion of their target proteins in mammalian tissue culture

cells. Robust degradation was observed with the Boc3Arg

moiety in the context of three different inhibitor scaffolds

and with three different target proteins, including an

abundant endogenous protein. Importantly, the inhibitors

can be covalent or noncovalent. Thus, Boc3Arg provides

a general strategy for the design of small molecules that

induce protein degradation that will be useful in the design

of drugs and chemical tools.

EXPERIMENTAL PROCEDURES

Materials

All reagents were of the highest commercial grade. Monoclonal rat anti-

hemagglutinin (HA) conjugated to horseradish peroxidase (anti-HA-HRP,

clone 3F10) was fromRoche Diagnostics (Indianapolis, IN). Mousemonoclonal

anti-GAPDH conjugated to HRP (anti-GAPDH-HRP), mouse anti-tubulin,

rabbit anti-actin, and MG132 were from Sigma Aldrich (St. Louis, MO). Rabbit

anti-human IMPDH and secondary antibody HRP conjugates were purchased

from Abcam (Cambridge, MA). Rabbit anti-GST-a1 and anti-GST-pwere from

Oxford Biomedical (Oxford, UK). Rabbit anti-GFP was from Chemicon

(Billerica, MA). Purified 20S proteasome from HeLa, immunoproteasome

from mouse spleen, lactacystin, and IU1 were from Boston Biochem

(Cambridge, MA). Bortezomib was from Sellek Chemicals LLC (Boston, MA).

We thank Charles Morrow (Wake Forest University) for the GST-a1 expression

plasmid pOXO4-a1 and the Elledge Laboratory for the PMSCV-vector contain-

ing the DSRED_IRES_eGFP casette. Recombinant GST-a1 and eDHFR

proteins were purified by affinity chromatography as described in Supple-

mental Information. Compound synthesis and characterization is also

described in Supplemental Information.

Cell Culture

For lysate experiments, cells were grown to confluence in DMEM with 10%

FBS, and then cultured without FBS for 2 days. Lysates were prepared in

buffer A (300 mM phosphate, pH 7.8, 200 mM sucrose, 42 mM MgCl2,

10 mM NaCl). Protein content was determined using the Bradford assay

with IgG as a standard (BioRad, Hercules, CA).

In Vitro Degradation Assays

Lysates were validated for proteolytic activity using a fluorescence-based pro-

teasome assay (Sigma Aldrich, St. Louis, MO). Addition of MG132 (100 mM) or

lactacystin (50 mM) inhibited this reaction, demonstrating the presence of
Chemistry & Biology 19,
active proteasomes. An optimized concentration (1 mg/ml) lysate was used

in degradation assays. Unless otherwise stated, the lysate was supplemented

with: 10 mM ATP, 63 mMMgCl2, 100 mM creatine phosphate, and 0.01 mg/ml

creatine kinase. The target enzyme (0.2 mg/ml, 8.3 mM) was preincubated with

the respective inhibitor (typically 80 mM) for 20 min at 37�C in 50 mM Tris-Cl

buffer, pH 8.0. Then the inhibitor-enzyme complex was diluted 50-fold into

lysate, overlaid with Chill-out wax (Biorad), and incubated at 37�C. Aliquots
(15 ml) were added to 10 ml of 5X SDS loading buffer at the appropriate time

intervals. Protein was visualized with the appropriate primary and secondary

antibodies using ECL Plus (GE, Bucks, UK). Densitometry was carried out

using IMAGE-J V 1.44p.
In Cell Degradation Assays

Cells were grown to approximately 60% confluence, and then transfected with

the required plasmid using Transit2020 (except HeLa, for which Transit

HeLaMonster was used) (Mirus, Pittsburgh, PA). Fresh media containing

compound was added to initiate the assay. Cells were incubated at 37�C
and harvested by trypsinization and lysis at the appropriate time intervals.

For Fluorescence Activated Cell Sorting (FACS), cells were collected by centri-

fugation, and then resuspended in FACS buffer (1% FBS in PBS). FACS was

carried out on a Becton Dickinson FACScalibur instrument. Details of analysis

are included in Supporting Information.
SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.chembiol.2012.04.008.
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