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Abstract

If we fix a spanning subgraph H of a graph G, we can define a chromatic number of H with respect to G and we show that it
coincides with the chromatic number of a double covering of G with co-support H. We also find a few estimations for the chromatic
numbers of H with respect to G.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a finite simple graph with vertex set V (G) and edge set E(G). The cardinality of a set X is denoted by
|X|. Throughout the paper, we assume all graphs are finite and simple.

The aim of this article is to find adequate formulae for the chromatic numbers of covering graphs. The chromatic
number �(G) of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent
vertices share the same color. Since the exploratory paper by Dirac [5], the chromatic number has been in the center
of graph theory research. Its rich history can be found in several articles [9,15]. The concept of covering graphs is
relatively new [7,8]. Its precise definition can be given as follows. For a graph G, we denote the set of all vertices
adjacent to v ∈ V (G) by N(v) and call it the neighborhood of a vertex v. A graph G̃ is called a covering of G with
a projection p : G̃ → G, if there is a surjection p : V (G̃) → V (G) such that p|N(ṽ) : N(ṽ) → N(v) is a bijection
for any vertex v ∈ V (G) and ṽ ∈ p−1(v). In particular, if p is two-to-one, then the projection p : G̃ → G is called
a double covering of G. Some structures or properties of graphs work nicely with covering graphs. The characteristic
polynomials of a covering graph G̃ and its base graph G have a strong relation [6,12,13]. The enumeration of non-
isomorphic covering graphs has been well studied [10,12]. Amit, Linial, and Matousek find the asymptotic behavior
of the chromatic numbers of n-fold coverings without considering isomorphic types [1]. We will relate the chromatic
number and double covering graphs as follows.

A signed graph is a pair G� = (G, �) of a graph G and a function � : E(G) → Z2, Z2 = {1, −1}. We call G the
underlying graph of G� and � the signing of G. A signing � is in fact a Z2-voltage assignment of G, which was defined
by Gross and Tucker [7]. It is known [7,8] that every double covering of a graph G can be constructed as follows:
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Fig. 1. Commuting diagram of isomorphic coverings.

let � be a signing of G. The double covering G� of G derived from � has the following vertex set V (G�) and edge
set E(G�),

V (G�) = {vg|v ∈ V (G) and g ∈ Z2},
E(G�) = {(ug, v�(u,v)g)|(u, v) ∈ E(G), g ∈ Z2}.

Two double coverings p� : G� → G and p� : G� → G are isomorphic if there exists a graph isomorphism
� : G� → G� such that the diagram in Fig. 1 commutes.

For a spanning subgraph H of G, colorings f and g of H are compatible in G if for each edge (u, v) ∈ E(G)−E(H),
f (u) �= g(v) and f (v) �= g(u). The smallest number of colors such that H has a pair of compatible colorings is called
the chromatic number of H with respect to G and denoted by �G(H). Since (f |H , f |H ) is a pair of compatible colorings
of H for any spanning subgraph H of G and any coloring f of G, one can find �G(H)��(G) for any spanning subgraph
H of G. We remark that �G(G) = �(G) for any graph G, and that �G(N|V (G)|) = 2 if G has at least one edge, where
Nn is the null graph on n vertices.

In Section 2, we recall some basic properties. We show that the chromatic numbers of double coverings of a given
graph can be computed from the number �G(H) for any spanning subgraph H of G. In Section 3, we will estimate the
number �G(H). We discuss a generalization to n-fold covering graphs in Section 4.

2. Basic properties

Let � be a signing of G. We define the support of � by the spanning subgraph of G whose edge set is �−1(−1), and
denoted by spt(�). Similarly, we define the co-support of � by the spanning subgraph of G whose edge set is �−1(1),
and denoted by cospt(�). Any spanning subgraph H of G can be described as a co-support cospt(�) of a signing � of
G. Let �H be the signing of G with cospt(�H ) = H . Let f and g be compatible �G(H)-colorings of H. We define a
function

h : V (G�) → {1, 2, . . . , �G(H)}
by h(v1) = f (v) and h(v−1) = g(v) for each v ∈ V (G). Then, by the compatibility of f and g, h is a �G(H)-coloring
of G�. Hence, �(G�)��G(H). Conversely, let h be a �(G�)-coloring of G�. We define two �(G�)-colorings f and g
of H by f (v) = h(v1) and g(v) = h(v−1) for each v ∈ V (G). Then f and g are compatible because h is a coloring of
G�. Hence, �G(H)��(G�). Now, we have the following theorem.

Theorem 1. Let H be a spanning subgraph of a graph G. Then

�G(H) = �(G�H ),

where �H is the signing of G with cospt(�H ) = H .

It is not hard to see that the graph G in Fig. 2 has two non-isomorphic connected double coverings. We exhibit
spanning subgraphs H1, H2 of G corresponding to two non-isomorphic connected covering graphs of G and their
chromatic numbers with respect to G in Fig. 3.

For a subset X ⊂ V (G) and for a spanning subgraph H of G, let HX denote a new spanning subgraph of G defined
as follow: Two vertices in X or in V (G) − X are adjacent in HX if they are adjacent in H, while a vertex in X and a
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Fig. 2. A spanning subgraph H of G with �G(H) = 2.

 � (G�H1) = 3

�G (H1) = 3 �G (H2) = 2

� (G) = 3

� (G�H2) = 2

Fig. 3. �G(H) and the chromatic number of double coverings G�H of a graph G.

vertex in V (G) − X are adjacent in HX if they are adjacent in G but not adjacent in H, i.e., they are adjacent in the
complement H̄ (G) of H in G. Two spanning subgraphs H and K of G are Seidel switching equivalent in G if there exists
a subset X ⊂ V (G) such that HX = K . Clearly, the Seidel switching equivalence is an equivalence relation on the set
of spanning subgraphs of G, and the equivalence class [H ] of a spanning subgraph H of G is {HX : X ⊂ V (G)}.

For a signing � : E(G) → Z2 and for any X ⊂ V (G), let �X be the signing obtained from � by reversing the sign
of each edge having exactly one end point in X. If � = �X for some X ⊂ V (G) then � and � are said to be switching
equivalent [4].

It is clear that for a subset X ⊂ V (G) and for a spanning subgraph H of G, HX = cospt((�H )X). By a slight
modification of the proof of Corollary 4 [11], we obtain the following theorem.

Theorem 2. Let G be a graph. Let H, K be spanning subgraphs of G. Then the following statements are equivalent.

(1) Two graphs H and K are Seidel switching equivalent.
(2) Two signings �H and �K are switching equivalent.
(3) Two double coverings G�H and G�K of G are isomorphic as coverings.

The following corollary follows easily from Theorem 1 and 2.

Corollary 3. Let H and K be two spanning subgraphs of a graph G. If they are switching equivalent, then

�G(H) = �G(K).
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Fig. 4. Two non-switching equivalent subgraphs H, K in G with �G(H) = �G(K).

The converse of Corollary 3 is not true in general. We have provided two non-switching equivalent spanning subgraphs
H, K in G with �G(H) = �G(K) = 3 in Fig. 4.

For a coloring f of H, letIf be the number of colors in {1, 2, . . . , �(H)} such that the preimage f −1(i) is independent
in H̄ (G) (and hence, also in G).

Corollary 4. Let G be a connected graph and let H be a spanning subgraph of G. Then

max
K∈[H ]{�(K)}��G(H)� min

K∈[H ],f {�(G), 2�(K) − If },

where f runs over all �(K)-colorings of K.

Proof. It is clear that �(H)��G(H)��(G). Let f be a �(H)-coloring of H such that

{i|f −1(i) is independent in G} = {�(H), �(H) − 1, . . . , �(H) − If + 1}.
We define a function g : V (H) → {1, 2, . . . , 2�(H) − If } as follows: For a vertex v in V (H),

g(v) =
{

f (v) if�(H) − If + 1�f (v)��(H),

f (v) + �(H) otherwise.

Then g is a coloring of H, and f and g are compatible. Now, the corollary comes from Corollary 3.

For a partition P={V1, V2, . . . , Vk} of the vertex set V (G) of G, we define a new simple graph G/P as follows: the
vertex set of G/P is {V1, V2, . . . , Vk} and there is an edge between two vertices Vi and Vj in G/P if and only if there
exist two vertices vi ∈ Vi and vj ∈ Vj such that vi and vj are adjacent in G where i �= j . We call G/P the quotient
graph associated with a partition P. For a subset S of V (G), let G[S] be the subgraph of G whose vertex set S and
whose edge set is the set of those edges of G that have both ends in S. We call G[S] the subgraph induced by S. �

Corollary 5. Let P={V1, V2, . . . , Vk} be a partition of the vertex set of a connected graph G and let H =∪k
i=1G[Vi]

be the disjoint union of the induced subgraphs G[Vi]. If G/P is bipartite, then �(G) = �G(H).

Proof. Let X = {[vi1 ], [vi2 ], . . . , [vik ]} be a part of the bipartition of the vertex set of the bipartite graph G/P. Then
H∪k

j=1Vij
= G. Then, the corollary follows from Corollary 3 or 4. �

The following theorem finds a necessary and sufficient condition for the bipartiteness of covering graphs.

Theorem 6 (Archdeacon et al. [2]). Let G be a non-bipartite graph with a generating voltage assignment � in A
which derives the covering graph G̃. Then G̃ is bipartite if and only if there exists a subgroup Ae of index two in A
such that for every cycle C, �(C) ∈ Ae if and only if the length of C is even.

It is obvious that �G(H) = 1 if and only if G is a null graph. In Theorem 7, we find a necessary and sufficient
condition of �G(H) = 2.
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Theorem 7. Let G be a connected graph having at least one edge and let H be a spanning subgraph of G. Then
�G(H) = 2 if and only if either G is bipartite or H ∈ [N|V (G)|], where N|V (G)| is the null graph on |V (G)| vertices.

Proof. Let G be a bipartite graph and H be a spanning subgraph of G. Then there exists a graph K in the switching
class [H ] of H in G such that K has at least one edge. By Corollary 4, �G(H) = 2. We recall that G itself is a spanning
subgraph of G and �G(G) = �(G). Therefore, if a graph G has at least one edge, then G is bipartite if and only if
�G(H) = 2 for any spanning subgraph H of G.

If G is not a bipartite graph, there exist a signing � of G such that G� is bipartite [7]. It follows the connectedness
of G that there exists a subset Y of V (G) such that cospt(�Y ) is connected. Since G� and G�Y are isomorphic, by
Theorem 2, G�Y is bipartite. We note that cospt(�Y ) is isomorphic to a subgraph of G�Y and hence it is bipartite. Let
e be an edge of G such that one end is in Y and the other is in V (G) − Y . If �Y (e) = −1, then there exists an even cycle
which contains the edge e as the only edge whose value under �Y is −1. It follows from Theorem 6 that G�Y is not
bipartite. This is a contradiction. It implies that for an edge e of G, �Y (e) = 1 if and only if one end of e is in Y and
the other is in V (G) − Y . Let X be a part of the bipartition of cospt(�Y ), i.e., every edge e in cospt(�Y ) has one end
in X and the other end in V (G) − X. Then cospt((�Y )

X
) = N|V (G)|. Notice that cospt((�Y )

X
) = cospt(�Z), where

Z = (Y − X) ∪ (X − Y ). Hence H is switching equivalent to N|V (G)|. It completes the proof of theorem. �

3. Computations of �G(H)

In this section, we aim to estimate the number �G(H) for any spanning subgraph H of G. Let H be a span-
ning subgraph of G, and let F1, F2, . . . , Fk be the components of the complement H̄ (G) of H in G. Then PH̄ =
{V (F1), V (F2), . . . , V (Fk)} is a partition of the vertex set V (H)=V (G). Now, we consider a �(H/PH̄ )-coloring c of
the quotient graph H/PH̄ . Then c induces a partition Pc ={c−1(1), . . . , c−1(�(H/PH̄ ))} of the vertex set H/PH̄ . By
composing the quotient map : G → H/PH̄ and c : H/PH̄ → {1, 2, . . . , �(H/PH̄ )}, we obtain a partition of H and by
slightly abusing notation we denoted it identically Pc. One can notice that each vertex of H/Pc can be considered as a
union of the vertex sets V (F1), . . . , V (Fk). For each i = 1, . . . , �(H/PH̄ ), let Hc(i) = H [c−1(i)], where we consider
c−1(i) as a subset of V (H) = V (G). A coloring f of H respects the coloring c of H/PH̄ if |f (Hc(i))| = �(Hc(i)) and
f (Hc(i))∩f (Hc(j))=∅ for any 1� i �= j ��(H/PH̄ ). For a coloring f which respects c, let If (i) be the number of
colors in {i1, i2, . . . , i�(Hc(i))} such that the vertex set f −1(ik) is independent in H̄ (G) and letDf (i)=�(Hc(i))−If (i)

for each i = 1, . . . , �(H/PH̄ ). Let

�S = max

{
0, 2 max{s | s ∈ S} −

∑
s∈S

s

}
for any subset S of natural numbers.

Theorem 8. Let G be a connected graph and let H be a spanning subgraph of G. Then

�G(H)� min
c

⎧⎨⎩
�(H/PH̄ )∑

i=1

�(Hc(i)) + �{�(Hc(i)) | i=1,2,...,�(H/PH̄ )},

�(H/PH̄ )∑
i=1

�(Hc(i)) + min
f

{
�{Df (i) | i=1,2,...,�(H/PH̄ )}

}⎫⎬⎭ ,

where c runs over all �(H/PH̄ )-colorings of H/PH̄ and f runs over all colorings of H which respect c.

Proof. Let c be a �(H/PH̄ )-coloring of H/PH̄ and let f be a coloring of H which respects c.
First, we want to show that

�G(H)�
�(H/PH̄ )∑

i=1

�(Hc(i)) + �{�(Hc(i))|i=1,2,...,�(H/PH̄ )}.
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Without loss of generality, we may assume that �(Hc(1))��(Hc(2))� · · · ��(Hc(�(H/PH̄ ))). Let the image

f (V (Hc(i))) =
⎧⎨⎩

i−1∑
j=1

�(Hc(j)) + 1, . . . ,

i∑
j=1

�(Hc(j))

⎫⎬⎭
and

� = �{�(Hc(i))})|i=1,2,...,�(H/PH̄ )}.

Then

� = max

⎧⎨⎩�(Hc(1)) −
�(H/PH̄ )∑

i=2

�(Hc(i)), 0

⎫⎬⎭ .

We define g : V (H) → {1, 2, . . . , n + �} by g(v) = f (v) − �(Hc(1)), where

n =
�(H/PH̄ )∑

i=1

�(Hc(i))

and the arithmetic is done by modulo n+ �. Then g is a coloring of H. Since f (V (Hc(i)))∩g(V (Hc(i)))=∅ and each
edge in E(G) − E(H) = E(H̄ (G)) connects two vertices in Hc(i) for some i = 1, 2, . . . , �(H/PH̄ ), we can see that
f and g are compatible. Hence,

�G(H)�
�(H/PH̄ )∑

i=1

�(Hc(i)) + �.

Next, we want to show that

�G(H)�
�(H/PH̄ )∑

i=1

�(Hc(i)) + �{Df (i)|i=1,2,...,�(H/PH̄ )}.

In general, we may assume that Df (1)�Df (2)� · · · �Df (�(H/PH̄ )). Now, we aim to define another coloring g of
H such that f and g are compatible. To do this, first for the vertices v of H such that the set f −1(f (v)) is independent
in H̄ (G), we define g(v) = f (v). Next, by using a method similar to the first case, we can extend the function g to
whole graph H so that f and g are compatible colorings of H.

Finally, by taking the minimum value among all �(H/PH̄ )-coloring c of H/PH̄ and all coloring f of H which respect
c, we have the theorem. �

The following example shows the upper bound in Theorem 8 is sharp.

Example 9. Let m, n be integers with 2�m�n. Let Km−1 be the complete graph on m − 1 vertices v1, . . . , vm−1.
Let Hm be a spanning subgraph of Kn obtained by adding n − m + 1 isolated vertices vm, . . . , vn to Km−1. Then
�Kn

(Hm) = m.

Proof. To show m��Kn
(Hm), we set X=V (Km−1). Then �((Hm)X)=m and hence m��Kn

(Hm) by Corollary 4. We
can show that �Kn

(Hm)�m by using two methods which are contained in the proof of Theorem 8. For the first method,
we replace Hm by (Hm)X. We observe that (Hm)X(Kn) = Kn−m+1 ∪ {v1, . . . , vm−1} and (Hm)X/P ¯(Hm)X

= Km. Let
c be a (m)-coloring of (Hm)X/PH̄X

such that V ((Hm)c(i)) = {vi} for each i = 1, 2, . . . , m − 1 and V ((Hm)c(m +
1)) = {vm, . . . , vn}. We note that �((Hm)c(i)) = 1 for each i = 1, 2, . . . , m. Since �{1,1,...,1} = 0, by Theorem 8, we
have �Kn

(Hm) = �Kn
((Hm)X)�m. For the second method, let c be the trivial coloring of Hm/PHm

= K1 and let f
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be a (m− 1)-coloring of Hm such that f (vi)= i for each i = 1, 2, . . . , m− 1 and f (vm)=f (vm+1)=· · ·=f (vn)= 1.
Then f respects c and

Df (1) = �((Hm)c(1)) − Df (1) = �(Hm) − Df (1) = (m − 1) − (m − 2) = 1.

Since �{1} = 2 − 1 = 1, by Theorem 8, we have �Kn
(Hm)�m. �

Example 9 can be generalized to the following corollary.

Corollary 10. Let H be a complete m-partite graph which is a spanning subgraph of Kn. Then �Kn
(H) = m.

Proof. We observe that the complement H̄ (Kn) of H is also a spanning subgraph of Kn having at least k components
of which each vertex set is a subset of a part of H. It is not hard to show that H/PH̄ is also a complete m-partite graph
and �(Hc(i)) = 1 for each i = 1, . . . , m. By Theorem 8, �G(H)�m. Since �(H) = m, by Corollary 4, it completes the
proof. �

If each component of a spanning subgraph H of a graph G is a vertex induced subgraph, we can have an upper bound
of the chromatic number of H induced by G which is simpler than that in Theorem 8.

Theorem 11. Let P = {V1, V2, . . . , Vk} be a partition of the vertex set of a connected graph G. Let H be a disjoint
union of the induced subgraphs G[V1], G[V2], . . . , G[Vn]. Then we have

max
Vi,Vj

{�(G[Vi ∪ Vj ])}��G(H)� max
Vi,Vj

{�(G[Vi]) + �(G[Vj ])},

where Vi and Vj runs over all pairs of adjacent vertices in G/P.

Proof. Let Vi and Vj be two adjacent vertices in G/P. Then G[Vi ∪ Vj ] is a subgraph of HVi
. By Corollary 4,

�(G[Vi ∪ Vj ])��(HVi
)��G(H) and hence

max{�(G[Vi ∪ Vj ])|Vi is adjacent to Vj in G/P}��G(H).

For the second inequality, let

M = max{�(G[Vi]) + �(G[Vj ])|Vi is adjacent to Vj in G/P}.
By the definition of M, there exist s, t and M-coloring f : V (H) → {1, 2, . . ., M} of H such that

�(G[Vs]) + �(G[Vt ]) = M

and

f (G[Vi]) = {1, 2, . . . , �(G[Vi])}
for each i =1, 2, . . . , k. We note that f may not be surjective. We define another M-coloring g of H such that g(G[Vi])=
{M, M −1, . . . , M −�(G[Vi])+1}. Now, we aim to show that f and g are compatible. Let uv be an edge of G which is
not in E(H). Now, by the construction of G/P, then there exist i and j such that u ∈ Vi and v ∈ Vj . By the definition of
G/P, Vi is adjacent to Vj in G/P. If f (Vi)∩g(Vj ) �= ∅, then, by the construction of f and g, M < �(G[Vi])+�(G[Vj ]).
This contradicts the hypothesis of M. Thus, f (Vi)∩g(Vj )=∅. Similarly, we can see that g(Vi)∩f (Vj )=∅. Therefore,
f (u) �= g(v) and g(u) �= f (v), i.e., f and g are compatible. It completes the proof. �

By Corollary 5 and Theorem 11, we have the following corollaries.

Corollary 12. Let P = {V1, V2, . . . , Vk} be a partition of the vertex set of a connected graph G. If G/P is bipartite,
then

max
Vi,Vj

{�(G[Vi ∪ Vj ])}��(G)� max
Vi,Vj

{�(G[Vi]) + �(G[Vj ])},

where Vi and Vj runs over all pairs of adjacent vertices in G/P.
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Fig. 5. A permutation voltage assignment � of G, compatible colorings of H = cospt(�) with �G(H) = 2 and its corresponding 4-fold covering
graph G�.

Corollary 13. Let H be a spanning subgraph of a connected graph G such that H has k components H1, H2, . . . , Hk

with �(Hi)��(Hi+1) for each i = 1, 2, . . . , k − 1.

(1) If the complement H̄ (G) of H in G is the complete k partite graph, then we have �G(H) = �(H1) + �(H2).
(2) If each component of H is the complete graph, i.e, Hi =K�i

for each i=1, 2, . . . , k. Then we have �G(H)��1 +�2.
In particular, if G is the complete graph Kn, then we have �G(H) = �1 + �2.

Proof. We observe that, in any case, each component Hi of H is an induced subgraph G[V (Hi)] for each i=1, 2, . . . , k,
and P = {V (Hi)|i = 1, 2, . . . , k} forms a partition of G.

(1) If the complement H̄ (G) is the complete k partite graph, then H/P is the complete graph Kk , i.e., each pair of
vertices in H/P is adjacent in H/P. Since �(G[V (H1) ∪ V (H2)]) = �(H1) + �(H2) and max{�(G[V (Hi)]) +
�(G[V (Hj )]) | 1� i �= j �k} = �(H1) + �(H2), by Theorem 11, we have �G(H) = �(H1) + �(H2).

(2) If Hi = K�i
for each i = 1, 2, . . . , k, then, By Theorem 11, we have �G(H)��1 + �2. If G is the complete graph

Kn, then H̄ (G) of H in G is the complete k partite graph, by (1), we have �G(H) = �1 + �2. �

4. Further remarks

4.1. Existence of a spanning subgraph H of G with �G(H) = m for any m with 2�m��(G)

For n�2, and for any spanning subgraph H of a complete graph Kn, we have 2��Kn
(H)�n. For converse, we

showed that for any integer m, between 2 and n, there exists a spanning subgraph Hm of Kn such that �Kn
(Hm) = m

in Example 9. One can ask this can be extended to an arbitrary connected graph. Let G be connected graph. For any
m with 2�m��(G), let H be an m-critical subgraph of G, that is, �(H) = m and for any proper subgraph S of H
�(S) < m. Let H̃ be a spanning subgraph of G obtained by adding |V (G)| − |V (H)| + 1 isolated vertices to H − v for
some v in V (H). By Theorem 11, �G(H̃ ) = m.

4.2. n-Fold covering graphs

For n-fold covering graphs, let Sn denote a symmetric group on n elements {1, 2, . . . , n}. Every edge of a graph G
gives rise to a pair of oppositely directed edges. We denote the set of directed edges of G by D(G). By e−1 we mean the
reverse edge to an edge e. Each directed edge e has an initial vertex ie and a terminal vertex te. A permutation voltage
assignment � on a graph G is a map � : D(G) → Sn with the property that �(e−1) = �(e)−1 for each e ∈ D(G). The
permutation derived graph G� is defined as follows: V (G�) = V (G) × {1, . . . , n}, and for each edge e ∈ D(G) and
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j ∈ {1, . . . , n} let there be an edge (e, j) in D(G�) with i(e,j) = (ie, j) and t(e,j) = (te, �(e)j). The natural projection
p� : G� → G is a covering. In [7,8], Gross and Tucker showed that every n-fold covering G̃ of a graph G can be
derived from a voltage assignment.

Let H be a spanning subgraph of a graph G which is the co-support of �, i. e., V (H) = V (G) and E(H) = �−1(id),
where id is the identity element in Sn and for E(H), we identify each pair of oppositely directed edges of �−1(id).
Then our chromatic number of H respect G naturally extends as follows; colorings f1, f2, . . . , fn of H are compatible
if for e+ = (u, v) ∈ D(G) − D(H), fi(u) �= f�((u,v)(i)(v) for i = 1, 2, . . . , n. The smallest number of colors such that
H has an n-tuple of compatible colorings is called the nth chromatic number of H with respect to G and denoted by
�G(H). Unlike two fold coverings, estimations of the nth chromatic numbers of H with respect to G are not easy. The
asymptotic behavior of the chromatic numbers of non-isomorphic n-fold coverings could be very fascinating compare
to the result by Amit et al. [1].

We conclude the discussion with an example. It is easy to see that all odd-fold covering graphs of the graph G in
Fig. 2 have chromatic number 3. We provide a 4-fold covering graph induced by the coloring � in Fig. 5 together with
4 compatible colorings f1, f2, f3 and f4 of the spanning subgraph H = cospt(�).
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