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Abstract Early Cambrian and MideLate Neoproterozoic volcanic rocks in China are widespread on

several Precambrian continental blocks, which had aggregated to form part of the Rodinia supercon-

tinent by ca. 900 Ma. On the basis of petrogeochemical data, the basic lavas can be classified into two

major magma types: HT (Ti/Y > 500) and LT (Ti/Y < 500) that can be further divided into HT1

(Nb/La > 0.85) and HT2 (Nb/La � 0.85), and LT1 (Nb/La > 0.85) and LT2 (Nb/La � 0.85) subtypes,

respectively. The geochemical variation of the HT2 and LT2 lavas can be accounted for by

lithospheric contamination of asthenosphere- (or plume-) derived magmas, whereas the parental

magmas of the HT1 and LT1 lavas did not undergo, during their ascent, pronounced lithospheric

contamination. These volcanics exhibit at least three characteristics: (1) most have a compositional

bimodality; (2) they were formed in an intracontinental rift setting; and (3) they are genetically linked

with mantle plumes or a mantle surperplume. This rift-related volcanism at end of the Mide

Neoproterozoic and Early Cambrian coincided temporally with the separation between Australiae

East Antarctica, South China and Laurentia and between Australia and Tarim, respectively.
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Figure 1 Sketch map showing the dis

rocks in China.
The MideLate Neoproterozoic volcanism in China is the geologic record of the rifting and break-up

of the supercontinent Rodinia.
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1. Introduction

MideLateNeoproterozoic rift-related volcanic rocks arewidespread
on several Precambrian blocks including the Tarim Craton and
neighboring blocks in northwestern China, the Bikou, Hannan,
Niushan, Pingli and Wudangshan blocks in central China, the
Yangtze Craton and the Cathaysia Block in southern China
(Figs. 1e6). These volcanic rocks, which consist mainly of huge
volumes of basic rocks and variable amounts of silicic volcanics,
with small amounts (Fig. 7b, c) or a lack of intermediate rocks that
display a compositional bimodality (Fig. 7a, d, e), have attracted
a number of recent studies (Xia et al., 1991, 1996a,b, 1999, 2001,
2002, 2007a,c, 2008a, 2009a,b; Tang and Zhou, 1997; Tang et al.,
1997, 1998; Zhao et al., 1997, 1999, 2006; Zhang et al., 1999a,b;
Ge et al., 2000; Jiang et al., 2001; Lai et al., 2001, 2003; Li et al.,
2001, 2002a,b, 2005a,b,c, 2008a,b; Ling et al., 2002a,b,c, 2003;
Zhou et al., 2002a, 2003, 2004, 2007; Wang and Li, 2003; Wang
tribution of Early Cambrian and M
et al., 2003a,b, 2004, 2006, 2007, 2008, 2009; Yan et al., 2003,
2004a,b; Xu et al., 2005; Su et al., 2006; Lu and Gu, 2007; Song
et al., 2010).

The petrogenesis and tectonic affiliations of these Chinese
volcanic rocks are still controversial. Someworkers have considered
that they are products of intraplate volcanism attributed to mantle
plumes or a mantle superplume that caused rifting and fragmentation
of the Rodinia supercontinent (Li et al., 1999b, 2003b, 2008c, 2009b;
Ling et al., 2003; Li et al., 2002a,b, 2005a,b,c, 2006, 2008a,b; Song
et al., 2010; Wang et al., 2007, 2008, 2009; Wang et al., 2010;
Xia et al., 1996a,b, 2002, 2007a,c, 2008a, 2009a,b; Xu et al., 2005;
Zhou et al., 2002a, 2007). Others have proposed that most of these
volcanic rocks in central and southern China were formed in either
collisional (Li, 1999; Zhao and Cawood, 1999; Wang et al., 2003b,
2004, 2006) or arc settings (Ling et al., 2002b,c; Lai et al., 2001,
2003; Munteanu and Wilson, 2009; Yan et al., 2003, 2004a,b; Zhou
et al., 2002b,c, 2003, 2004, 2006a,b).
ideLate Neoproterozoic (846e540 Ma) continental intraplate volcanic



Figure 2 Sketch map showing the distribution of Early Cambrian and MideLate Neoproterozoic (773e540 Ma) volcanic rocks in the Tarim

Craton and its neighboring areas (modified after Xia et al., 2002, 2007c, 2008b). WJBS e West Junggar trench-arc-basin system (Early

PaleozoiceDevonian); EJBS e East Junggar arc-basin system (Early PaleozoiceDevonian); BTB e Bole tectonomagmatic belt (Late Paleozoic);

NTOB e North Tianshan ophiolite belt (Carboniferous); BFB e Boluokenu foldbelt (Early Paleozoic); MGFB e Mishigou-Gangou foldbelt

(Early Paleozoic); DBS e Devonian arc-basin system; STBS e South Tianshan trench-arc-basin system (Early PaleozoiceDevonian); KCS e

Kapin continental shelf (NeoproterozoicePaleozoic).

L. Xia et al. / Geoscience Frontiers 3(4) (2012) 375e399 377
This paper, in aiming to test the proposed Neoproterozoic
mantle plume or superplume hypothesis, presents a brief synthesis
of the distribution, age, and petrogeochemical data of the
MideLate Neoproterozoic volcanic rocks from China and reas-
sesses the nature, tectonic setting and petrogenesis of the basic
lavas (SiO2 � 56%) in these volcanic successions.

2. Geological background

2.1. Tarim Craton and neighboring blocks in northwestern
China

Several Precambrian continental blocks, including the Tarim
Craton and the Yili, Saillimu and Kawabulake blocks are
distributed in the Tianshan orogenic belt and its neighboring areas
(Figs. 1 and 2). Lower Neoproterozoic basement rocks are covered
by Paleozoic strata in the southern and central Tarim Craton, and
outcrop widely in the northern Tarim Craton and the blocks in the
Tianshan. The MideUpper Neoproterozoic strata unconformably
overlie the Lower Neoproterozoic Pargangtage Group in the
Kuluketage area of the Tarim Craton and the Kawabulake Block
of the Tianshan Mountains, the Aksu Group in the Aksu-Kapin
area of the Tarim Craton and the Kusongmuqieke Group in the
Sailimu Block of the Tianshan, and are unconformably overlain by
Lower Cambrian strata (Gao et al., 1985, 1993; Gao and Chen,
2003; Xu et al., 2005; Fig. 8).

The thickest and most complete MideUpper Neoproterozoic
sections consist of, from bottom to top, eight formations: Beiyixi,
Zhaobishan, Aletonggou, Tereeken, Zhamoketi, Yukengou,
Shuiquan and Hangelchaok that occur in the Kuluketage area,
Tarim Craton (Xu et al., 2005; Fig. 8). The Beiyixi, Aletonggou,
Tereeken and Hangelchaok formations are characterized by
containing tillites that are the product of the Neoproterozoic
global glacial events. Previous studies (e.g., Gao et al., 1985,
1993; Gao and Chen, 2003; Jiang et al., 2001; Xu et al., 2005;
Xia et al., 2002, 2007c) revealed that the rift-related volcanic
rocks are distributed in MideUpper Neoproterozoic and Lower
Cambrian strata and that they most completely occur in the
Kuluketage area. These volcanic successions comprise four
volcanic units: the Beiyixi Unit (early Middle Neoproterozoic);
the Zhamoketi Unit (late Middle Neoproterozoic); the Shuiquan
Unit (Late Neoproterozoic); and the Xishanbulake Unit (earliest
Cambrian) (Jiang et al., 2001; Xia et al., 2002, 2007c; Fig. 8).
The volcanic rocks of the Beiyixi Unit develop mainly in the
Kuluketage area and the Saillimu and Kawabulake blocks from
the Tianshan Mountains; those of the Zhamoketi Unit occur in the
Kuluketage and Aksu-Kapin areas; those of the Shuiquan Unit are
only in the Kuluketage area; those of the Xishanbulake Unit have
been found in the Kuluketage area and the Kawabulake Block
(Fig. 8). The abovementioned volcanic successions are made up
mainly of basic volcanic rocks and subordinate amounts of silicic
volcanic rocks, with small amounts of intermediate rocks, only in
the Beiyixi Unit, which generally show a compositional
bimodality (Fig. 7a). All previous studies (Jiang et al., 2001; Xu
et al., 2005; Xia et al., 2002, 2007c; Wang et al., 2010)
proposed that these volcanic rocks were produced within
a common intraplate setting and were related to mantle plume
activities and continental rifting during the break-up of Rodinia.

Four available geochronology data from the Beiyixi volcanic
unit have been published, which include a Pb-Pb age of 773 Ma
(Zhu and Sun, 1987) and three U-Pb SHRIMP zircon ages of
755 Ma (Xu et al., 2005), 740 Ma and 725 Ma (Xu et al., 2009). In
addition, Zhu and Sun (1986) obtained a U-Pb age of 740 Ma for



Figure 3 Sketch map showing the distribution of the Mid-Neoproterozoic (846e776 Ma) Bikou Group volcanic successions in the Bikou

Block from the northwestern margin of the Yangtze Craton (modified after Xia et al., 2007a).
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the Sugaitebulake Formation in the Aksu-Kapin area, and Xu et al.
(2009) also obtained a U-Pb SHRIMP age of 615 Ma for the
Zhamoketi volcanic Unit in the Kuluketage area.

Besides the Neoproterozoic bimodal volcanic rocks, there are
three types of Neoproterozoic intrusions in the Tarim Craton,
which include ca. 824e630 Ma mafic dyke swarms (Chen et al.,
2004; Zhang et al., 2009; Zhu et al., 2011), ca. 833e760 Ma
Figure 4 Sketch map showing the distribution of the Mid-Neoproterozo

Block from the northern margin of the Yangtze Craton (modified after Xi
ultramafic-mafic intrusions (Li et al., 1999a; Zhang et al., 2007,
2011b), and ca. 820e744 Ma alkaline granites (Guo et al.,
2005; Zhang et al., 2007). These 840e630 Ma Neoproterozoic
igneous events well documented in the Tarim Craton were also
interpreted as being related to mantle plume activities during the
break-up of the supercontinent Rodinia (Zhang et al., 2007, 2009,
2011b; Zhu et al., 2011). Furthermore, Zhang et al. (2010)
ic (845e730 Ma) Xixiang Group volcanic successions in the Hannan

a et al., 2009b).



Figure 5 Sketch map showing the distribution of the Mid-Neoproterozoic (833e679 Ma) volcanic successions in the Niushan, Pingli and

Wudangshan blocks from the South Qinling Orogen (modified after Xia et al., 2008a).
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recently reported that Neoproterozoic rifting-related mafic
dykes (802 � 9 Ma, U-Pb SHRIMP zircon age) and basalts are
also distributed in the southern margin of the Tarim Craton.

In addition to abovementioned studies, Song et al. (2010)
recently reported that the Yuka eclogites with the protolith ages
(U-Pb SHIMP zircon ages) of 847e848 Ma, occurring in the
northern margin of the Qaidam Block of northwestern China, have
protoliths similar to most typical continental flood basalts with
a mantle plume origin. They inferred that the Qaidam Block is
probably one of the fragments of the Rodinia supercontinent with
a volcanic-rifted passive margin.

2.2. Bikou, Hannan, Niushan, Pingli and Wudangshan
blocks in central China

2.2.1. Bikou Block
The Bikou Group volcanic succession occurs on the Bikou
Precambrian Block, which is situated in northwestern margin of
the Yangtze Craton (Figs. 1 and 3). The Neoarchean Yudongzhi
Group makes up the underlying basement of the Bikou Group
volcanic succession, which in turn is angular- or parallel-
unconformably covered by Upper Neoproterozoic strata (Fig. 9).
The Bikou Group volcanic rocks with U-Pb SHRIMP zircon ages
of 846e776 Ma (Yan et al., 2003, 2004a,b) and 811e821 Ma
(Wang et al., 2008) were formed during the Middle Neo-
proterozoic. The volcanic succession comprises a thick pile of
basic volcanic rocks, subordinate silicic and minor intermediate
volcanic rocks (Fig. 7b). Some researchers considered that this
volcanic suite formed in an arc setting (Yan et al., 2003, 2004a,b)
even though they advocated the view that the Yangtze Craton
collided with the Cathaysian Block at the end of the Grenville
orogeny to form the South China Block. However, others
considered that this volcanic suite erupted in an intracontinental
rift setting (Xia et al., 1996a, 1999, 2001, 2007a; Xu et al., 2001,
2002) or proposed that the basalts of this volcanic suite are likely
the remnants of Mid-Neoproterozoic continental flood basalts that
formed in response to a mantle plume starting ca. 825 Ma during
the break-up of the supercontinent Rodinia (Wang et al., 2008).

2.2.2. Hannan Block
The Hannan Precambrian Block (i.e., the HannaneMicangshan
uplift; Ling et al., 2003), where the Xixiang Group volcanic rocks
and the Tiechuanshan Formation volcanic succession are devel-
oped, is located in the northern margin of the Yangtze Craton
(Figs. 1, 4 and 9). The Xixiang Group is made up of the Sunjiahe
Formation with U-Pb LA-ICP-MS zircon ages of 845e826 Ma
(Xia et al., 2009b) and U-Pb TIMS zircon ages of 839e821 Ma
(Zhao et al., 2006), the Dashigou Formation with U-Pb LA-ICP-
MS zircon ages of 803e776 Ma (Xia et al., 2009b), the Bai-
mianxia Formation with a U-Pb LA-ICP-MS zircon age of 730 Ma
(Xia et al., 2009b), and the Tiechauanshan Formation with a U-Pb
TIMS zircon age of 817 � 5 Ma (Ling et al., 2003) (Fig. 9). These
Middle Neoproterozoic (845e730 Ma) volcanic rocks uncon-
formably overlie the Paleoproterozoic Houhe Group, and are in
turn unconformably covered by Sinian (Late Neoproterozoic)
strata (Fig. 9). The Xixiang Group volcanic succession consists of
predominantly basic volcanic rocks, subordinate silicic and small
amounts of intermediate volcanic rocks (Fig. 7c), and the Tie-
chuanshan Formation displays a bimodal distribution of basic and
silicic rocks (Ling et al., 2003).

There have been two different explanations concerning the
tectonic setting of these volcanic rocks. The first opinions
suggested that they were formed in an intracontinental rift setting
and are most likely related to the proposed mantle plume that led
to the riftingebreak-up of the Rodinia supercontinent (Xia et al.,
1996a,b, 2001, 2009b; Xu et al., 2001). The second view deemed
that the Xixiang volcanic suite has the properties of arc volcanic
rocks (Lai et al., 2001, 2003; Ling et al., 2002b, 2003) and that the



Figure 6 Sketch map showing the distribution of Mid-Neoproterozoic rift basins in South China and neighboring areas (modified after Wang,

2000; Wang and Li, 2003; Wang and Pan, 2009; Wang et al., 2001; and Li and Li, 2007).
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Tiechuanshan assemblage was formed within continental rifting
caused by plume activity (Ling et al., 2003).

2.2.3. Niushan, Pingli and Wudangshan blocks
The Niushan, Pingli and Wudangshan Precambrian blocks are
situated in the southern Qinling orogenic belt to the north of the
Yangtze Craton (Figs. 1 and 5; Zhang et al., 2001). On these three
blocks occur the Mid-Neoproterozoic Yaolinghe Group, Yunxi
Group, Wudangshan Group volcanic rocks and basic dyke
swarms. Recent geochronological studies have reported a series of
isotopic age data that include U-Pb LA-ICP-MS zircon ages of
833e752 Ma for the volcanic rocks of the Wudangshan Group
(Ling et al., 2007), a U-Pb LA-ICP-MS zircon age of 783 Ma for
the volcanic rocks of the Yunxi Group (Xia et al., 2008a), and
U-Pb TIMS zircon ages of 808e746 Ma (Li et al., 2003a) and
U-Pb LA-ICP-MS zircon ages of 800e679 Ma for the volcanic
rocks of the Yaolinghe Group (Ling et al., 2007) (Fig. 9).
A bimodal distribution based on SiO2 content of basic and silicic
rocks with small amounts of intermediate rocks has been uncov-
ered for the Mid-Neoproterozoic volcanic successions (Fig. 7d).
These volcanic successions unconformably overlie the Paleo-
proterozoic Douling Group, and are in turn covered by Sinian
(Late Neoproterozoic) strata (Fig. 9). There have been many
different opinions concerning the geological setting of these
Mid-Neoproterozoic volcanic successions. Some have considered
them to be the products of an intracontinental rift-related volca-
nism (Li et al., 2003a; Xia et al., 1996a, 2001, 2008a; Xu et al.,
2001; Zhang et al., 1999a,b). Others have proposed that the
Yaolinghe Group volcanic suite, distributed in the Zhenan and
Yaolinghe areas and the Wudangshan Group volcanic rocks



Figure 7 w(SiO2) content data histograms of MideLate NeoproterozoiceEarly Cambrian rift-related volcanic rocks in (a) the Tarim Craton

and its neighboring areas, (b) the Bikou Block from the northwestern margin of the Yangtze Craton, (c) the Hannan Block from the northern

margin of Yangtze Craton, (d) the Niushan, Pingli and Wudangshan blocks from the South Qinling Orogen, and (e) the South China Block. Data

sources: (a): Jiang et al., 2001; Xu et al., 2005; Xia et al., 2007c; Wang et al., 2010; Zhang et al., 2010; (b): Xia et al., 1996a, 1999, 2007a; Xu

et al., 2001, 2002; Yan et al., 2003, 2004a,b; Wang et al., 2008; (c): Xia et al., 1996a,b, 2001, 2009b; Ling et al., 2002b, 2003; Lai et al., 2001,

2003; (d): Xia et al., 1991, 1996a; Zhang et al., 1999a,b; Ling et al., 2002a,c; Su et al., 2006; Zhang et al., 2002; (e): Xu, 1994; Jin et al., 1997;

Tang and Zhou, 1997; Tang et al., 1997, 1998; Zhao et al., 1997, 1999; Chen et al., 1998; Ge et al., 2000; Li et al., 2001, 2002a,b, 2005a,c,

2008a,b; Wang et al., 2003b, 2007; Zhou et al., 2003, 2007; Lu and Gu, 2007.
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developed in the Wudangshan area, were formed in an island-arc
setting, whereas the Yaolinghe Group volcanic suite and basic
dyke swarms, occurring in the Wudangshan area, were formed in
a continental rift (Ling et al., 2002a,c; Su et al., 2006).
2.3. Yangtze Craton and Cathaysia Block

The Yangtze Craton and Cathaysia Blocks are located in southern
China (Figs. 1 and 6). It is thought that the Early Neoproterozoic



Figure 8 Stratigraphic division and correlation of Neoproterozoic strata in the Tarim Craton and its neighboring areas (modified after Gao

et al., 1985, 1993; Gao and Chen, 2003; Xu et al., 2005, 2009; Zhu and Sun, 1986, 1987).
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(ca. 1.0e0.9 Ga) Sibao orogeny, belonging to part of the global
Grenvillian-aged orogenic events associated with the assembly of
Rodinia, resulted in the amalgamation of the Yangtze Craton and
Cathaysia Block and the formation of a unified South China Block
(Wang, 2000; Wang and Li, 2003; Li et al., 2002a,c, 2006, 2009a;
Figure 9 Stratigraphic division and correlation of Neoproterozoic stra

Hannan Block (northern margin of Yangtze Craton), the Niushan, Pingli an

Yan et al., 2003, 2004a,b; Wang et al., 2008; Ling et al., 2003, 2007; Zha
Ye et al., 2007). A major upwelling and partial melting event
during the Middle Neoproterozoic led to the development of the
Kangdian and Nanhua rift basins (Wang, 2000; Wang et al., 2001;
Wang and Li, 2003; Fig. 6). The latter can be divided into four
sub-basins: Jiangnan, Xianggui, Zhebai, and Yuegan (Fig. 6).
ta in the Bikou Block (northwestern margin of Yangtze Craton), the

d Wudangshan blocks from the South Qinling Orogen (modified after

o et al., 2006; Li et al., 2003b; Xia et al., 2007a, 2008a, 2009b).
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The oldest rock unit in the Yangtze Craton is the Kongling
Complex, consisting of Archean to Paleoproterozoic high-grade
metamorphic tonalite, trondhjemite and granodiorite gneisses,
amphibolites and metamorphic supercrustal rocks (e.g., Qiu et al.,
2000). Despite Archean inherited zircons being identified from
various rock types in Proterozoic and younger rocks, the oldest
known crystalline basement rocks in the Cathaysia Block are the
granitic rocks and amphibolites of ca. 1.8 Ga in southwestern
Zhejiang and northwestern Fujian provinces (e.g., Li, 1997; Li and
Li, 2007).

The Mid-Neoproterozoic (827e746 Ma) bimodal (basice
silicic, Fig. 7e) volcanic rocks are distributed widely in the
abovementioned rift basins. These volcanic successions uncon-
formably overlie the Early Neoproterozoic basement and are
covered by Late Neoproterozoic strata (Fig. 10). The isotopic
geochronology results (see Fig. 10) reveal that the lower age limit
for the volcanism in South China during the middle stage of the
Neoproterozoic should be less than 830 Ma, while the upper limit
may be as young as 740 Ma. The Neoproterozoic global glacial
events occurred also on the South China Block during the late
stage of the Mid-Neoproterozoic and resulted in the glacial
deposits of the Chang’an Formation and a vast continental ice
sheet in South China (Wang, 2000, 2005; Wang et al., 2001; Wang
and Li, 2003; Fig. 10). The tectonic interpretations of the above
widespread volcanic rocks differ greatly. One group (Li et al.,
1999b, 2003b, 2008c, 2009b; Li et al., 2002a,b, 2005a,b,c,
2006, 2008a,b; Wang et al., 2007, 2008, 2009; Zhou et al.,
2002a, 2007) considered that these Mid-Neoproterozoic rocks
Figure 10 Stratigraphic division and correlation of the Neoproterozoic s

1995; Tang et al., 1997; Wang, 2000, 2005; Wang and Li, 2003; Wang an

et al., 2002a, 2007).
originated in intraplate volcanism, which was related to mantle
plume activities and continental rifting during the break-up of
Rodinia. Especially, the identification of the Yiyang komatiitic
basalts exposed in the central South China Block was regarded as
the first solid petrological evidence for the proposed ca. 825 Ma
mantle plume (Wang et al., 2007). On the contrary, others have
argued that most of the Mid-Neoproterozoic igneous rocks were
products of orogenesis in either collisional (Li, 1999; Zhao and
Cawood, 1999; Wang et al., 2003b, 2004, 2006) or arc settings
(Munteanu and Wilson, 2009; Zhou et al., 2002b,c, 2003, 2004,
2006a,b).

The crucial evidences used for arc/collision models are the
variable arc-like geochemical signatures in some basaltic rocks
and granitoids (Zhou et al., 2002b,c, 2003, 2004, 2006a,b; Wang
et al., 2003b, 2004, 2006). However, it has been attested that
geochemical characters of granitoids should not be simplistically
used for discriminating tectonic regimes because their geochem-
istry is reflective of their sources, as well as the melting and
crystallization histories, not their tectonic environments into
which they intrude (Forst et al., 2001; Forst and Forst, 2008).
Although basaltic magmas are generally thought to be more
reliable for constraining their tectonic settings, the practice of
simplistically using some arc-like geochemical signatures to
discriminate between continental intraplate basalts and arc basalts
should also be used cautiously (Duncan, 1987; Wang et al., 2008,
2009 and references therein). This is because contamination by
continental crust or lithosphere can impart subduction-type
signatures (e.g., low Nb, low Ta and low Ti) and lead to the
trata in South China (modified after Li et al., 2001, 2008a,b; Liu et al.,

d Pan, 2009; Wang et al., 2001, 2003a, 2007; Zhao et al., 1999; Zhou
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misidentification of contaminated continental intraplate basalts as
arc related (Ernst et al., 2005; Xia et al., 2007b, 2008b). We will
further discuss this further below.

In summary, a large regional correlation indicates that the
large-scale volcanic activities on the Qaidam Block (848e847 Ma),
the Bikou Block (846e776 Ma), the Hannan Block (845e730 Ma),
the Niushan, Pingli and Wudangshan blocks (833e679 Ma), and
the South China Block (827e746 Ma) occurred approximately at
a same time, whereas those in the Tarim Craton and on neighboring
blocks took place later (773e540 Ma).

3. Classification of the MideLate Neoproterozoic
basic lavas in China

It must be pointed out that the MideUpper Neoproterozoic and
Lower Cambrian rift-related volcanic rocks in China date from ca.
850e550 Ma and have been altered to various degrees after their
eruption, judging from petrographic observations and relatively
high LOI in some samples. This process may have changed the
concentration of the mobile elements such as K, Na, Rb, Ba, and Sr.
Thus, the samples with LOI higher than 5% were excluded, and we
cannot utilize the TAS classification diagram in identifying the
volcanic rock types. Instead, here we use the SiO2 versus Nb/Y
diagram (Winchester and Floyd, 1977) and the FeOT/MgO versus
SiO2 diagram (Miyashiro, 1975). On the other hand, age correction
of measured 87Sr/86Sr ratios involves Rb concentrations. For these
reasons, emphasis is placed on immobile elements such as REEs,
HFSEs (high field strength elements: Zr, Hf, Nb, Ta, P), Th, Y, Ti,
Fe, and Mg, and εNd(t) in the following petrogenesis discussion.

3.1. Tarim Craton and neighboring blocks

According to Ti/Y ratios, the MideLate NeoproterozoiceEarly
Cambrian basic lavas in the Tarim Craton and its neighboring
blocks can be divided into two major magma types: high-Ti/Y
(HT, Ti/Y > 500) and low-Ti/Y (LT, Ti/Y < 500) basalts
(Fig. 11a). Ti/Y, rather TiO2, is used as a discriminator of magma
types, because TiO2 contents generally increase during fractional
crystallization, but Ti/Y does not vary much (Peate et al., 1992).
On the basis of Nb/La ratios (index of crustal contamination,
Kieffer et al., 2004), the HT and LT lavas can be further divided
into HT1 (Nb/La > 0.85) and HT2 (Nb/La � 0.85) lavas, and LT1
(Nb/La > 0.85) and LT2 (Nb/La � 0.85) lavas, respectively
(Fig. 11a) (Data sources are as in Fig. 7). All of the LT1 lavas and
two HT1 samples, consisting of alkali basalt, belong to the
alkaline series and most of LT2 lavas and one HT1 sample,
consisting of basalt, basaltic andesite, and minor alkali basalt,
belong to the tholeiitic series except four LT2 samples that belong
to the alkaline series (Fig. 12a, b).

3.2. Bikou Block

By virtue of the Ti/Y ratios, the 846e776 Ma Bikou Group basic
lavas on the Bikou Block can also be divided into two major
magma types: high-Ti/Y (HT, Ti/Y > 500) and low-Ti/Y (LT, Ti/
Y < 500) basalts (Fig. 11b). In reference to Nb/La ratios, the LT
lavas can be further divided into LT1 (Nb/La > 0.85) and LT2
(Nb/La � 0.85) subtypes (Fig. 11b) (Data sources are as in Fig. 7).
They consist of basalt, basaltic andesite and minor alkali basalt;
most belong to the tholeiitic series except one LT1 and three HT
samples that belong to the alkaline series (Fig. 12c, d).
3.3. Hannan Block

All of the 845e730 Ma Xixiang Group and Tiechuanshan
Formation basic lavas in the Hannan Block have lower Ti/Y ratios
(<500) (Fig. 11c), that so they can be incorporated into the low-
Ti/Y (LT, Ti/Y < 500) magma type. In terms of Nb/La ratios,
these LT lavas can be further divided into LT1 (Nb/La > 0.85) and
LT2 (Nb/La � 0.85) subtypes (Fig. 11c) (Data sources are as in
Fig. 7). They comprise basalt and minor basaltic andesite; all of
them belong to the tholeiitic series (Fig. 12e, f).

3.4. Niushan, Pingli and Wudangshan blocks

In terms of Ti/Y ratios, the 833e679 Ma basic lavas from the
Niushan, Pingli andWudangshan blocks can be also divided into two
major magma types: high-Ti/Y (HT, Ti/Y> 500) and low-Ti/Y (LT,
Ti/Y < 500) basalts (Fig. 11d). Moreover, available data permit
a further subdivision of the HT and LT groups into HT1 (Nb/
La > 0.85) and HT2 (Nb/La � 0.85), and LT1 (Nb/La > 0.85) and
LT2 (Nb/La� 0.85) subtypes, respectively (Fig. 11d), on the grounds
of Nb/La ratios (Data sources are as in Fig. 7). The HT rocks consist
of alkali basalt and minor basalt; most of them belong to the alkaline
series except two HT samples that belong to the tholeiitic series
(Fig. 12g, h). The LT rocks consist of basalt and minor basaltic
andesite; they too belong to the tholeiitic series (Fig. 12g, h).

3.5. South China Block

By virtue of tholeiitic Ti/Y ratios, the 827e746 Ma basic lavas
form the South China Block can be also divided into two major
magma types: high-Ti/Y (HT, Ti/Y > 500) and low-Ti/Y (LT, Ti/
Y < 500) basalts (Fig. 11e). In reference to Nb/La ratios, these HT
and LT basalts can be further divided into HT1 (Nb/La > 0.85)
and HT2 (Nb/La � 0.85), and LT1 (Nb/La > 0.85) and LT2 (Nb/
La � 0.85) subtypes, respectively (Fig. 11e) (Data sources are as
in Fig. 7). They consist of basalt, alkali basalt and minor basaltic
andesite, basanite; most of the LT lavas belong to the tholeiitic
series except one LT1 samples that belong to the alkaline series
and most of the HT lavas belong to the alkaline series except two
HT samples that belong to the tholeiitic series (Fig. 12i, j).

To sum up, most of the MideLate Neoproterozoic basic lavas
from the China belong to the tholeiitic series, a part of which
consists of the alkaline rocks.

4. Relative contribution of mantle and crust in
basic magma generation

Throughout the world, most of the continental rift-related volcanic
series can be linked to the asthenospheric mantle (or mantle
plumes). However, all of Earth’s continental rift-related volcanic
rocks show compositional evidence for the involvement of conti-
nental lithosphere, including crust and continental lithospheric
mantle (CLM), in at least part of their eruptive sequences. We can
use the erupted basic lavas to test models of the interactions between
the asthenosphere (or plume) and the lithospheric cap for the
MideLate Neoproterozoic basic lavas in China.

4.1. Evidence for asthenosphere (or plume) involvement

Nb/La ratio is a reliable trace element index of crustal contami-
nation (Kieffer et al., 2004). The MideLate Neoproterozoic HT1



Figure 11 Classification of MideLate NeoproterozoiceEarly Cambrian rift-related basic lavas (w(SiO2) � 56%) in (a) the Tarim Craton and

its neighboring areas, (b) the Bikou Block from the northwestern margin of the Yangtze Craton, (c) the Hannan Block from the northern margin of

the Yangtze Craton, (d) the Niushan, Pingli and Wudangshan blocks from the South Qinling Orogen, and (e) the South China Block in terms of Ti/

Y versus Nb/La. Data sources are as in Fig. 7.
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and LT1 lavas from the China have high Nb/La ratios (>0.85)
indicating their uncontaminated and slightly contaminated natures
(Fig. 11). The majority of HT1 and LT1 lavas exhibit element
ratios that overlap with the field of oceanic island basalts (OIB)
(Fig. 13). They show “humped” trace element patterns
(i.e., absence of negative Nb, Ta and Ti anomalies) that are very
similar to OIB except for weakly negative Ta anomaly in minor
samples (Fig. 14a, c, e, g, i) (Data sources are as in Fig. 7). These
suggest that the HT1 and LT1 lavas may have had some common
source and/or process with the OIB.

The variations of εNd(t) values of the MideLate Neoproterozoic
basic lavas are closely related to the degrees of contamination by
continental crust or lithosphere. It can be seen from Fig. 15 that:
(1) uncontaminated and slightly contaminated samples (i.e., HT1
and LT1 lavas) constantly exhibit moderate positive εNd(t) values
(þ1 to þ9); (2) strongly contaminated samples (i.e., HT2 and LT2
lavas) are characterized by lower to negative εNd(t) values (e11 to
þ5). Certain samples with highNb/La ratios show high εNd(t) (2e6)
and low 87Sr/86Sr(t) values (0.704e0.705) (Data sources are as in
Fig. 7), thus likely reflecting the isotopic signature of the least-
contaminated plume component.

Condie (2003, 2005) suggested that it is possible to charac-
terize some of the isotopic mantle domains with four immobile
incompatible element ratios: Nb/Th, Zr/Nb, Zr/Y and Nb/Y. These
HFSE ratios have the advantage that they do not change with time
as isotopic ratios do, and neither are they affected by secondary
alteration. As Condie (2005) suggested the Zr-Y-Nb relationships
(Fig. 16) can separate plume from non-plume basaltic sources. On



Figure 12 (a)(c)(e)(g)(i) w(SiO2) versus Nb/Y diagrams (after Winchester and Floyd, 1977) and (b)(d)(f)(h)(j) FeOT/MgO versus w(SiO2)

diagrams (after Miyashiro, 1975) for MideLate NeoproterozoiceEarly Cambrian rift-related basic lavas (w(SiO2) � 56%) from China. Fig. 12b,

d, f, h, j show the sub-alkaline volcanic rocks as plotted in Fig. 12a, c, e, g, i respectively. Data sources are as in Fig. 7.

L. Xia et al. / Geoscience Frontiers 3(4) (2012) 375e399386



Figure 13 La/Ba versus La/Nb plots for MideLate NeoproterozoiceEarly Cambrian rift-related basic lavas (w(SiO2) � 56%) in (a) the Tarim

Craton and its neighboring areas, (b) the Bikou Block from the northwestern margin of the Yangtze Craton, (c) the Hannan Block from the

northern margin of the Yangtze Craton, (d) the Niushan, Pingli and Wudangshan blocks from the South Qinling Orogen, and (e) the South China

Block. The dispersion to higher La/Nb and lower La/Ba ratios may represent the effects of crustal contamination. Field for oceanic island basalts

(OIB) is after Fitton et al. (1991) and Fitton (1995). Data sources are as in Fig. 7.
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the Zr/Y-Nb/Y diagram (Fig. 16), basalts plotting below the DNb
line come from either a shallow depleted source (DM), or they
represent plume-derived basalts that have been contaminated by
continental crust or/and subcontinental lithosphere. In addition,
the Zr-Y-Nb relationships also provide useful geochemical
fingerprints to distinguish basalts derived from a plume head
source (e.g., Oceanic Plateau Basalts) and basalts derived from
a plume tail source (e.g., Oceanic Island Basalts).
Fig. 16 clearly shows that most MideLate Neoproterozoic
uncontaminated and slightly contaminated LT1 basalts from China
plot above the DNb line in the mantle plume field defined by the
deep depleted plume component (DEP) and the primitive mantle
component (PM). This is consistent with the aforementioned
major and trace element and isotope geochemical evidence for
plume-derived basalts of LT1 lavas. Another feature, suggested by
Fig. 16, is the presence of a significant contribution of a recycled



Figure 14 Primitive mantle (after Sun and McDonough, 1989) normalized incompatible trace-element spider diagrams for MideLate

NeoproterozoiceEarly Cambrian rift-related basic lavas (w(SiO2) � 56%) in (a, b) the Tarim Craton and its neighboring areas, (c, d) the

Bikou Block from the northwestern margin of the Yangtze Craton, (e, f) the Hannan Block from the northern margin of the Yangtze Craton, (g, h)

the Niushan, Pingli and Wudangshan blocks from the South Qinling Orogen, and (i, j) the South China Block.

Patterns for oceanic island basalts (OIB) are from Sun and McDonough (1989). The shaded area shows the range for subduction-zone basalts, with the

lower and upper limits being defined by “average” low-K and high-K basalts, respectively (Tatsumi and Eggins, 1995). Data sources are as in Fig. 7.
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Fig. 14 (continued)
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mantle component (REC) for the uncontaminated and slightly
contaminated HT and HT1 lavas from the Tarim Craton, the
Bikou, South China, and the Niushan, the Pingli and the
Wudangshan blocks, respectively. All these indicate that the LT1
lavas might be derived from a plume head and the HT and HT1
lavas might be derived from a plume tail.

4.2. Lithospheric signature: CLM or crustal contamination

The HT2 and LT2 lavas are characterized by low Nb/La (�0.85;
Fig. 11), high large-ion lithophile element concentrations and
pronounced negative Nb, Ta, Zr, Hf and Ti anomalies (Fig. 14b, d,
f, h, j) suggesting that components other than a plume must have
been involved in the generation and evolution of the MideLate
Neoproterozoic basic lavas from China (Data sources are as in
Fig. 7). The most likely components are from the lithosphere.
There are still debates regarding the method by which the litho-
sphere contributes to magma generation. Either contamination of
plume-derived magmas by lithosphere-derived melts (Arndt et al.,
1993) or whole-scale melting of the subcontinental lithospheric
mantle (CLM, Gallagher and Hawkesworth, 1992; Hooper et al.,
1995; Hawkesworth et al., 1995; Rogers et al., 1995) or
melt-rock reaction resulting from the infiltration of plume-derived
magmas into the lithosphere in a process related to the thermo-
mechanical erosion of the lithosphere mantle (Macdonald et al.,
2001) has been proposed. We adopt the third opinion of
Macdonald et al. (2001) in this study.

Incompatible elements such as La or Ba should increase relative
Nb if basaltic magma is contaminated by lithospheric material,
which usually has high La/Nb, Ba/Nb and low La/Ba (Weaver and
Tarney, 1984; Wedepohl, 1995). Fig. 13 displays the variations of
La/Nb against La/Ba for the MideLate Neoproterozoic basic lavas
fromChina, in comparison with the field of OIB (Fitton et al., 1991;
Fitton, 1995). Majority of HT2 and LT2 lavas have higher La/Nb
and lower La/Ba ratios indicative of the influence of crustal or/and
subcontinental lithospheric component.

The MideLate Neoproterozoic HT2 and LT2 lavas from China
are characterized by lower to negative εNd(t) (e11 to þ5) (Fig. 15)
and variable 87Sr/86Sr(t) (0.704e0.712) (Data sources are as in
Fig. 7). These may be related to the contamination of an older
continental lithosphere and the HT2 and LT2 lavas are lith-
ospherically contaminated continental basalts derived from the
asthenosphere or plume. It must be pointed out that although both
of lithospheric contamination and slab-derived fluid and/or melts
could lead to low Nb/La ratios, only the former could yield
significantly negative εNd(t) values.

It can be seen from Fig. 16 that most HT2 and LT2 lavas fall
into the field defined by the enriched component (EN), and they
represent plum-derived basalts that have been contaminated by
continental crust or/and subcontinental lithosphere. This is also
consistent with the aforesaid conclusions obtained on major and
trace element and isotope geochemical studies.

Some chemical and isotopic composition of the HT2 and LT2
lavas may inherit that of the CLM. However, as already
mentioned, the MideUpper Neoproterozoic rift-related volcanic
rocks are widespread on the Precambrian continental blocks in
China. Thus, it is difficult to imagine that such a large volume of
magma was generated by melting of the lithospheric mantle alone,
which has been stable for a long time period in a non-convective
state. The thermomechanic model suggests that only a small
amount of melts can be produced from the lithospheric mantle by
conduction of heat from mantle plume (McKenzie and Bickle,
1988; Arndt and Christensen, 1992). Generation of the
MideLate Neoproterozoic basalts from China due to melting of
the subcontinental lithospheric mantle is considered as unlikely
although a contribution from the subcontinental lithospheric
mantle cannot be excluded.

In summary, the generation of large amount of the MideLate
Neoproterozoic basalts from China is likely confined to convective
asthenosphere or plume. The geochemical variation of the HT2
and LT2 lavas can therefore be accounted for by lithospheric
contamination of plume-derived magmas.
5. Discrimination of tectonic setting for the
MideLate Neoproterozoic basaltic rocks in China

As mentioned above on geologic background, there have been two
different opinions concerning the geological setting of the
MideUpper Neoproterozoic volcanic rocks in China: products of
intraplate volcanism, and formed in either collisional or arc
settings. Recent geological studies indicate that by ca. 900 Ma all
the present major known Precambrian continental blocks in
northwestern, central and southern China, such as the Tarim
Craton and its adjacent blocks and the Yangtze Craton and the
Cathaysia Block and their neighboring blocks, had aggregated to



Figure 15 Nb/La versus εNd(t) diagrams for MideLate NeoproterozoiceEarly Cambrian rift-related basic lavas (w(SiO2) � 56%) in (a) the

Tarim Craton and its neighboring areas, (b) the Bikou Block from the northwestern margin of the Yangtze Craton, (c) the Hannan Block from the

northern margin of the Yangtze Craton, (d) the Niushan, Pingli and Wudangshan blocks from the South Qinling Orogen, and (e) the South China

Block. Data sources are as in Fig. 7.
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form part of the Rodinia supercontinent (Li et al., 2008c).
Evidences for ca. 900 Ma orogenic events include the ca.
920e880 Ma arc volcanics and ophiolite obduction in the eastern
Sibao Orogen of South China (Li et al., 2005b, 2009a), and the ca.
1048e933 Ma granites (Shu et al., 2011) and the ca. 1.1e0.9 Ga
tectonothermal event recorded in the Xinditaga Group (Zhang
et al., 2011a) in the Kuluketage area of the Tarim Craton. The
former is the time when the Cathaysia (part of Laurentia) collided
with the Yangtze plate and the latter may also be the time when
the Tarim joined Australia (Li et al., 2008c). Thus, all the
abovementioned major known continental blocks from China were
in an intraplate setting during the Mid-Neoproterozoic period.
Geochemical studies can be used to discriminate the tectonic
settings for volcanic rocks. Here, it must be pointed out that
“contamination by continental crust or lithosphere can impart
subduction-type signatures (e.g., low Nb, low Ta and low Ti) and
lead to the misidentification of contaminated continental basalts as
arc related” (Ernst et al., 2005; Xia et al., 2007b, 2008b). When
we utilize Zr/Y-Zr diagram, it can be seen that most of the
MideLate Neoproterozoic basic lavas from China plot in the
within-plate basalts (WPB) field (Fig. 17a). In contrast, when
several geochemical diagrams (Fig. 17bed) using Nb, Ta or Ti as
discriminating factors are utilized, it can be observed that
uncontaminated and slightly contaminated samples (i.e., HT1 and



Figure 16 Zr/Y versus Nb/Y diagrams (diagrams after Condie, 2005) for MideLate NeoproterozoiceEarly Cambrian rift-related basic lavas

(w(SiO2) � 56%) in (a) the Tarim Craton and its neighboring areas, (b) the Bikou Block from the northwestern margin of the Yangtze Craton,

(c) the Hannan Block from the northern margin of the Yangtze Craton, (d) the Niushan, Pingli and Wudangshan blocks from the South Qinling

Orogen, and (e) the South China Block.

Abbreviations: UC e upper continental crust; CB e contaminated (by continental crust or/and subcontinental lithosphere) basalts; PM e primitive

mantle; DM e shallow depleted mantle; HIMU e high-m (U/Pb) source; EM1 and EM2 e enriched mantle sources; OIB e oceanic island basalt;

DEP e deep depleted mantle; EN e enriched component; REC e recycled component. Data sources are as in Fig. 7.
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LT1 lavas with Nb/La > 0.85) still plot in the WPB field, but the
plots of all other contaminated samples (i.e. HT2 and LT2 lavas
with Nb/La � 0.85) displace toward lower Nb, Ta or Ti and into
the island-arc field. In this case, we cannot regard the lith-
ospherically contaminated basic lavas as arc related. Besides,
although the HT2 and LT2 lavas, which generally belong to the
tholeiitic series (Fig. 12), are characterized by low Nb/La ratios
(�0.85) and depletions in Nb, Ta and Ti (Fig. 14b, d, f, h, j), their
concentrations of incompatible trace elements are conspicuously
higher than those of subduction-zone basalts (Fig. 14b, d, f, h, j).
The HT2 and LT2 lavas cannot be regarded, therefore, as volcanic
arc basalts, and they are lithospherically contaminated continental



Figure 17 Tectonic setting of MideLate NeoproterozoiceEarly Cambrian rift-related basic lavas (w(SiO2) � 56%) from China. (a) Zr/Y

versus Zr diagram (after Pearce, 1982); (b) Th/Yb versus Ta/Yb diagram (after Pearce, 1982); (c) Hf/3-Th-Ta diagram (after Wood, 1980); (d) Hf/

3-Th-Nb/16 diagram (after Wood, 1980). Data sources are as in Fig. 7.
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basalts. Thus, the MideLate Neoproterozoic basic lavas from
China did indeed erupt in an intracontinental rift setting based on
geochemical discrimination. This is consistent with the geological
evidence for an intracontinental rift setting.

In addition, as already mentioned, the variations of εNd(t) values
of theMideLate Neoproterozoic basic lavas fromChina are closely
related to the degrees of contamination by continental crust or
lithosphere. Fig. 15 shows that: (1) uncontaminated and slightly
contaminated samples (i.e., HT1 and LT1 lavas) constantly exhibit
moderate positive εNd(t) values (þ1 to þ9); (2) strongly contami-
nated samples (i.e., HT2 and LT2 lavas) are characterized by lower
to negative εNd(t) values (e11 to þ5). The lower to negative εNd(t)
values of HT2 and LT2 lavas may be related to the contamination of
an older continental lithosphere. The above characteristics of
variations of εNd(t) values also demonstrate that the MideLate
Neoproterozoic basic lavas from China were formed in an intra-
continental rift setting rather than in an island-arc setting.
6. Melting conditions and source characteristics

REEs such as La, Gd and Yb are particularly useful, because their
relative abundances are strongly dependent on the degree of
partial melting and nature of aluminous phase (spinel or garnet) in
the mantle source. Here, we adopt the REE modeling of Reichow
et al. (2005, Fig. 18), to illustrate the depth and degree of melting
necessary to account for the variation in REE ratios of the
MideLate Neoproterozoic basic lavas from China, and to
constrain whether spinel or garnet was present in the source.

The data of MideLate Neoproterozoic basic lavas from China
form positive arrays on the diagrams of La/Yb versus Gd/Yb
(Fig. 18) (Data sources are as in Fig. 7). The Gd/Yb(BSE) ratio in
the MideLate Neoproterozoic basic lavas from China varies only
slightly (1e5), whereas La/Yb(BSE) displays much higher variation
(2e30). Large variations in La/Yb can be related to changes in the
degree of partial melting, fractional crystallization and to crustal
contamination, or a combination of these. Melts parental to the
HT2 and LT2 lavas were contaminated by continental lithosphere,
which has a strong influence on the La/Yb ratio but minor effects
on Gd/Yb. Therefore, we use only the uncontaminated and slightly
contaminated samples (i.e., HT1 and LT1 lavas) for discussion.

Fig. 18 shows that the LT1 lavas lie within the garnetespinel
transition zone or are superimposed on the modeled partial
melting trend defined by garnet peridotite with an initial bulk
silicate earth (BSE) source composition at 3 GPa or lie within the
garnet stability field at 3e4 GPa with degrees of melting being in
the range of 5%e30%, and the HT1 lavas lie within the garnet
stability field at 3e4 GPa or are superimposed on the modeled



Figure 18 La/Yb versus Gd/Yb [normalized to bulk silicate earth (BSE): McDonough and Sun, 1995] plots of MideLate NeoproterozoiceEarly

Cambrian rift-related basic lavas (w(SiO2) � 56%) in (a) the Tarim Craton and its neighboring areas, (b) the Bikou Block from the northwestern

margin of the Yangtze Craton, (c) the Hannan Block from the northern margin of the Yangtze Craton, (d) the Niushan, Pingli andWudangshan blocks

from the South Qinling Orogen, and (e) the South China Block.

The trend lines are non-modal batch melting curves calculated by Reichow et al. (2005) for an initial BSE (bulk silicate earth) source. Bulk

distribution coefficients were calculated by Reichow et al. (2005) using mineral proportions for garnet peridotite (GP) at 3 and 4 GPa after Walter

(1998) and spinel peridotite (SP) at 3GPa given byMcKenzie andO’Nions (1991). Distribution coefficients used for the REE are fromHanson (1980)

and Hart and Dunn (1993). Partial melting of the BSE source for garnet peridotite and spinel peridotite is indicated by the trend lines (GP) and (SP),

respectively. Data sources are as in Fig. 7.
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partial melting trend defined by garnet peridotite with BSE source
composition at 4 GPa and degrees of melting <20%.

All of these indicate that the HT1 lavas were generated at
a larger depth by lower degrees of partial melting from the mantle
plume, and the LT1 lavas were, in contrast, derived by higher
degrees of partial melting at shallower levels.
7. Implications for rifting and break-up of Rodinia
supercontinent

The MideLate Neoproterozoic intracontinental rift-related
volcanism that occurred on several Precambrian continental



Figure 19 Cartoon diagram showing the break-up of Rodinia at ca. 750 Ma (modified after Li et al., 2008c).
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blocks from China is comparable with the synchronous rift-related
volcanism on other Rodinian continents including Australia,
Laurentia, South Korea, India and the Seychelles (e.g., Parrish and
Scammell, 1988; Heaman et al., 1992; Su et al., 1994; Zhao et al.,
1994; Fetter and Goldberg, 1995; Park et al., 1995; Lee et al.,
1998, 2003; Bhushan, 2000; Preiss, 2000; Frimmel et al., 2001;
Ashwal et al., 2002; Li et al., 1999b, 2002a,b,c, 2003b,
2005a,b,c, 2006, 2008a,b,c, 2009b; Ling et al., 2003; Shellnutt
et al., 2004; Song et al., 2010; Wang et al., 2007, 2008, 2009;
Wang et al., 2010; Xu et al., 2005; Xia et al., 1996a,b, 2002,
2007a,b,c, 2008a, 2009a,b; Zhang et al., 1999a,b; Zhang et al.,
2010). This global intraplate volcanism has commonly been
attributed to mantle plumes or a mantle superplume (e.g., Heaman
et al., 1992; Zhao et al., 1994; Park et al., 1995; Li et al., 1999b,
2003b, 2005a, 2006, 2008a,b,c, 2009b; Frimmel et al., 2001;
Shellnutt et al., 2004; Song et al., 2010; Wang et al., 2007,
2008, 2009; Wang et al., 2010; Xia et al., 2007a,c, 2008a,
2009a,b; Zhang et al., 2010) that caused rifting and the final
break-up of the supercontinent Rodinia.

Available data reveal that the MideLate Neoproterozoic
rift-related volcanic activities in China can be divided into two
stages: the first stage from ca. 848 Ma to 679 Ma mainly occurred
in Qaidam and the South China Block and neighboring blocks and
the second stage from ca. 773 Ma to 540 Ma mainly took place in
Tarim Craton and adjacent blocks.

The rift-related volcanic successions of the first stage in Qaidam
and South China are also found in Australia (Zhao et al., 1994;
Wingate et al., 1998), India (Radhakrishna and Mathew, 1996),
Kalahari (Frimmel et al., 2001),ArabianeNubian terranes (Stein and
Goldstein, 1996; Teklay et al., 2002) and Laurentia (Su et al., 1994;
Aleinikoff et al., 1995; Fetter and Goldberg, 1995). Li et al. (2008c)
suggested that by ca. 750 Ma, the western half of Rodinia may have
started to break apart (Fig. 19). The pulse of volcanism at the end of
the first stage may be interpreted as representing the break-up and
opening of a wide ocean, first between AustraliaeEast Antarctica
and South China, and then between South China and Laurentia.

In the rift-related volcanic successions of the second stage, the
Early Cambrian basic volcanic units in northeastern Tarim may
correlate with the Early Cambrian Kalkarindji basalts in central
and northern Australia (Li et al., 1996, 2008c; Evins et al., 2009),
which may be interpreted as representing the separating between
Australia and Tarim.

Thus, the break-up of Rodinia occurred diachronously
(Li et al., 2008c). The MideLate Neoproterozoic rift-related
volcanism from China is the response to rifting and break-up of
Rodinia, and is also the precursor of the opening of the global
Early Paleozoic Ocean.

8. Summary and conclusions

MideLate Neoproterozoic volcanic rocks are widespread on several
Precambrian continental blocks in China, which had aggregated to
form part of the Rodinia supercontinent by ca. 900 Ma. These
volcanic rocks consist mainly with huge volumes of basic rocks and
variable amounts of silicic volcanics, with small amounts or an
absence of intermediate rocks that display a compositional bimo-
dality. Although the tectonic affiliations of these volcanics are still
controversial, our studies demonstrate that they were formed in an
intracontinental rift setting rather than in an island-arc setting.

On the basis of petrogeochemical data, the rift-related basic
lavas can be classified into two major magma types: HT
(Ti/Y > 500) and LT (Ti/Y < 500). According to Nb/La ratios, the
HT and LT lavas can be further divided into HT1 (Nb/La > 0.85)
and HT2 (Nb/La � 0.85), and LT1 (Nb/La > 0.85) and LT2
(Nb/La � 0.85) lavas, respectively. The predominant geochemical
signatures of these studied volcanic magmas are inferred to be
derived from deep-seated mantle plumes. The available elemental
and Sr-Nd isotope data suggest that geochemical variation of the
HT2 and LT2 lavas can be accounted for by lithospheric
contamination of plume-derived magmas, whereas the parental
magmas of the HT1 and LT1 lavas have not undergone
pronounced lithospheric contamination during their ascent.

The MideLate Neoproterozoic rift-related volcanism in China
was part of global rift-related volcanism during the rifting and
break-up of Rodinia supercontinent. The break-up of Rodinia
occurred diachronously. The rift-related volcanic activities at the
end of the Mid-Neoproterozoic coincided temporally with the
breaking apart of AustraliaeEast Antarctica, South China and
Laurentia. The Early Cambrian rift-related volcanism is inter-
preted as having occurred during and to be a proxy for the sepa-
ration of Australia and Tarim.
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