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Abstract Field data verified by green house experiment were used to evaluate the response ofAnast-

atica hierochuntica L. to the amount of rainfall. Field study of the populations was carried out in the

runnel and depression microhabitats of gravel and sand sites. Four water treatments, equivalent to

100, 200, 500 and 1000 mm rainfall, were used to simulate different levels of water availability. Under

500 and 1000 mm rainfall, the size-class structure of A. hierochuntica populations consists of a high

proportion of large size-class individuals, while a higher proportion of small size-class individuals

was obtained under 100 and 200 mm rainfall. The dry skeletons of A. hierochuntica can be used as

a ‘‘rain gauge’’ to predict the amount of rain or water received. The dominance of small size-classes

(from<1 to 8 cm3) gives a prediction of less than 200 mm rainfall received. Intermediate size-classes

(8–64 cm3) characterize habitats with 200–500 mm rainfall, while habitats with >500 mm rainfall

produce large size-classes (>64 cm3). Small size-class individuals produced under low amounts of

rainfall allocated up to 60% of their phytomass to the reproductive organs. Allocation to reproduc-

tive organs decreased with the increase in the amount of rainfall, while allocation to the stem

increased in large size-class individuals produced under the highest amount of rainfall (1000 mm)

reaching 54%. Increased allocation to stem in large-sized individuals favours the hygrochastic seed

dispersal role in the plant. The root/shoot ratio decreased with the increase of the individual size-

class, i.e. under high rainfall treatments. Higher values of relative growth rate, net assimilation rate
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and leaf area index were obtained under high water treatments. Conversely, less expanded leaves, i.e.

lower specific leaf area, were manifested in the lowest water treatments.

ª 2010 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Table 1 Volume range of A. hierochuntica size-classes.

Size-class Volume range (cm3)

1 <1

2 1–2

3 2–4

4 4–8

5 8–16

6 16–32

7 32–64

8 64–128

9 128–256

10 >256
Introduction

Variation in life history traits is influenced by ecological and
evolutionary factors [1]. In desert environments, survival of
plant species depends on their adaptive strategies that permit

higher reproductive output accompanied by an efficient dis-
persal mechanism [2,3]. The way in which organisms allocate
their energy supplies to vegetative and reproductive structures

has been investigated by several authors [1,4–8].
Ecological data support the abundance of annuals rather

than that of perennials in disturbed habitats [3,9,10]. Under
water stress prevailing in deserts, annuals with short life-spans

and greater reproductive allocation (r-strategists) are more fa-
voured than perennials (k-strategists) with long life-spans and
smaller reproductive allocation [11,12], especially in unpredict-

able environments [13]. An annual plant living in a desert envi-
ronment has to grow rapidly and to convert the energetic and
mineral resources obtained during the vegetative phase into

seeds [14]. Several studies demonstrated that annuals have
higher seedling growth rates [15] and higher allocation to repro-
ductive structures [16]. The early attempt at flowering and the

gradual shift of phytomass to reproductive structures may con-
stitute an adaptation to an uncertain environment [17].

Phenotypic diversity and the capacity of a species to
adapt its life history traits according to the environmental

conditions possibly exist among annual species. A single spe-
cies exhibits an annual, biennial or perennial life cycle in re-
sponse to arid unpredictable environmental conditions [8,18].

In this case, the plant may shift from an r- to a k-strategy
when a high amount of rainfall is received in wet years
and live as an r-strategist in dry years to ensure yearly seed

production [8].
Anastatica hierochuntica L. (family: Brassicaceae) is a des-

ert annual, widespread in the Egyptian deserts, characterized
by an efficient mechanism of seed dispersal [3,19,20]. This

mechanism depends on the hygrochastic nature of the dead
curled branches. After senescence, the dry lignified stem
branches curl around the enclosed fruits, and then uncurl

hygrochastically when wetted by rainfall. Seeds on the un-
curled dry plants (skeletons) are released by the force of rain
drops on the fruit valves. It is likely that the species may be

an effective predictor for water availability in the plant’s
habitat as rainfall availability and volume are the main lim-
iting factors for seed release and germination. The species is

phenotypically plastic in response to the water conditions of
the environment [5,21]. The species is subject to over collec-
tion for medicinal uses since the infusion of the skeletons
was reported to reduce pain and facilitate childbirth and is

used as an emmenagogue and for epilepsy [22]. The present
work aims at undertaking field and experimental study to
investigate the relationship between the amount of rainfall

and the crown volume of A. hierochuntica skeletons and
the possible use of the species as a ‘‘rain gauge’’; and the
plasticity of life history traits as affected by the amount of

rainfall.
Material and methods

Field data

The populations of A. hierochuntica are associated with habi-
tats collecting runoff water such as runnels and depressions.
Depression microhabitats accumulate greater amounts of run-

off water producing richer growth of the species. Even in des-
ert environments with as low an annual rainfall as 80 mm or
less, some microhabitat types such as depressions may receive

amounts of water several times the actual rain in the region
due to active runoff and catchment areas. The size-class struc-
ture of A. hierochuntica populations was studied in the runnel
and depression microhabitats of gravel and sand sites during

the late spring-early summer seasons of 2003–2005. The gravel
site is located in Wadi Hagoul (around 70 km east of Cairo),
and the sand site is located in the desert of the Bahareya Oasis

(around 300 km south-west of Cairo). The mean annual rain-
fall in both study sites is less than 80 mm [23].

The number of individuals belonging to each size-class was

recorded and the percent of contribution relative to the total
number of individuals was estimated in the different microhab-
itats. All individuals in 5 · 5 m2 quadrants were uprooted,
sorted into size-classes and measured. Five replicates were used.

Dry skeletons of A. hierochuntica were allotted into different
size-classes (Table 1), according to crown volume. The crown
of the skeleton has a spherical shape so the volume (cm3) was

measured by the equation: 4/3p d2, where‘d’ is the mean radius
of the crown [2,3]. For each of the differentiated size-classes,
growth and dry matter allocation traits were taken. These mea-

surements included: root depth and shoot height, root/shoot
ratio, mean diameter and number of fruits per individual skel-
eton. Each plant was separated into root, stem, and reproduc-

tive organs, and then oven-dried and weighed to estimate the
pattern of phytomass allocation across different organs.

Greenhouse experiment

Dry skeletons of A. hierochuntica were collected from naturally
growing populations in Wadi Hagoul. Seeds were liberated



Table 2 Demographic variation of size-class structure of

A. hierochuntica populations in the runnel and depression

microhabitats of the gravel and sand habitat types. Values are

means ± standard deviations. See Table 1 for the volume range

of size-classes.

Size-class Gravel Sand

Runnel Depression Runnel Depression

1 87.61 ± 9.20 47.04 ± 10.60 32.49 ± 4.24 –

2 7.51 ± 1.30 38.22 ± 7.60 42.83 ± 6.60 1.69 ± 1.41

3 3.75 ± 0.70 10.29 ± 2.20 12.70 ± 1.50 3.94 ± 3.52

4 1.13 ± 0.40 – 8.27 ± 2.56 6.19 ± 4.2

5 – 4.44 ± 1.00 – 8.44 ± 4.6

6 – – – 20.25 ± 8.99

7 – – 3.69 ± 0.71 22.49 ± 7.5

8 – – – 31.10 ± 5.9

9 – – – 3.88 ± 2.3

10 – – – 2.02 ± 1.19

Table 3 Demographic variation of size-class structure and

percentage contribution in A. hierochuntica populations raised

under different water treatments equivalent to 100, 200, 500

and 1000 mm rainfall. Values are means ± standard devia-

tions. See Table 1 for the volume range of size-classes.

Size-class Treatment (mm rainfall)

100 200 500 1000

1 72.50 ± 12.30 18.90 ± 5.20 – –

2 27.50 ± 6.30 39.40 ± 7.30 – –

3 – 33.50 ± 6.10 4.50 ± 0.50 1.20 ± 0.30

4 – 8.20 ± 2.50 7.20 ± 1.60 2.10 ± 0.50

5 – – 16.40 ± 3.10 3.40 ± 0.90

6 – – 36.20 ± 7.80 –

7 – – 24.30 ± 5.20 27.20 ± 4.70

8 – – 11.40 ± 2.60 36.50 ± 5.20

9 – – – 22.90 ± 3.20

10 – – – 6.70 ± 1.10
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from fruits in the sowing day. The experiment was conducted
in the Cairo University greenhouse in natural environmental
conditions during March to August 2003. Soil used for the

experiment was collected from sites where A. hierochuntica
populations grow in Wadi Hagoul. The soil was not sieved;
only large stones were discarded. Seeds were sown in four sets

of plastic pots. A total of 20 pots per set, five replicates for
each of the four harvest growth stages (seedling, juvenile, flow-
ering–fruiting and fruiting–senescence), represented the four

water treatments.
The simulated rainfall treatments were chosen to represent

habitats with low water income such as runnels, and habitats
with high water income such as depressions, which receive sev-

eral times (up to 1000 mm) of the actual rainfall due to accu-
mulation of runoff water. The simulated rainfall treatments
were 100, 200, 500 and 1000 mm rainfall corresponding to

the amounts of irrigation water (tap water). These amounts
of simulated rainfall were scheduled for every water treatment
in order to prevent leakage of water from pots. Seedlings were

thinned to five plants per pot at the seedling stage.
In each growth stage, individuals of A. hierochuntica were

harvested. The root depth and shoot height, root/shoot ratio,

mean shoot diameter, leaf area per plant, and number of flow-
ers and fruits per individual were measured or counted. The
volume, percent resource (dry phytomass) allocated across dif-
ferent organs, and the number of seeds per individual were cal-

culated. The leaf phytomass of individuals from the green
house experiment was ignored in the calculation of the dry
matter allocation, so that the data would be comparable with

field data where leaves are shed from dry skeletons.

Data analysis

Analysis of variance was used to test the significance of differ-
ences between means of the measured characters for plants
raised under the four water treatments in different growth

stages or growth intervals. Regression was made between the
crown volume of A. hierochuntica skeletons and the amount
of simulated rainfall (greenhouse experiment), and the size-
classes (field data). The leaf area index (total leaf area of indi-

vidual per pot area) and the reproductive effort (dry phyto-
mass allocated to seeds) were calculated. Relative growth
rate, net assimilation ratio, leaf area ratio, leaf weight rate

and specific leaf area were calculated according to [24].

Results

Size-class structure

Variation of size-class structure of A. hierochuntica in the dif-
ferent microhabitats is shown in Table 2. Smaller size-classes
characterize the microhabitats receiving lower amounts of

rainfall. In this context, A. hierochuntica populations grown
in the runnel microhabitat constitutes mostly smaller size-clas-
ses as compared to those grown in the depression microhabitat
of the same site. The highest proportion of the small size-clas-

ses was in the runnel and the gravel-depression microhabitats,
where up to 87% of individuals belonging to the smallest size-
class were recorded. As a higher amount of runoff water accu-

mulates in the sand-depression microhabitat, larger size-classes
increased their representation in the population.
The influence of the amount of rainfall on A. hierochuntica
size-class structure (size hierarchy) was tested in the green-

house experiment as shown in Table 3, The size-classes ob-
tained were 1–2 under 100 mm rainfall, 1–4 under 200 mm
rainfall, 3–8 under 500 mm rainfall and 3–10 under 1000 mm

rainfall. The representative size-classes with a higher contribu-
tion to the populations ranged from small size-classes in the
first two rainfall treatments (size-class 1 under 100 mm rainfall

and 2–3 under 200 mm rainfall) to intermediate size-classes in
the third rainfall treatment (size-classes 5–7 under 500 mm
rainfall) and large size-classes in the fourth rainfall treatment
(size-classes 7–9 under 1000 mm rainfall).

The regression between the amount of simulated rainfall
and the obtained crown volume (as a measure of plant size)
outlined the overall relationship between these two variables

as in Fig. 1a, and a strong correlation (R2 = 0.92) was ob-
tained. In lower amounts of rainfall (100 and 200 mm), the
crown volume increased slowly, then more rapidly at higher

amounts of rainfall (500 and 1000 mm).The same trend is ob-
served between the size-class and the crown volume in natural
populations in field conditions as shown in Fig. 1b, indicating
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that higher amounts of rainfall are needed for the production
of larger size-classes. Variation of the crown volume in natural
populations and in the water treatment experiment attained J-
shaped curves indicating their similarity and the possibility of
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prediction of field populations from the experimental simula-
tion of rainfall treatments.

Resource allocation

The percent resource (dry phytomass) allocation to root is gen-
erally not affected by water treatment except in the fruiting–

senescence growth stage where the percent dry phytomass allo-
cated to root in individuals raised under 1000 mm rainfall was
significantly lower than that in the case of individuals raised

under the other treatments (Fig. 2).
Variation of dry phytomass allocation to stem increased at

the expense of the allocation to leaves (Fig. 2a and b) in the

seedling and juvenile growth stages. Percentage allocation to
stems increased in the flowering–fruiting growth stage as in
Fig. 2c, for all water treatments. However, in the fruiting–

senescence growth stage as in Fig. 2d, the percent dry phyto-
mass allocation to stem decreased in favour of the increase
in dry phytomass allocation to the reproductive organs. The
percent allocation to leaves decreased throughout the growth

stages and attained its minimum at the fruiting–senescence
growth stage where the percent dry phytomass allocated to
leaves increased with the increase in the amount of water

applied.
The root/shoot ratio varied with the differences in water

treatments. Field data in Fig. 3a reveal a decreased root/shoot

ratio as the size-class increased. These results are in accordance
with experimental data in Fig. 3b where low water treatments
(100 and 200 mm rainfall) have higher root/shoot ratios than
high water treatments (500 and 1000 mm rainfall) at the fruit-

ing–senescence growth stage.
At the fruiting–senescence growth stage, a trade-off exists

between the percent of phytomass allocated to vegetative and

reproductive organs in both the field and the greenhouse
experiment Fig. 4a and b. The percent of phytomass allocated
to stem varied from 21.34% under 100 mm rainfall treatment

to 70.65% for 1000 mm rainfall treatment. This contrasts with
the percent of phytomass allocated to the reproductive organs,
which varied from 64.42% under 100 mm rainfall treatment to

22.02% for 1000 mm rainfall treatment. On the other hand,
the percent of phytomass allocated to root seems not to be
greatly affected by variation of water treatment. A decreased
percent of phytomass allocation to root was observed as the

size-class increases in the case of naturally grown field
populations.

In accordance with field data, trade-offs also exist in the

fruiting–senescence growth stage between the number of
seeds and the reproductive effort in treated individuals,
where the number of seeds increased from 10.7 seeds per

individual under 100 mm rainfall treatment to 1344 seeds
per individual for 1000 mm rainfall treatment in Fig. 4c
and d. This increment in the number of seeds corresponds
to a decline in the reproductive effort from 0.19 under

100 mm rainfall treatment to 0.06 for 1000 mm rainfall treat-
ment. The number of fruits increased with the increase in the
crown volume and the amount of water received as in Fig. 4e

and f. Alternatively, the dry phytomass of 100 seeds in-
creased from the low/intermediate size-classes (1–6), and then
decreased in larger size-classes (7–10). Similarly, the dry phy-

tomass of 100 seeds significantly increased under 100–
500 mm rainfall treatments, and then significantly decreased
for 1000 mm rainfall treatment, where values reached

122 mg as compared to 141.2 mg in the case of 500 mm rain-
fall treatment.

Growth traits

Slower relative growth rate (RGR) in the seedling/juvenile
growth interval was observed in the 200, 500 and 1000 mm
simulated rainfall treatments as compared to the 100 mm sim-

ulated rainfall treatment, which had the highest RGR as in
Fig. 5a. This slow RGR is compensated for in the juvenile/
flowering–fruiting growth interval, where 500 and 1000 mm

rainfall treatments showed significantly higher values of
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RGR than 100 and 200 mm rainfall treatments. At the last
growth interval, i.e. flowering to senescence, RGR greatly
decreased to its lowest values. The net assimilation rate

(NAR), as shown in Fig. 5b, followed the same trend as that
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A higher leaf area ratio (LAR) and leaf weight ratio (LWR)
at the seedling/juvenile growth interval (Fig. 5c and d) in the
four water treatments reflect the allocation of the highest per-

cent of phytomass to leaf in the seedling and juvenile growth
stages. The specific leaf area (SLA) also decreased as in
Fig. 5e, from the seedling/juvenile to the juvenile/flowering–

fruiting growth interval, with the highest values obtained in
the 100 mm rainfall treatment. Generally, the SLA and LAR
decreased with the increase in water treatment. The same trend

was observed in the case of LWR, except for higher values re-
corded under 200 mm rainfall treatments at the juvenile/flow-
ering–fruiting and flowering–fruiting/flowering–senescence
growth intervals.

The LAI (mm2 leaf area per mm2 pot area) attained
significantly higher values under 500 and 1000 mmrainfall treat-
ments than under lower water treatments as in Fig. 5f. LAI val-

ues were significantly higher under 500 than under 1000 mm
rainfall treatment in the seedling and juvenile growth stages.
In the flowering/fruiting growth stage, LAI becomes greater un-

der the 1000 than under the 500 mm rainfall treatment.

Discussion

Simulated rainfall and size-class structure

Among the adaptations of desert annuals, one of those is their
ability to regulate their body size according to water availabil-
ity [11,21,25–27]. In the present work, A. hierochuntica demon-

strated a highly plastic adjustment mechanism in response to
changes in simulated rainfall treatment. This response is veri-
fied by the strong relationship between the amount of rainfall
and the resulted crown volume of skeletons. Small size of A.

hierochuntica (2–3 mm height, 2–3 branches, few small leaves
and 1–5 fruits) was recorded by Evenari et al. [21] in extremely
arid localities. In high soil moisture, the plant may reach 15–

20 cm height, 25–30 cm crown diameter, possess tens of
branches and have hundreds of fruits.

Experimentally, raising A. hierochuntica under different

water treatments resulted in different size-class structures. As
the amount of the available water increased, the contribution
of individuals belonging to larger size-classes increased. The
size-class variation within single populations and habitats
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Fig. 6 The expected optimal curve of size-class distribution

under different amounts of rainfall.
was observed by Obeid et al. [28] and Ogden [29]. This change
in size-class structure was attributed to the spatial heterogene-
ity in soil water availability. In this view, plants in microhabi-

tats with a higher amount of soil water (e.g. depressions) have
a size-class structure that is dominated by larger size-classes,
reflecting higher reproductive output than those in microhabi-

tats with lower amounts of soil water (e.g. runnels) [21,30].
This spatial heterogeneity of soil water is caused by the redis-
tribution of rain water through run off. Accordingly, the size-

class structure of A. hierochuntica populations under field con-
ditions consists of a higher proportion of larger size-classes in
the depression microhabitats as compared to the runnel micro-
habitats. Similarly, the proportion of larger size-classes in-

creased in the sand habitat type, which receives higher
annual rainfall water than does the gravel habitat type.

Matching the field and experimental data, one may deduce

that the amount of rainfall is the most important factor in con-
trolling the crown volume of A. hierochuntica individuals.
Moreover, the highly plastic response of the species to soil

water resulted in different size-class structures in different
microhabitats of the same site. Generally, single individuals
can-not be used as a measure (rain gauge) of the amount of

rain fallen or water received in a habitat. One can, however,
infer from the standing dry skeletons of A. hierochuntica the
amount of rainfall possibly fallen and/or the amount of soil
water in a specific habitat from the size-class structure of the

populations in that habitat. In this context, the dominance
of individuals belonging to larger size-classes in a microhabitat
indicates a higher amount of rainfall and/or soil water in this

microhabitat and vice versa.
The percentage of size-classes contribution to the A. hieroc-

huntica populations raised under different rainfall treatments,

shown in the optimal prediction curves as in Fig. 6, could be
used for the prediction of water income in a particular micro-
habitat type. By comparing the field data with the experimen-

tal results of simulated rainfall treatment, three predictions are
deduced: (1) the dominance of small size-classes (from <1 to
8 cm3) in the population indicates that the site received rainfall
amounts equivalent to less than 200 mm rainfall; (2) the dom-

inance of intermediate size-classes (8–64 cm3) indicates rainfall
amounts equivalent to 200–500 mm; and (3) the dominance of
large size-classes (>64 cm3) reflects rainfall amounts equiva-

lent to more than 500 mm. Therefore, studying the population
structure of the species in a specific microhabitat type and
comparing it to the optimal curves could be used as a rough

predictor for the amount of water received in a microhabitat.
Resource allocation trade-offs and growth analysis

Plant species allocate nutritional and energetic resources in a
strategic manner that maximizes fitness under the prevailing
environmental conditions [16]. Therefore, trade-offs exist in
the allocation of resources to organs that differ in life history

functions [4]. A. hierochuntica possesses a high capacity to allo-
cate phytomass flexibly according to water availability. Under
low amounts of rainfall (small size-classes), e.g. under 100 and

200 mm rainfall treatments, plants allocate most of their phy-
tomass to reproductive organs that may reach up to 60% of
the total phytomass. Under high amounts of rainfall (large

size-classes), e.g. under 1000 mm rainfall treatments, only up
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to 20% of phytomass is allocated to reproductive organs while
55% is allocated to stem, compared to 19% of phytomass allo-
cated to stem under 100 mm rainfall treatment. The species

may produce one fruit as quickly as possible, and many more
fruits and seeds over a prolonged period in favourable soil
moisture conditions. This tactic is a key element in understand-

ing the species population dynamics and is thought to ensure
the production of seeds even in dry years when only small-
sized individual plants can be attained [31–33].

The increase of the percent of phytomass allocated to stem
at high amounts of rainfall was reported by Hickman [31] in
the case of Polygonum cascadense to maximize the competitive
ability of the species in a moist environment with richer plant

cover. It is noticed by Hegazy [5] that A. hierochuntica invested
a relatively large proportion of phytomass in stem under high
water treatments and deduced that this expenditure on stem

brings rewards in terms of increased seed dispersal through re-
peated curling and uncurling, and avoidance of predation
through minimizing seed exposure. From this point of view,

the increase in the percent phytomass allocation to stem may
be considered an adaptive behavior supporting the hygrochas-
tic feature of A. hierochuntica. The difference in the allocation

of the reproductive phytomass between seeds and the struc-
tures protecting and dispersing them was reported for other
annuals [32] in deserts.

With the increase of the amount of rainfall, the reproduc-

tive output (represented by the number of fruits and seeds) in-
creased; however, the amount of phytomass devoted to seed
production decreased. Negative relationships between seed size

and number have been reported by Werner [34] for a single
species growing in different habitats, and by Primack [35] for
various species of the same genus. Furthermore, a higher

reproductive allocation was reported for plant communities
in dry conditions [36] and in disturbed environments [31,37].

The root/shoot ratio was found to decrease as the size-class

of A. hierochuntica increased. This trend was observed in field
populations but was less pronounced in populations raised un-
der simulated rainfall treatments. Ideally, increased phytomass
allocated to root is supposed to increase the ability to compete

for below-ground resources at low nutrient supply [38]. Also,
the allocation of less resource to the root systems in nutrient
rich conditions was also reported [39]. For A. hierochuntica

the resource allocation to sexual and hygrochastic organs usu-
ally comes at the expense of root.

The significantly higher RGR and NAR in the juvenile/

flowering–fruiting growth stage, which was not coupled with
increased LAR, may be partly attributable to the ability of
the reproductive structures, including the fruits of A. hieroc-
huntica, to photosynthesize. The contribution of the green

reproductive structures to the energetic cost of their own pro-
duction is recorded by Bazzaz and Reekie [40]. Moreover,
Gedroc et al. [39] reported the increase in RGR in nutrient rich

conditions, which may hold for the significantly greater RGR
and NAR in the juvenile/flowering–fruiting growth interval,
and LAI in all growth stages under the high water treatments

(500 and 1000 mm rainfall). It is noticeable that the increase of
the amount of simulated rainfall caused a decrease in SLA
coupled with an increase of LAI, i.e. the production of few

more expanded leaves in low rainfall treatments and many
small leaves in high rainfall treatments. The life span of small
size-classes is short and may extend from one to a few weeks.
The large size-classes, having longer life spans, may be obliged
to produce more leaves to fulfill the plant’s photosynthetic
needs. In this case, small leaves are produced to endure the
harsh desert conditions [41].
Conclusions

Anastatica hierochuntica possesses a high flexibility to adjust

its size and life history traits in accordance with the amount
of water in the habitat. Hence, the occurrence of different
size-class structures of A. hierochuntica populations reflected

different microhabitats receiving different amounts of rain-
fall. In spite of the strong correlation between the amount
of rainfall and the obtained crown volume, the size-class

structure rather than single individuals can be used as ‘‘rain
gauge’’ due to: (1) soil water heterogeneity that may support
population individuals of variable size-classes even if the

amount of rainfall is low; and (2) size-class hierarchy that
can be attained by the species even under different amounts
of rainfall.

The percent of phytomass allocated to the reproductive or-

gans of A. hierochuntica individuals increased with the de-
creased amount of rainfall (in small size-classes) to ensure
reproductive output in dry years. In large size-classes, the per-

cent of phytomass allocated to stem increased with the increase
in the amount of rainfall. This also favours the reproduction
process of the species because the increased allocation to stem

in the large individuals helps in the dispersal of a large number
of seeds and their protection from predation or release at
wrong times. The percent of phytomass allocated to root de-
creased with increasing amounts of rainfall as there is no need

for root to occupy large soil volumes. Higher relative growth
rate, net assimilation rate and leaf area index in high water
treatments (500 and 1000 mm rainfall) suggest higher leaf pro-

duction and a probable contribution of green fruits to photo-
synthesis. The high values of the specific leaf area revealed the
formation of more expanded leaves in the case of low water

treatments (100 and 200 mm rainfall).
The following measures are of great importance for conser-

vation of the species: (1) collection must be prevented from the

runnel microhabitats, which receive relatively low rainfall
amounts and produce meagre plant growth; (2) collection of
skeletons from depressions is recommended instead; and (3)
collection of small size-classes is preferred to reduce mass seed

loss.
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