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Abstract

Let R be a ring, n a fixed nonnegative integer and In (Fn) the class of all left (right) R-modules of injective (flat) dimension at
most n. A left R-module M (resp., right R-module F) is called n-copure injective (resp., n-copure flat) if Ext1(N ,M) = 0 (resp.,
Tor1(F, N ) = 0) for any N ∈ In . It is shown that a left R-module M over any ring R is n-copure injective if and only if M is a
kernel of an In-precover f : A → B of a left R-module B with A injective. For a left coherent ring R, it is proven that every right
R-module has an Fn-preenvelope, and a finitely presented right R-module M is n-copure flat if and only if M is a cokernel of an
Fn-preenvelope K → F of a right R-module K with F flat. These classes of modules are also used to construct cotorsion theories
and to characterize the global dimension of a ring under suitable conditions.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 16E10; 16D50; 16D40

1. Introduction

Let R be a ring. A left R-module M is called copure injective [10] if Ext1(N ,M) = 0 for all injective left
R-modules N , and M is called strongly copure injective [10] if Exti (N ,M) = 0 for all injective left R-modules N
and all i ≥ 1. A right R-module F is said to be copure flat [11] if Tor1(F, N ) = 0 for all injective left R-modules
N , and F is said to be strongly copure flat [11] or weakly Gorenstein flat [13] if Tori (F, N ) = 0 for all injective
left R-modules N and all i ≥ 1. Copure injective modules and copure flat modules were discovered when studying
injective precovers and flat preenvelopes and have been studied by many authors (see [7,10,11,18]).

In Section 2 of this paper, we introduce the concepts of n-copure injective modules and n-copure flat modules for a
fixed nonnegative integer n and show some of their general properties. A left R-module M (resp., right R-module F)
is called n-copure injective (resp., n-copure flat) if Ext1(N ,M) = 0 (resp., Tor1(F, N ) = 0) for any left R-module N
with id(N ) ≤ n. We note that n-copure injective modules and n-copure flat modules coincide with Gorenstein injective
and Gorenstein flat modules [12] respectively over an n-Gorenstein ring R (i.e., R is a left and right noetherian ring
with id(R R) ≤ n and id(RR) ≤ n). For a fixed nonnegative integer n, we denote by In (Fn) the class of all left (right)
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R-modules of injective (flat) dimension at most n. It is shown that a left R-module M over any ring R is n-copure
injective if and only if M is a kernel of an In-precover f : A → B of a left R-module B with A injective. For a left
coherent ring R, we prove that every right R-module has an Fn-preenvelope, and a finitely presented right R-module
M is n-copure flat if and only if M is a cokernel of an Fn-preenvelope K → F of a right R-module K with F flat.

Section 3 is devoted to n-copure injective modules and n-copure flat modules over left noetherian rings with finite
left self-injective dimension. Let R be a left noetherian ring with id(R R) ≤ n for an integer n ≥ 0. It is shown that M
is a reduced n-copure injective left R-module if and only if M is a kernel of an In-cover f : A → B with A injective.
It is also shown that l D(R) ≤ n (n ≥ 1) if and only if every n-copure injective left R-module is injective if and only if
every n-copure flat right R-module is flat if and only if every n-copure injective left R-module has a monic injective
cover if and only if every n-copure flat right R-module has an epic flat envelope.

In Section 4, we further investigate some properties of copure injective covers and copure flat envelopes. For a
commutative artinian ring R, we prove that id(R) ≤ 1 if and only if every R-module has an epic copure flat envelope
if and only if every R-module has a monic copure injective cover. For a left and right noetherian ring R, it is proven
that R is a 2-Gorenstein ring and every R-module has a strongly copure injective cover if and only if every R-module
has a strongly copure injective cover with the unique mapping property.

Next we recall some known notions and facts needed in the following.
Let C be a class of right R-modules and M a right R-module. Following [9], we say that a homomorphism

φ : M → C is a C-preenvelope if C ∈ C and the abelian group homomorphism HomR(φ,C ′) : Hom(C,C ′) →

Hom(M,C ′) is surjective for each C ′
∈ C. A C-preenvelope φ : M → C is said to be a C-envelope if every

endomorphism g : C → C such that gφ = φ is an isomorphism. A C-envelope φ : M → C is said to have the
unique mapping property [8] if for any homomorphism f : M → C ′ with C ′

∈ C, there is a unique homomorphism
g : C → C ′ such that gφ = f . Dually we have the definitions of a C-precover and a C-cover (with the unique mapping
property). C-envelopes (C-covers) may not exist in general, but if they exist, they are unique up to isomorphism.

Let C be a class of R-modules and M an R-module. A left (resp., right) C-resolution of M [12] is a Hom(C,−)
(resp., Hom(−, C)) exact complex

· · · → C1 → C0 → M → 0 (resp., 0 → M → C0
→ C1

→ · · ·)

with each Ci ,C i
∈ C.

If · · · → C1 → C0 → M → 0 is a left C-resolution of M , let

K0 = M, K1 = ker(C0 → M), Ki = ker(Ci−1 → Ci−2) for i ≥ 2.

The nth kernel Kn(n ≥ 0) is called the nth C-syzygy of M .
If 0 → M → C0

→ C1
→ · · · is a right C-resolution of M , let

L0
= M, L1

= coker(M → C0), L i
= coker(C i−2

→ C i−1) for i ≥ 2.

The nth cokernel Ln(n ≥ 0) is called the nth C-cosyzygy of M .
If C is the class of projective (resp., injective) modules, then Kn (resp., Ln) is simply called the nth syzygy (resp.,

cosyzygy).
Let R be a left noetherian ring. Then every left R-module has a left I0-resolution by [12, Example 8.3.5].
Let R be a left coherent ring. Then every finitely presented right R-module M has a right F0-resolution

0 → M → P0
→ P1

→ · · · with each P i finitely generated projective by [12, Example 8.3.10]. So by the nth
F0-cosyzygy of a finitely presented right R-module, we will mean the nth cokernel in such a right F0-resolution.

Given a class L of right R-modules, we will denote by L⊥
= {C : Ext1(L ,C) = 0 for all L ∈ L} the right

orthogonal class of L, and by ⊥L = {C : Ext1(C, L) = 0 for all L ∈ L} the left orthogonal class of L. A pair (F , C)
of classes of right R-modules is called a cotorsion theory [12] if F⊥

= C and ⊥C = F . A cotorsion theory (F , C)
is called perfect [13] if every right R-module has a C-envelope and an F-cover. A cotorsion theory (F , C) is said to
be hereditary [13] if whenever 0 → L ′

→ L → L ′′
→ 0 is exact with L , L ′′

∈ F , then L ′ is also in F . By [13,
Proposition 1.2], (F , C) is hereditary if and only if whenever 0 → C ′

→ C → C ′′
→ 0 is exact with C,C ′

∈ C,
then C ′′ is also in C. For example, (the class of all flat right R-modules, the class of all cotorsion right R-modules)
is a perfect and hereditary cotorsion theory by [12, Theorem 7.4.4], where a right R-module C is called cotorsion if
Ext1(F,C) = 0 for any flat right R-module F .
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Throughout this paper, R is an associative ring with identity and all modules are unitary. We write MR (R M) to
indicate a right (left) R-module. For an R-module M , E(M) denotes the injective envelope of M , the character module
HomZ(M,Q/Z) is denoted by M+, and δM : M → M++ is the evaluation map. f d(M) (id(M)) denotes the flat
(injective) dimension of M . l D(R) andwD(R) stand for the left global dimension and the weak global dimension of a
ring R respectively. Let M and N be R-modules. Hom(M, N ) (Extn(M, N )) means HomR(M, N ) (ExtnR(M, N )), and
similarly M ⊗ N (Torn(M, N )) denotes M ⊗R N (TorR

n (M, N )) for an integer n ≥ 1. General background materials
can be found in [2,12,17,23].

2. Definitions and general results

We begin with the following

Definition 2.1. Let R be a ring, n a fixed nonnegative integer and In the class of all left R-modules of injective
dimension at most n. A left R-module M is called n-copure injective if Ext1(N ,M) = 0 for any N ∈ In . A right
R-module F is said to be n-copure flat if Tor1(F, N ) = 0 for any N ∈ In .

Proposition 2.2. Let R be any ring.

(1) If Exti (N ,M) = 0 for any i with 1 ≤ i ≤ n + 1 and any injective left R-module N, then every kth cosyzygy of
M is (n − k)-copure injective for any k with 0 ≤ k ≤ n, in particular, M is n-copure injective.

(2) If Tori (M, N ) = 0 for any i with 1 ≤ i ≤ n + 1 and any injective left R-module N, then every kth syzygy of M
is (n − k)-copure flat for any k with 0 ≤ k ≤ n, in particular, M is n-copure flat.

Proof. (1) Let k be an integer with 0 ≤ k ≤ n, Lk a kth cosyzygy of M , and N a left R-module with id(N ) ≤ n − k.
Then Ext1(N , Lk) ∼= Extk+1(N ,M). On the other hand, there is an exact sequence 0 → N → E0

→ E1
· · · →

En−k
→ 0 with each E i injective (for id(N ) ≤ n − k), and so Extk+1(N ,M) ∼= Extn+1(En−k,M) = 0 by

assumption. Thus Ext1(N , Lk) = 0, and hence Lk is (n − k)-copure injective.
(2) The proof is similar to that of (1). �

Remark 2.3. (1) Obviously, 0-copure injective (0-copure flat) modules are exactly copure injective (copure flat)
modules. If m ≥ n, then m-copure injective (m-copure flat) modules are n-copure injective (n-copure flat).

(2) By [12, Definitions 10.1.1 and 10.3.1] and Proposition 2.2, we have the following implications:
Gorenstein injective modules ⇒ strongly copure injective modules ⇒ n-copure injective modules ⇒ copure

injective modules.
Gorenstein flat modules ⇒ strongly copure flat modules ⇒ n-copure flat modules ⇒ copure flat modules.
(3) Let R be an n-Gorenstein ring. For an R-module N , id(N ) ≤ n if and only if id(N ) < ∞ by [12, Theorem

9.1.10] or [15, Theorem 2]. Therefore an R-module M is n-copure injective if and only if M is strongly copure
injective if and only if M is Gorenstein injective by [12, Corollary 11.2.2]. M is n-copure flat if and only if M is
strongly copure flat if and only if M is Gorenstein flat by [12, Theorem 10.3.8].

(4) If R is a 1-Gorenstein ring, then, by [11, Corollary 4.2], any copure injective (copure flat) R-module is strongly
copure injective (strongly copure flat), and hence Gorenstein injective (Gorenstein flat).

Next we give some characterizations of n-copure injective modules and n-copure flat modules.

Proposition 2.4. The following are equivalent for a left R-module M:

(1) M is n-copure injective.
(2) For every exact sequence 0 → M → E → L → 0 with E ∈ In , E → L is an In-precover of L.
(3) M is a kernel of an In-precover f : A → B with A injective.
(4) M is injective with respect to every exact sequence 0 → A → B → C → 0 with C ∈ In .

Proof. (1) ⇒ (2) and (1) ⇒ (4) are clear by definition.
(2) ⇒ (3). Since there exists a short exact sequence 0 → M → E(M) → E(M)/M → 0 and E(M) ∈ In , then

(3) follows from (2).
(3) ⇒ (1). Let M be a kernel of an In-precover f : A → B with A injective. Then we have an exact sequence

0 → M → A → A/M → 0. So, for any N ∈ In , the sequence Hom(N , A) → Hom(N , A/M) → Ext1(N ,M) → 0
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is exact. It is easy to verify that Hom(N , A) → Hom(N , A/M) → 0 is exact by (3). Thus Ext1(N ,M) = 0, and so
(1) follows.

(4) ⇒ (1). For each N ∈ In , there exists a short exact sequence 0 → K → P → N → 0 with P
projective, which induces an exact sequence Hom(P,M) → Hom(K ,M) → Ext1(N ,M) → 0. Note that
Hom(P,M) → Hom(K ,M) → 0 is exact by (4). Hence Ext1(N ,M) = 0, as desired. �

Corollary 2.5. Let R be a left noetherian ring. Then every (n + 1)th I0-syzygy of any left R-module is n-copure
injective.

Proof. Let · · · → E1 → E0 → M → 0 be a left I0-resolution of a left R-module M . By [12, Lemma 8.4.34],
En → Kn is an In-precover, where Kn is the nth I0-syzygy of M , and so the (n + 1)th I0-syzygy Kn+1 of M is
n-copure injective by Proposition 2.4. �

Proposition 2.6. The following are equivalent for a right R-module M:

(1) M is n-copure flat.
(2) M+ is n-copure injective.
(3) M ∈

⊥C, where C = {B+
: B ∈ In}.

(4) For every exact sequence 0 → A → B → C → 0 of left R-modules with C ∈ In , the functor M ⊗ − preserves
the exactness.

Proof. By [4, VI. 5.1] or [17, p. 360], there are the following standard isomorphisms:

Ext1(N ,M+) ∼= Tor1(M, N )+ ∼= Ext1(M, N+)

for any left R-module N . Thus (1) ⇔ (2) ⇔ (3) follow.
(1) ⇔ (4) is easy. �

Injective (flat) modules are clearly n-copure injective (n-copure flat). The converse is not true in general. In fact, we
have the following

Proposition 2.7. Let R be a ring. Then

(1) A left R-module M is injective if and only if M is n-copure injective and id(M) ≤ n + 1.
(2) A right R-module N is flat if and only if N is n-copure flat and f d(N ) ≤ n + 1.

Proof. (1) “⇒” is trivial.
“⇐”. Consider the exact sequence 0 → M → E(M) → E(M)/M → 0. Note that id(E(M)/M) ≤ n since

id(M) ≤ n + 1. Thus Ext1(E(M)/M,M) = 0, and hence the above sequence is split. So M is injective.
(2) “⇒” is trivial.
“⇐”. Let N be an n-copure flat right R-module with f d(N ) ≤ n + 1. Then N+ is n-copure injective by

Proposition 2.6. Thus N+ is injective by (1) since id(N+) ≤ n + 1. Hence N is flat. �

Proposition 2.8. Let S be a simple R-module over a commutative ring R. Then the following are equivalent:

(1) S is n-copure injective.
(2) S is n-copure flat.
(3) S+ is n-copure injective.

Proof. (1) ⇔ (2). Suppose {Si }i∈I is an irredundant set of representatives of the simple R-modules. Let E
= E(⊕i∈I Si ), then E is an injective cogenerator by [2, Corollary 18.19]. Let M ∈ In . Since E is injective, there is
an isomorphism:

Ext1(M,Hom(S, E)) ∼= Hom(Tor1(M, S), E).

Note that Hom(S, E) ∼= S by the proof of [22, Lemma 2.6]. Thus Ext1(M, S) = 0 if and only if Tor1(M, S) = 0, and
so (1) ⇔ (2) follows.

(2) ⇔ (3) holds by Proposition 2.6. �
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Proposition 2.9. Let R be commutative noetherian and M an R-module. Then

(1) M is n-copure injective if and only if Hom(F,M) is n-copure injective for all flat R-modules F.
(2) M is n-copure flat if and only if F ⊗ M is n-copure flat for all flat R-modules F.

Proof. (1) “⇐” holds by letting F = R.
“⇒”. Let F be any flat R-module and E ∈ In . There exists an exact sequence 0 → K → P → E → 0 with P

projective, which yields the exactness of the sequence 0 → K ⊗ F → P ⊗ F → E ⊗ F → 0. Note that E ⊗ F ∈ In
since R is commutative noetherian. Then we have the following exact sequence

Hom(P ⊗ F,M) → Hom(K ⊗ F,M) → Ext1(E ⊗ F,M) = 0,

which gives rise to the exactness of the sequence

Hom(P,Hom(F,M)) → Hom(K ,Hom(F,M)) → 0.

On the other hand, the following sequence

Hom(P,Hom(F,M)) → Hom(K ,Hom(F,M)) → Ext1(E,Hom(F,M)) → Ext1(P,Hom(F,M)) = 0

is exact. Thus Ext1(E,Hom(F,M)) = 0, as desired.
(2) “⇐” holds by letting F = R.
“⇒”. Let F be any flat R-module. We only need to show that (F ⊗ M)+ is n-copure injective by Proposition 2.6.

In fact, since M+ is n-copure injective by Proposition 2.6, (F ⊗ M)+ ∼= Hom(F,M+) is n-copure injective
by (1). �

For a left noetherian ring R, [1, Proposition 3.1] shows that every left R-module has an In-preenvelope. Let Fn be
the class of all right R-modules of flat dimension at most n, we have

Proposition 2.10. Let R be a left coherent ring and n a fixed nonnegative integer. Then any right R-module has an
Fn-preenvelope. Moreover, suppose M is a cokernel of an Fn-preenvelope K → F of a right R-module K with F
flat, then M is n-copure flat.

Proof. Let M be a right R-module with CardM = ℵβ . Then, by [12, Lemma 5.3.12], there is an infinite cardinal
ℵα such that if F ∈ Fn and S is a submodule of F with CardS ≤ ℵβ , there exists a pure submodule G of F with
S ⊆ G and CardG ≤ ℵα . Note that the pure exact sequence 0 → G → F → F/G → 0 induces the split exact
sequence 0 → (F/G)+ → F+

→ G+
→ 0. Thus G+

∈ In since F+
∈ In , and so G ∈ Fn . Therefore M has

an Fn-preenvelope by [12, Corollary 6.2.2] since the left coherence of R guarantees that Fn is closed under direct
products.

Now suppose M is a cokernel of an Fn-preenvelope K → F of a right R-module K with F flat. Let L = im(K →

F), then 0 → L → F → M → 0 is exact and L → F is an Fn-preenvelope of L . Note that E+
∈ Fn for any E ∈ In

since R is left coherent. Thus we obtain an exact sequence Hom(F, E+) → Hom(L , E+) → 0, which gives rise to
the exactness of (F ⊗ E)+ → (L ⊗ E)+ → 0. So the sequence 0 → L ⊗ E → F ⊗ E is exact. But the flatness of
F implies the exactness of 0 → Tor1(M, E) → L ⊗ E → F ⊗ E , and hence Tor1(M, E) = 0. This completes the
proof. �

Corollary 2.11. Let R be a left coherent ring. Then every (n + 1)th F0-cosyzygy of any finitely presented right
R-module is n-copure flat.

Proof. Let M be a finitely presented right R-module and 0 → M → F0
→ F1

→ · · · any right F0-resolution
of M with each F i finitely generated projective. By [12, Remark 8.4.35] or [5, Lemma 2.1], Ln

→ Fn is an
Fn-preenvelope, where Ln is the nth F0-cosyzygy of M . Thus the (n + 1)th F0-cosyzygy Ln+1 is n-copure flat
by Proposition 2.10. �

Theorem 2.12. Let R be a left coherent ring and M a finitely presented right R-module. Then M is n-copure flat if
and only if M is a cokernel of an Fn-preenvelope K → F of a right R-module K with F flat.
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Proof. “⇐” follows from Proposition 2.10.
“⇒”. Since M is finitely presented, there is an exact sequence 0 → K → P → M → 0 with P finitely generated

projective and K finitely generated. We claim that K → P is an Fn-preenvelope. In fact, for any F ∈ Fn , we have
F+

∈ In . Thus Tor1(M, F+) = 0, and so we get the exact commutative diagram:

0 // K ⊗ F+

σK

��

α // P ⊗ F+

σP

��
Hom(K , F)+

θ // Hom(P, F)+.

On the other hand, there exists an exact sequence Q → K → 0 with Q finitely generated projective since K is
finitely generated. Then we have the exact commutative diagram:

Q ⊗ F+

σQ

��

// K ⊗ F+

σK

��

// 0

Hom(Q, F)+ // Hom(K , F)+ // 0.

Note that σQ is an isomorphism by [17, Lemma 3.59], so σK is epic. Thus θ is a monomorphism since σP is an
isomorphism, and hence the sequence Hom(P, F) → Hom(K , F) → 0 is exact, as desired. �

In what follows, CIn (CFn) stands for the class of all n-copure injective left R-modules (n-copure flat right
R-modules).

If R is an n-Gorenstein ring, then an R-module is n-copure flat if and only if it is Gorenstein flat by Remark 2.3
(3). So every R-module over an n-Gorenstein ring R has a CFn-cover by [12, Theorem 11.7.3]. In fact, every right
R-module over any ring R has a CFn-cover as shown by the following proposition.

Proposition 2.13. Let R be any ring and n a fixed nonnegative integer. Then (CFn, CF⊥
n ) is a perfect cotorsion

theory. Moreover, the following are equivalent:

(1) (CFn, CF⊥
n ) is a hereditary cotorsion theory.

(2) Tor2(F, N ) = 0 for any F ∈ CFn and any N ∈ In .
(3) Tor j (F, N ) = 0 for any F ∈ CFn , any N ∈ In and any j ≥ 1.

If R is a left noetherian ring with id(R R) ≤ n + 1, then the above conditions are also equivalent to:
(4) Every n-copure flat right R-module is m-copure flat for any m ≥ n.
(5) Every n-copure flat right R-module is (n + 1)-copure flat.

Proof. By [21, Lemma 1.11 and Theorem 2.8], (CFn, CF⊥
n ) is a perfect cotorsion theory.

(1) ⇒ (2). Let F ∈ CFn . Then there is an exact sequence 0 → K → P → F → 0 with P projective. Thus
K ∈ CFn since (CFn, CF⊥

n ) is hereditary. Hence Tor2(F, N ) = 0 for any N ∈ In .
(2) ⇒ (3). Let F ∈ CFn and N ∈ In . Then Tor1(F, N ) = 0 by definition and Tor j (F, N ) = 0 for any j ≥ 2 by

induction.
(3) ⇒ (1) is easy.
(3) ⇒ (4). Let F ∈ CFn and M ∈ Im with m > n. Then there is an exact sequence

0 → M → E0
→ E1

→ · · · Em−n−1
→ Lm−n

→ 0

with each E i injective. Note that Lm−n
∈ In , thus, by (3), we have

Tor1(F,M) ∼= Tor2(F, L1) ∼= · · · ∼= Torm−n(F, Lm−n−1) ∼= Torm−n+1(F, Lm−n) = 0,

where each L i is an i th cosyzygy of M , i = 1, 2, . . . ,m − n. Hence F ∈ CFm .
(4) ⇒ (5) is trivial.
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(5) ⇒ (2). Let F ∈ CFn and N ∈ In . There is an exact sequence 0 → K → P → N → 0 with P projective.
Note that P ∈ In+1 by hypothesis, and so K ∈ In+1. But Tor1(F, K ) = 0 since F ∈ CFn+1 by (5), and hence
Tor2(F, N ) = 0. �

Recall that a ring R is called right semi-artinian [20] if every non-zero cyclic right R-module has non-zero socle. R is
said to be left I F [6] if every injective left R-module is flat.

Proposition 2.14. Let R be a ring and n a fixed nonnegative integer. Then the following are equivalent:

(1) R is a left I F ring.
(2) Every left R-module M with M ∈ In is flat.
(3) Every cotorsion left R-module is n-copure injective.
(4) Every right R-module is n-copure flat.
(5) Every right R-module M with M ∈ CF⊥

n is injective.
(6) (CFn, CF⊥

n ) is a hereditary cotorsion theory, and every right R-module M with M ∈ CF⊥
n is n-copure flat.

If R is right semi-artinian, then the above conditions are equivalent to:
(7) Every simple right R-module is n-copure flat.

Proof. (1) ⇔ (2) ⇔ (4) ⇒ (6), (7) are clear by definition.
(2) ⇔ (3) holds by the flat cotorsion theory.
(4) ⇔ (5) follows from Proposition 2.13.
(6) ⇒ (4). Let M be any right R-module. By Proposition 2.13 and Wakamatsu’s Lemma [23, Section 2.1], there is

a short exact sequence 0 → M → E → L → 0 with E ∈ CF⊥
n and L ∈ CFn . Then E ∈ CFn by (6), and hence

M ∈ CFn since (CFn, CF⊥
n ) is hereditary

(7) ⇒ (2). Let I be a maximal right ideal of R and M ∈ In . Then we have Tor1(R/I,M) = 0 by (7). Thus
Ext1(R/I,M+) = 0 since Ext1(R/I,M+) ∼= Tor1(R/I,M)+. So M+ is injective with respect to any maximal right
ideal of R. Hence M+ is injective by [19, Lemma 4] since R is right semi-artinian. Thus M is flat. �

Proposition 2.15. The following are equivalent for a ring R and a fixed nonnegative integer n:

(1) R is a QF ring.
(2) Every left R-module is n-copure injective.
(3) (In, CIn) is a perfect hereditary cotorsion theory, and every left R-module M with M ∈ In is n-copure injective.
(4) (I0, CI0) is a cotorsion theory.

Proof. (1) ⇔ (2) ⇒ (3) and (1) ⇒ (4) are clear.
(3) ⇒ (2). Let M be any left R-module. By (3) and Wakamatsu’s Lemma, there is a short exact sequence

0 → L → F → M → 0 with F ∈ In and L ∈ CIn . Then F ∈ CIn by (3), and hence M ∈ CIn since
(In, CIn) is hereditary.

(4) ⇒ (1). R is a QF ring since every projective left R-module is injective. �

Proposition 2.13 shows that every right R-module has a CFn-cover. We end this section by the following

Theorem 2.16. The following are equivalent for any ring R and any integer n ≥ 0:

(1) The injective envelope E(M) is n-copure flat for any n-copure flat right R-module M.
(2) The CFn-cover F(I ) is injective for any injective right R-module I .

Proof. (1) ⇒ (2). Let I be an injective right R-module, ε : F(I ) → I the CFn-cover of I , and λ : F(I ) → E(F(I ))
the injective envelope. Then there exists θ : E(F(I )) → I such that θλ = ε. On the other hand, since E(F(I ))
is n-copure flat by (1), there exists β : E(F(I )) → F(I ) such that εβ = θ . Thus εβλ = ε, and hence βλ is an
isomorphism. This means that F(I ) is a direct summand of E(F(I )) and so it is injective.

(2) ⇒ (1). Let M be an n-copure flat right R-module, λ : M → E(M) the injective envelope, and ε : F(E(M)) →

E(M) the CFn-cover of E(M). Then there exists α : M → F(E(M)) such that εα = λ. On the other hand, since
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F(E(M)) is injective by (2), there exists γ : E(M) → F(E(M)) such that γ λ = α. Thus εγ λ = λ, and so εγ is an
isomorphism. It follows that E(M) is n-copure flat. �

3. Left noetherian rings with id(R R) ≤ n

Recall that a left R-module M (resp., right R-module N ) is called strongly cotorsion (resp., strongly
torsionfree) [23,18] if Ext1(F,M) = 0 (resp., Tor1(N , F) = 0) for any left R-module F with f d(F) < ∞.

If R is an n-Gorenstein ring, then an R-module is n-copure injective if and only if it is Gorenstein injective by
Remark 2.3 (3), and so (In, CIn) is a perfect cotorsion theory by [12, Theorem 11.3.2]. For left noetherian rings with
finite left self-injective dimension, we have

Lemma 3.1. Let n be a fixed nonnegative integer. Then the following hold for a left noetherian ring R with
id(R R) ≤ n:

(1) (In, CIn) is a perfect cotorsion theory.
(2) Every n-copure injective left R-module is strongly cotorsion, and every n-copure flat right R-module is strongly

torsionfree.
(3) If R is an n-Gorenstein ring, then (In, CIn) is a hereditary cotorsion theory.

Moreover, every strongly cotorsion left R-module is n-copure injective, and every strongly torsionfree right R-
module is n-copure flat.

Proof. (1) Since R is left noetherian, In is closed under well ordered inductive limits by [3, Theorem 1.1], so (1)
follows from [1, Theorem 2.8] and [12, Theorem 7.2.6].

(2) Let f d(F) < ∞, then F ∈ In since every flat left R-module has injective dimension at most n by [12,
Proposition 9.1.2]. Thus (2) follows.

(3) holds by [15, Theorem 2]. �

Recall that an R-module M is called reduced [10] if M has no nonzero injective submodule.

Proposition 3.2. Let R be a left noetherian ring with id(R R) ≤ n and n ≥ 0. Then the following are equivalent for a
left R-module M:

(1) M is a reduced n-copure injective left R-module.
(2) M is a kernel of an In-cover f : A → B with A injective.

Proof. (1) ⇒ (2). By Proposition 2.4, the natural map π : E(M) → E(M)/M is an In-precover. Thus E(M)
has no nonzero direct summand K contained in M since M is reduced. Note that E(M)/M has an In-cover
by Lemma 3.1. It follows that π : E(M) → E(M)/M is an In-cover by [23, Corollary 1.2.8], and hence (2)
follows.

(2) ⇒ (1). Let M be a kernel of an In-cover α : A → B with A injective. By Proposition 2.4, M is n-copure
injective. Now let K be an injective submodule of M . Suppose A = K ⊕ L , p : A → L is the projection and
i : L → A is the inclusion. It is easy to see that α(i p) = α since α(K ) = 0. Therefore i p is an isomorphism, and
hence i is epic. Thus A = L , K = 0, and so M is reduced. �

In order to prove the next main result, we need the following lemma which is of independent interest.

Lemma 3.3. Let R be a left noetherian ring with id(R R) ≤ n and n ≥ 1.

(1) If M is an (n − 1)-copure injective left R-module, then there is an exact sequence 0 → K → E → M → 0 such
that E is injective and K is n-copure injective.

(2) If N is an (n − 1)-copure flat right R-module, then there is an exact sequence 0 → N → F → L → 0 such that
F is flat and L is n-copure flat.
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Proof. (1) Consider the following pushout diagram:

0

��

0

��
0 // N // P

��

// M

��

// 0

0 // N // E(P) //

��

Q

��

// 0

C

��

C

��
0 0

where P is projective and P → E(P) is an injective envelope. Note that id(C) ≤ n − 1 since id(P) ≤ n. So
Ext1(C,M) = 0 (for M is (n − 1)-copure injective), then the sequence 0 → M → Q → C → 0 is split. Therefore
M is a quotient of E(P).

Now suppose α : E → M is an injective cover of M , then α is epic. Thus we have the exact sequence
0 → K → E → M → 0. Note that K is copure injective by [9, Lemma 2.1]. We claim that K is also n-copure
injective. In fact, let X ∈ In . Consider the exact sequence 0 → X → E(X) → D → 0. Then D ∈ In−1. Thus we
get the induced exact sequence

0 = Ext1(D,M) → Ext2(D, K ) → Ext2(D, E) = 0.

Therefore Ext2(D, K ) = 0. On the other hand, the short exact sequence 0 → X → E(X) → D → 0 induces the
exactness of the sequence

0 = Ext1(E(X), K ) → Ext1(X, K ) → Ext2(D, K ) = 0.

Therefore Ext1(X, K ) = 0, as desired.
(2) Let N be an (n − 1)-copure flat right R-module. Then N+ is (n − 1)-copure injective by Proposition 2.6.

Thus there is an exact sequence E → N+
→ 0 with E injective by (1), which in turn yields the exactness of

0 → N++
→ E+. So N embeds in a flat right R-module (for E+ is flat).

Now let β : N → F be a flat preenvelope of N , then β is monic. So we have the exact sequence 0 → N → F →

L → 0. Note that L is copure flat by Proposition 2.10. Applying an argument similar to that in the proof of (1), we
can prove that L is also n-copure flat. �

Let R be a left noetherian ring. It is known that R is a left hereditary ring if and only if every right R-module
has an epic flat envelope if and only if every left R-module has a monic injective cover if and only if every copure
injective left R-module is injective if and only if every copure flat right R-module is flat (see [10, Corollary 2.4] and
[7, Theorem 4.5]). Here we get

Theorem 3.4. Let R be a left noetherian ring with id(R R) ≤ n and n ≥ 1. Then the following are equivalent:

(1) l D(R) < ∞.
(2) l D(R) ≤ n.
(3) Every (n − 1)-copure injective left R-module is injective.
(4) Every n-copure injective left R-module is injective.
(5) Every n-copure injective left R-module has a monic injective cover.
(6) Every ((n − 1)-copure injective) left R-module has a monic In−1-cover.
(7) Every (n − 1)-copure flat right R-module is flat.
(8) Every cotorsion right R-module belongs to CF⊥

n .
(9) Every n-copure flat right R-module is flat.

(10) Every (finitely presented) n-copure flat right R-module has an epic flat envelope.
(11) Every right R-module has an epic Fn−1-envelope.
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Proof. (2) ⇒ (4), (3) ⇒ (4) ⇒ (5), and (7) ⇒ (9) ⇒ (10) are clear.
(1) ⇒ (2). By [3, Proposition 4.2], l D(R) = id(R R) ≤ n since l D(R) < ∞.
(2) ⇒ (6). Note that In−1 is closed under direct sums and quotients by (2). So (6) follows from [14, Proposition 4].
(6) ⇒ (2). Let M be any left R-module. By Lemma 3.1 and Wakamatsu’s Lemma, there is a short exact sequence

0 → L → F → M → 0, where F ∈ In and L ∈ CIn . Note that L is (n − 1)-copure injective, and so L has a monic
In−1-cover by (6). But L is a quotient of an injective left R-module by Lemma 3.3 (1). Thus L ∈ In−1, and hence
M ∈ In .

(4) ⇒ (3) and (9) ⇒ (7) follow from Lemma 3.3.
(4) ⇒ (9) holds by Proposition 2.6.
(5) ⇒ (1). Let M be a left R-module. For any left I0-resolution · · · → E1 → E0 → M → 0, the (n + 1)th

I0-syzygy Kn+1 of M is n-copure injective by Corollary 2.5. Thus Kn+1 has a monic injective cover by (5), but Kn+1
is a quotient of an injective left R-module by Lemma 3.3 (1). Hence Kn+1 is injective. Therefore l D(R) ≤ n +3 < ∞

by [12, Corollary 8.4.17].
(8) ⇔ (9) comes from Proposition 2.13.
(10) ⇒ (1). By Corollary 2.11, the (n + 1)th F0-cosyzygy Ln+1 of any finitely presented right R-module M is

n-copure flat. Thus Ln+1 embeds in a flat right R-module by Lemma 3.3 (2). But Ln+1 has an epic flat envelope by
(10). Therefore Ln+1 is flat, and hence projective. So l D(R) ≤ n + 3 < ∞ by [12, Corollary 8.4.28].

(11) ⇒ (2). Let M be a right R-module. Consider the exact sequence 0 → K → P → M → 0 with P projective.
Note that K has an epicFn−1-envelope by (11), then K ∈ Fn−1, and hence M ∈ Fn . Therefore l D(R) = wD(R) ≤ n.

(2) ⇒ (11). Let M be a right R-module. Then M has an Fn−1-preenvelope α : M → N by Proposition 2.10. It
follows that im(α) ∈ Fn−1 since wD(R) ≤ n by (2). Thus M → im(α) is an epic Fn−1-envelope. �

4. On copure injective covers and copure flat envelopes

Enochs and Jenda have shown that every left R-module has a strongly copure injective preenvelope over a left
noetherian ring R (see [11, Theorem 2.2]). Here we have

Proposition 4.1. Let R be a commutative artinian ring. Then M+ has a strongly copure injective precover for any
R-module M.

Proof. By [11, Theorem 2.5], M has a strongly copure flat preenvelope f : M → N . We shall show that
f +

: N+
→ M+ is a strongly copure injective precover of M+. Indeed, let ψ : H → M+ be any homomorphism

with H strongly copure injective. Since H+ is strongly copure flat by [11, Lemma 3.6], there exists g : N → H+

such that g f = ψ+δM . Thus f +g+
= δ+Mψ

++. Note that ψ++δH = δM+ψ , then by [2, Proposition 20.14], we have
f +(g+δH ) = δ+M (ψ

++δH ) = (δ+MδM+)ψ = ψ . Hence f + is a strongly copure injective precover. �

Theorem 4.2. The following are equivalent for a commutative artinian ring R:

(1) id(R) ≤ 1.
(2) Every R-module has an epic copure flat envelope.
(3) Every cotorsion R-module has an epic copure flat envelope.
(4) Every R-module has a monic copure injective cover.

Proof. (1) ⇒ (2). Since R is a commutative artinian ring, any R-module M has a strongly copure flat preenvelope
f : M → N by [11, Theorem 2.5]. But R is a 1-Gorenstein ring by (1), so any copure flat module is strongly copure
flat by [11, Corollary 4.2]. Thus f is also a copure flat preenvelope. Note that im( f ) is copure flat by [11, Corollary
4.2], hence f : M → im( f ) is an epic copure flat envelope.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). By [11, Corollary 4.2], we shall show that any submodule N of any copure flat R-module M is copure

flat. Since M/N has a flat cover f : F → M/N , we get an exact sequence 0 → C → F → M/N → 0 with C
cotorsion by Wakamatsu’s Lemma. By (3), C has an epic copure flat envelope. Thus C is copure flat since C embeds
in a flat R-module. So, for any injective R-module E , we get an induced exact sequence

0 = Tor2(F, E) → Tor2(M/N , E) → Tor1(C, E) = 0.
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Hence Tor2(M/N , E) = 0. On the other hand, the short exact sequence 0 → N → M → M/N → 0 induces the
exactness of the sequence

0 = Tor2(M/N , E) → Tor1(N , E) → Tor1(M, E) = 0.

Therefore Tor1(N , E) = 0, as desired.
(1) ⇔ (4). We first show that the class of copure injective R-modules over a commutative artinian ring R is closed

under direct sums. Indeed, let {M j } j∈J be a family of copure injective R-modules and E an injective R-module. Since
R is artinian, then E = ⊕i∈I E(Si ), where each Si is simple. Note that E(Si ) is finitely generated by [16, Theorem
3.11], so by [2, Exercise 16.3, p. 189], we get

Ext1
(

E,
⊕
j∈J

M j

)
=

∏
i∈I

Ext1
(

E(Si ),
⊕
j∈J

M j

)
=

∏
i∈I

⊕
j∈J

Ext1(E(Si ),M j ) = 0.

Thus ⊕ j∈J M j is copure injective. Since R is 1-Gorenstein if and only if the class of copure injective R-modules is
closed under quotients by [11, Corollary 4.2], (1) ⇔ (4) follows from [14, Proposition 4]. �

It is well known that R is a left noetherian ring with l D(R) ≤ 2 if and only if every left R-module has an injective
cover with the unique mapping property. Here we have

Theorem 4.3. The following are equivalent for a left and right noetherian ring R:

(1) R is a 2-Gorenstein ring, and every (left and right) R-module has a strongly copure injective cover.
(2) Every (left and right) R-module has a strongly copure injective cover with the unique mapping property.

Proof. (1) ⇒ (2). Let M be any (left and right) R-module. Then M has a strongly copure injective cover f : F → M
by (1). It is enough to show that, for any strongly copure injective R-module G and any homomorphism g : G → F
such that f g = 0, we have g = 0. In fact, there exists β : F/im(g) → M such that βπ = f since im(g) ⊆ ker( f ),
where π : F → F/im(g) is the natural map. Since R is 2-Gorenstein, Exti (E, ker(g)) = 0 for any i ≥ 3 and any
injective R-module E by [11, Lemma 3.1 and Theorem 4.1]. It follows that F/im(g) is strongly copure injective.
Thus there exists α : F/im(g) → F such that β = f α, and so we get the exact commutative diagram:

M

0 // ker(g) i // G
g //

0
??~~~~~~~~
F

f

OO

π //// F/im(g)

β

ddHHHHHHHHH

α
oo

// 0.

Thus f απ = f , and hence απ is an isomorphism. Therefore π is monic, and so g = 0.
(2) ⇒ (1). Let M be any (left and right) R-module. Then we have the exact sequence 0 −→ M −→

E0 ϕ
−→ E1 ψ

−→ N −→ 0, where E0, E1 are injective. Let θ : H → N be a strongly copure injective cover with
the unique mapping property. Then there exists τ : E1

→ H such that ψ = θτ . Thus θτϕ = ψϕ = 0 = θ0, and
hence τϕ = 0, which implies that ker(ψ) = im(ϕ) ⊆ ker(τ ). Therefore there exists γ : N → H such that γψ = τ ,
and so we get the exact commutative diagram:

H

θ

��
0 // M // E0

ϕ // E1

τ

>>}}}}}}}} ψ // // N

γ

OO

// 0.

Thus θγψ = ψ , and so θγ = 1N since ψ is epic. It follows that N is isomorphic to a direct summand of H , and
hence N is strongly copure injective. So R is 2-Gorenstein by [11, Lemma 3.1 and Theorem 4.1]. �

Remark 4.4. If we replace “strongly copure injective cover” with “strongly copure flat envelope” in Theorem 4.3, the
result still holds by [11, Lemma 3.3 and Theorem 4.1] and a proof dual to that of Theorem 4.3.

For an arbitrary class C, it is not true in general that the direct product of C-covers is a C-cover (even if C is closed
under direct products). We conclude this paper with the following
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Proposition 4.5. Let R be a 2-Gorenstein ring. Suppose that αi : L i → Mi is a strongly copure injective cover for
each i ∈ I , then

∏
αi :

∏
L i →

∏
Mi is a strongly copure injective cover.

Proof. By Theorem 4.3, every αi is a strongly copure injective cover with the unique mapping property. Consider
the exact sequence 0 → ker(αi ) → L i → Mi . For any strongly copure injective R-module L , we have the exact
sequence

0 → Hom(L , ker(αi )) → Hom(L , L i ) → Hom(L ,Mi ).

Thus Hom(L , kerαi ) = 0 since 0 → Hom(L , L i ) → Hom(L ,Mi ) is exact.
Note that the class of strongly copure injective R-modules is closed under direct products, and so

∏
αi :

∏
L i →∏

Mi is a strongly copure injective precover by [23, Theorem 1.2.9]. Since R is a 2-Gorenstein ring, strongly copure
injective modules coincide with Gorenstein injective modules by Remark 2.3 (3). So

∏
Mi admits a strongly copure

injective cover by [12, Theorem 11.1.3]. On the other hand, we claim that
∏

L i has no nonzero direct summand
contained in

∏
kerαi . Indeed, let K be a direct summand of

∏
L i and K ⊆

∏
kerαi . Then K is strongly copure

injective, and hence

Hom
(

K ,
∏

kerαi

)
∼=

∏
Hom(K , kerαi ) = 0.

Thus K = 0. It follows that
∏
αi :

∏
L i →

∏
Mi is a strongly copure injective cover by [23, Corollary 1.2.8]. �
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