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Pseudocomplemented semilattices are studied here from an algebraic point of
view, stressing the pivotal role played by the pseudocomplements and the relation-
ship between pseudocomplemented semilattices and Boolean algebras. Following
the pattern of semiprime ring theory, a notion of Goldie dimension is introduced
for complete pseudocomplemented lattices and calculated in terms of maximal
uniform elements if they exist in abundance. Products in lattices with 0-element
are studied and questions about the existence and uniqueness of compatible
products in pseudocomplemented lattices, as well as about the abundance of prime
elements in lattices with a compatible product, are discussed. Finally, a Yood
decomposition theorem for topological rings is extended to complete pseudocom-
plemented lattices. � 2001 Academic Press
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product.

INTRODUCTION

Ž .A pseudocomplemented semilattice is a meet semilattice S having a
least element 0 and is such that, for each x in S, there exists a largest
element x � such that x � x �� 0. In spite of what the name could
suggest, a complemented lattice need not be pseudocomplemented, as is
easily seen by considering the lattice of all subspaces of a vector space of
dimension greater than one.

1 This work is supported by DGICYT Grant PB097-1069-C02-01. The second author is
Ž .grateful to the MEC Spain for a personal grant.
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When dealing with pseudocomplemented semilattices two important
Ž . Ž .examples are in order: i the lattice of all two-sided ideals of a semiprime

ring R, where the pseudocomplement of an ideal I of R is given by its
Ž .usual annihilator, and ii the lattice of all open subsets of a topological

space X, where the pseudocomplement of an open subset G is its exterior.
These two examples are sources of inspiration for the theory of pseudo-
complemented lattices. On one hand, the mapping x � x � retains the
usual properties of the annihilators; on the other hand, the mapping
x � x � � , when applied to an open subset G of X, produces the least

� � Ž .regular open subset, G � int G , containing G. Properties of these two
Ž .mappings are collected in 1.7 .

� � ŽInspired by the theory of Banach algebras BoG or topological rings
� �.Y , we pay attention to two important classes of pseudocomplemented
semilattices, namely, annihilator semilattices and dual semilattices. A
pseudocomplemented semilattice S is annihilator if x � 1 implies x �� 0,
with 1 � 0� being the largest element of S, and S is said to be dual if
x � x � � for all x � S. Dual semilattices are annihilator but the converse

Žis not true, as seen by considering the nonmodular pentagon Johnson
� �gave in J an example of a commutative semisimple Banach algebra whose

.lattice of closed ideals is annihilator but not dual . Moreover, a pseudo-
Ž .complemented lattice is annihilator if, and only if, it is complemented 2.1 .

Ž .In 2.4 we list different characterizations of dual semilattices. Some of
them are well-known in the lattice setting, as is the fundamental one, due

� �to Frink Fr1, Fr2 , stating that dual semilattices are precisely Boolean
� �algebras. Others were proved by Yood Y for lattices of closed ideals of

topological rings.
� �More generally, Frink showed in Fr2 that for every pseudocomple-

Ž .mented semilattice S the set BB S of all pseudocomplements of S has a
Žstructure of Boolean algebra the Boolean algebra associated to the lattice

of the open sets of a topological space X consists precisely of the regular
.open subsets of X . This key fact in the theory of pseudocomplemented

semilattices can be obtained also from the dual characterization of Boolean
algebras cited above.

The relationship between a pseudocomplemented semilattice and its
associated Boolean algebra can be illuminated by studying uniform ele-
ments. Among other results, we prove that any uniform element u of a
pseudocomplemented semilattice S is contained in a unique maximal
uniform element, namely, u� � . Moreover, the maximal uniform elements

Ž .of S are precisely the atoms of BB S . Thus, the abundance of uniform
elements in a pseudocomplemented semilattice S is equivalent to the

Ž .atomicity of its associated Boolean algebra; in fact, BB S is then isomor-
Ž .phic to the powerset PP M , where M is the set of the maximal uniform

Ž .elements of S. This result, proved in 2.9 , has the consequence that the
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Boolean algebra of a finite pseudocomplemented lattice L is the power set
� Ž .�of the set of the atoms of L ChM, 3.5 .

In Section 3 we study the Goldie dimension of a complete pseudocom-
plemented lattice. As in the classical case of the lattice of two-sided ideals

Ž � �.of a semiprime ring see L, p. 334 , we relate the Goldie dimension to
annihilators. Thus, our approach to Goldie dimension is different from

� � Ž � � � �.that in GPu1 see also GPu2 and GPu3 , where the Goldie dimension
of modular lattices generalizing the dimension of modules is studied.

Let � be a cardinal number. A complete pseudocomplemented lattice L
Ž .will be said to have Goldie dimension � dim L � � if L contains an

independent subset X of cardinal � and, for every independent subset Y
Ž .of L, card Y 	 � . Since L and BB L have the same meet operations, it is

Ž .not difficult to see that 3.3 L has Goldie dimension if, and only if, so
Ž . Ž .does BB L . In this case, dim L � dim BB L . A sufficient condition for a

complete pseudocomplemented lattice L to have Goldie dimension is the
Ž .abundance of uniform elements, that is, 3.5 if any nonzero annihilator of

a complete pseudocomplemented lattice L contains a uniform element,
then L has Goldie dimension equal to card M, where M is the set of all
maximal uniform elements of L. In particular, if L is atomic, then
dim L � card A, where A is the set of the atoms of L. The existence of
an independent subset of uniform elements whose join is essential is not,
however, a necessary condition for a complete pseudocomplemented lat-

Ž .tice to have Goldie dimension 3.6 . Complete pseudocomplemented lat-
Ž .tices L having finite Goldie dimension are characterized in 3.7 as those

Ž .satisfying the chain conditions on annihilators. Then BB L is the powerset
of an n-element set, where n is the number of maximal uniform elements

Ž .of L. Finally, we show in 3.9 that a complete pseudocomplemented
lattice is a finite Boolean algebra if, and only if, it has finite Goldie
dimension and this coincides with its length.

By a pseudomultiplicative lattice we mean a lattice L with 0-element
and which is endowed with a product xy satisfying the following conditions

Ž . Ž .for all x, y, z � L; 4.1 x 	 y � zx 	 zy and xz 	 yz, 4.2 xy 	 x � y,
Ž . Ž .and 4.3 x y 
 z 	 xy 
 xz. Any lattice L with 0-element is trivially

pseudomultiplicative for the product defined by xy � 0 for all x, y � L.
On the other hand, any distributive lattice can be equipped with a nice
product by taking xy � x � y. Other examples of pseudomultiplicative

Žlattices are the lattice of ideals of an algebraic system as a nonassociative
.ring or quadratic Jordan algebra , the lattice of closed ideals of a topologi-

cal algebraic system, and the lattice of normal subgroups of a group. It
should be noted that for the lattice of the ideals of a quadratic Jordan

Žalgebra J, the lattice product is given by B�C � U C B and C ideals ofB
.J , where, as usual, x � U denotes the Jordan U-operator. It was pre-x
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cisely the nonlinearity of the quadratic Jordan product which motivated us
Ž .to adopt the nonsymmetrical distributivity condition 4.3 .

To avoid trivialities, we restrict ourselves to products which are compati-
ble with the meet in the sense that xy � 0 � x � y � 0, equivalently,
x 2 � 0 � x � 0. A pseudomultiplicative lattice whose product is compati-
ble will be called semiprime. Regarding compatible products, two ques-
tions should be considered. Does a pseudocomplemented lattice necessar-
ily have a compatible product? And, in such a case, is this compatible
product necessarily unique? With respect to the second question, we prove

Ž .in 4.15 that a pseudocomplemented lattice is distributive if, and only if, it
Ž .has a unique idempotent product; in fact, this product coincides with the

meet. Two relevant examples of lattices with an idempotent product are
the lattice of ideals of a von Neumann regular ring and the lattice of
closed ideals of a C*-algebra. However, a distributive pseudocomple-
mented lattice can have two different compatible products, although this

Ž . Ž .anomaly disappears by considering Boolean algebras 4.18 . In 4.21 we
give a partial answer to the first question showing that a complete
pseudocomplemented lattice which is atomic can be equipped with a

Ž .compatible even commutative and associative product.
Let L be a pseudomultiplicative lattice with a greatest element 1 and a

product denoted by xy. Defining prime elements as usual, we have that if
the meet of the set of the prime elements of L is 0, then the lattice is
semiprime. The converse holds for the lattice of ideals of a semiprime ring.

Ž .However, this does not remain true in general 5.1 . Thus, it seems natural
to define a pseudomultiplicative lattice to be strongly semiprime if the
meet of its prime elements is 0.

Kaplansky noted that in any semiprime nonassociative ring the intersec-
tion of the prime ideals is 0. In fact, he provided a proof of this result
which could also be applied to groups, with normal subgroups playing the
role of ideals and commutators as the product. This led him to formulate
the question for complete quasimultiplicative lattices such that any nonzero
element contains a nonzero compact element, thus generalizing in fact a
theorem by Keimel for complete algebraic semiprime multiplicative lat-

� �tices. On the other hand, Rosicky pointed out that the unit interval 0, 1 is´
a strongly semiprime complete multiplicative lattice which however is not
algebraic and extended Keimel’s theorem to continuous multiplicative

Žlattices, covering the example of the unit interval. These results Kaplanky’s
.and Rosicky’s remain true under slightly more general conditions that´

allow us to include lattices of ideals of algebraic systems which are not
Ž .necessarily linear 5.2 . To conclude this section we obtain, as a conse-

quence of the relationship between prime elements and uniform elements
Ž .5.6 , that any complete pseudocomplemented lattice having enough uni-
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form elements and endowed with a compatible product is strongly
Ž .semiprime 5.7 .

A topological ring R is said to be decomposable if it is the closure of the
Ždirect sum of its minimal closed ideals each of which is then a topologi-

. � Ž .�cally simple topological ring . Yood proved in Y, 2.6 that R is decom-
posable if, and only if, the intersection of its closed prime ideals is 0 and

Ž .every proper closed two-sided ideal of R has nonzero annihilator. As a
consequence of this result he obtained an improvement of some standard

Ž � �.decomposition theorems see BoG, Sm, and To . Later, Fernandez Lopez´ ´
� �and Rodrıguez Palacios FR considered this decomposability question in´

the setting of complete normed nonassociative algebras. In lattice terms, a
complete normed nonassociative algebra is decomposable if, and only if,
the complete lattice of its closed ideals is strongly semiprime and annihila-

� �tor. This lattice point of view allowed the authors of FR to provide a
nonassociative version of Yood’s theorem, obtaining some decomposition
theorems for complete normed alternative and Jordan algebras, and a new
proof of a structure theorem for the nonassociative H*-algebra which had

� �been proved previously in CuR, Theorem 1 . As can be expected from the
� �point of view adopted in FR , it is possible to give a purely lattice version

Ž .of Yood’s theorem. This is the aim of 6.3 .
� �The reader is referred to B, CrD, and Gr for basic notions on lattices.

For nonassociative algebras and Jordan systems, we adopt as a general
� � � � � �reference the books Z and Lo , for C*-algebras Di , and for JB-algebras

� � � � � �H . Finally, for general accounts on JB*-triples see R and Ru .

1. PSEUDOCOMPLEMENTED SEMILATTICES

Ž .Recall that a partially ordered set S, 	 in which any pair of elements
Ž . Ž .a and b of S has a meet or infimum , a � b, is called a meet semilattice.

Ž .If, besides, there exists the join or supremum , a 
 b, of any pair of
elements a and b, then S is said to be a lattice. A semilattice in which
every subset has a meet is actually a complete lattice.

The notion of the annihilator is by far one of the most important in
semiprime ring theory and can be considered in semilattices without

� �reference to any product. Following B, p. 125 , a pseudocomplemented
Ž .semilattice for short, a p-semilattice is a semilattice S with a least element

Ž . �0 and a unary operation the pseudocomplementation x � x such that,
for each x � S,

x � y � 0 � y 	 x � , y � S,
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which is equivalent to saying that for each x � S there exists a largest
element x �� S such that x � x �� 0. Note that any p-semilattice has a
greatest element 1 � 0� .

Pseudocomplemented semilattices satisfying the Descending Chain Con-
Ž . Ž .dition in particular, finite p-semilattices are in fact lattices p-lattices ;

any pair of elements x and y has the upper bound 1 and hence a least
upper bound. In Section 2 we will give an example of a p-semilattice which
is not a lattice, but first some examples of p-lattices are collected.

EXAMPLES. The following list of examples of pseudocomplemented
semilattices will be enlarged in Section 4.

Ž . Ž .1.1 The complete lattice of all two-sided ideals of a semiprime
ring R is pseudocomplemented, with the pseudocomplement I � of an
ideal I of R being the usual annihilator of I. The same is true for the
complete lattice of all closed ideals of a semiprime topological ring.

Ž .1.2 Any distributive lattice L which is finite or, more generally,
which satisfies the Ascending Chain Condition is pseudocomplemented.
For x � L, take x � to be maximal among all y � L such that x � y � 0.
It follows from distributivity that x � is actually maximum. Therefore,
x � x � defines a pseudocomplementation on L.

Ž . Ž .1.3 Let X, T be a topological space. Then T is a complete lattice
with the join as the union and the meet as the interior of the intersection;

Ž . � 4i.e., � A � � A and � A � int � A for any family A of open� � � � �

subsets of X. This lattice is pseudocomplemented with the orthogonal of
� Ž .an open subset A of X being its exterior: A � ext A .

Ž .1.4 An easy example of a p-lattice which is not modular is given by
the pentagon L , which can be described as the power set of a two-ele-5

� 4 � 4 � 4ment set x, y with an additional element z such that x � z � x, y .
� 4� � � 4 � 4�Note that x � z � y and y � z.

Ž .1.5 A semilattice S with 0-element will be said to have nonzero
core if it contains a nonzero element c such that c 	 x for every nonzero
element x of S. Every semilattice with nonzero core is trivially a p-semi-
lattice, with x �� 0 for every nonzero element x of L. It should be noted
that any semilattice S becomes a semilattice with nonzero core by adding
at most two new elements, say 0 and c, such that 0 � c � x for all x � S.
Therefore, the class of p-semilattices is very large.

Ž .1.6 Any element x of a p-semilattice yields two p-semilattices, the
� � � � �principal ideal 0, x , and the quotient x , 1 , where the pseudocomple-

� x � Ž . � x Žments are given respectively by y � y �x y 	 x and y � y �
.� �x , for all y � x .

Recall that a lattice L is said to be complemented if it has a least
element 0 and a greatest element 1, and each of its elements has a
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complement; i.e., for each a � L, there exists a� � L such that a 
 a� � 1
and a � a� � 0. In spite of what the name could suggest, complemented
lattices are not necessarily pseudocomplemented. The lattice of the sub-
spaces of a vector space of dimension greater than one is complemented,
but not pseudocomplemented. However, any distributive complemented
lattice L is pseudocomplemented, with x � being the unique complement
of x in L.

Pseudocomplementations retain most of the properties of the annihila-
Žtors of ideals in a semiprime ring for this reason, sometimes we will refer

� .to x as the annihilator of x . Some of the well-known properties of the
pseudocomplementation are listed below.

PROPOSITION 1.7. Let S be a pseudocomplemented semilattice, x, y � S,
� 4and y be a family of elements of S. Then�

Ž . � �1 x 	 y � y 	 x .
Ž . � �2 x 	 x .
Ž . � � � �3 x � x .
Ž . Ž .� � � � � �4 x � y � x �y .
Ž . � Ž .� �5 If both � y and � y exist, then � y � � y .� � � � � � � �

Ž . � Ž � �. � Ž �.� �6 If both �y and � x �y exist, then x � �y �� � �

Ž Ž � � �..� �� x �y .�

Ž . Ž .Proof. Statements 1 and 2 are clear and prove that the operation
� � � Ž .x � x is a symmetric Galois connection B, p. 125 . Statement 3 follows
Ž . Ž . Ž . Ž .from 1 and 2 and gives as a consequence, together with 1 and 2 , that

� � Ž .the operation x � x is a closure operation. The proof of 4 is not
� Ž .� Ž . � Ž .�trivial and can be found in Fr2, 18 , while 5 was proved in So1, 1.1 .

Ž .Therefore we only need to prove 6 , which already announces the rela-
tionship between p-semilattices and Boolean algebras. Its proof is based
on the following standard technique, x �� y � iff, for all a � S, x �	 a�

is equivalent to y �	 a� .
�� �� � � � � �x � � y � x � � y 	 aŽ . Ž .� � � �

�� � � � �� x � � y �a � 0Ž .� �

�� �� � � � � � � �� x �a 	 � y � � y � � yŽ . Ž .� � � � � �

� x � �a� �	 y � � �� � x � �a� � �y �� 0 ��� �

� x � �y �	 a� ���

��� � � � � �� � x �y 	 a � a .Ž .Ž .� �
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Let S be a semilattice having a least element 0. A nonzero element
u � S is an atom if 0 	 x 	 u implies x � 0 or x � u, for all x � S. As a

Ž .consequence of 1.7 , we obtain

COROLLARY 1.8. Let S be a pseudocomplemented semilattice, and let A
be the set of all its atoms. If X, Y are subsets of A such that both � X and

Ž .� Ž .��Y do exist, then X � Y if , and only if , �Y 	 � X .

Proof. Clearly, for X, Y subsets of A, X � Y implies � X 	 �Y and
Ž .� Ž .� Ž .� Ž .�hence �Y 	 � X . Conversely, if �Y 	 � X then X � Y.

Ž .�Otherwise, take an element x � X which is not in Y. Then x 	 �Y
Ž . Ž .� Ž .� �by 1.7.5 . But x � � X , since x 	 � X 	 x would imply x � 0,

which is a contradiction.

2. PSEUDOCOMPLEMENTED SEMILATTICES AND
BOOLEAN ALGEBRAS

� � ŽBorrowing terminology from the theory of Banach algebras BoG or
� �.topological rings Y , we will say that a p-semilattice S is annihilator if

x �� 0 for all x � 1 in S. A p-lattice need not be annihilator, as seen by
� 4considering the three-element chain C � 0, x, 1 .2

Principal ideals of annihilator semilattices do not inherit in general the
Ž .annihilator condition. Following the notation of 1.4 , the nonmodular

� �pentagon L is annihilator, but the principal ideal �, z is a three-ele-5
ment chain and therefore is not annihilator. However, the annihilator
condition is inherited by the quotient determined by a pseudocomplement:

� � �If S is an annihilator semilattice, then x , 1 is annihilator for every
� � x Ž .� � �x � S. Indeed, if y � x is such that y � y � x � x , then y � 0,

� � �so y � 1 and x , 1 is annihilator.
Annihilator semilattices which are also lattices will be called annihilator

lattices. There exist annihilator semilattices which are not lattices. Consider
Ž .the partially ordered subset S obtained as the disjoint union S � PP A 


Ž . � 4C , where PP A is the power set of the set A � a, b, c and C :� �

x � x � ��� is an infinite decreasing chain satisfying the following condi-1 2
� 4 � 4 � 4 Ž .tions: a, b � x , a � x , and b � x for all n . Then S is an annihila-1 n n

� 4 � 4tor semilattice which is not a lattice; the pair of elements a and b does
not have a join in S.

� �The following result, whose proof was the aim of Lb , is actually a
Ž . � Ž .�consequence of 1.7.5 . See also ChM, 4.2 where it is stated for finite

p-lattices.

Ž .2.1 A pseudocomplemented lattice L is annihilator if, and only if,
it is complemented.
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Suppose first that L is complemented, and let x � 1. Take a comple-
ment x� of x. Then 1 � x 
 x� implies x� � 0, and x � x� � 0 implies that
0 � x� 	 x � , so L is annihilator. Conversely, if L is annihilator we have

� � � � � �Ž . Ž .by 1.7.5 that x 
 x � x �x � 0, which implies x 
 x � 1.

Another question concerning annihilators is when the greatest element
1 of a complete p-lattice L is the join of the atoms of L. In fact, many
structure theorems in Banach algebras or topological rings can be stated in

Ž � � � �.these terms see Y and FR . Although, as we will see in the last section,
the suitable setting to deal with this question is that of the lattices
endowed with a product, we can already give a first approach without
reference to any kind of product.

Recall that a semilattice S with a least element 0 is said to be atomic if,
� �for every nonzero element x � S, the principal ideal 0, x contains an

atom. Semilattices satisfying the descending chain condition, and in partic-
ular finite semilattices, are clearly atomic. Note that a complete p-lattice is

Ž .�atomic if, and only if, � A � 0, where A is the set of its atoms.

PROPOSITION 2.2. For a complete pseudocomplemented lattice L the
following conditions are equi�alent:

Ž .i The greatest element 1 is the join of the subset of the atoms of L.

Ž .ii L is annihilator and atomic.

Ž . Ž .Proof. i � ii . Let x � 1 in L. Then there exists an atom a � A
such that a � x, so a � x � 0 and hence x �� 0, which proves that L is

� �annihilator. To show that L is atomic, let x � 0 in L. Then 0, x does
Ž .contain at least an atom, since otherwise we have by 1.7.5 that x 	

Ž .� �� A � 1 � 0.
Ž . Ž . Ž .�ii � i . Since L is atomic, � A � 0. Hence � A � 1 because L is

annihilator.

� Ž .�The reader is again referred to ChM, 4.2 where the above equiva-
lence is proved for finite p-lattices.

� �Going on with the terminology of topological rings Y , a p-semilattice S
� � Ž .will be said to be dual if x � x for all x � S. By 1.7.3 , a p-semilattice

S is dual if, and only if, the pseudocomplementation x � x � is injective.
Hence it is clear that dual semilattices are annihilator: x �� 0 � 1�� x
� 1. But the converse is false, as seen by considering the nonmodular

Ž .pentagon 1.4 .
� �As usual CrD, p. 35 , by a Boolean algebra we mean a complemented

� �distributive lattice. Frink gave in Fr1 the following concise characteriza-
� Ž .�tion of Boolean algebras, which can also be found in La, 1.1.2 .
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Ž .2.3 A semilattice S with a least element 0 is a Boolean algebra if,
and only if, it has a unary operation x � x� such that x � y� � 0 � x 	 y.

Ž .It is clear that any dual semilattice L, � , 0, � satisfies the condition
Ž . �2.3 by taking y� � y , so it is a Boolean algebra. However, we will not
use this fact in the proof of the following result, which provides several
characterizations of Boolean algebras.

THEOREM 2.4. For a semilattice L, the following conditions are equi�a-
lent:

Ž .i L is an annihilator lattice which is modular.
Ž . � �ii L is pseudocomplemented and 0, x is annihilator for all x � L.
Ž .iii L is dual.
Ž . Ž � �.�iv L is a pseudocomplemented lattice with a 
 b � a �b .
Ž .v L is a Boolean algebra.

Moreo�er, for a complete lattice L the following conditions are equi�alent:

Ž .vi L is an atomic Boolean algebra.
Ž . � 4vii L is a pseudocomplemented lattice with x � � a � A : a 	 x

for e�ery x � L, where A denotes the set of the atoms of L.
Ž . Ž .viii L is isomorphic to the powerset PP A .

Ž . Ž . � x �Proof. i � ii . Let x, y � L with y 	 x. If y � y �x � 0, then it
Ž . Ž �.follows from 2.1 and modularity that x � x � 1 � x � y 
 y � y, so

� �0, x is annihilator.
Ž . Ž . � � �� � �ii � iii . Let x � L. Since 0, x is annihilator and x 	 x by

Ž . � � � � �1.7.2 , x �x � 0 implies x � x . Thus, L is dual.
Ž . Ž . � � � � � Ž � �.�iii � iv . For a, b � L, a �b 	 a � a 	 a 	 a �b , and

Ž � �.� Ž � �.�similarly b 	 a �b . Thus a �b is an upper bound of the pair
of elements a and b. Now, if x � L is another upper bound of a and b,

� � � Ž � �.� � � Ž � �.�then x 	 a �b and so a �b 	 x � x. Therefore, a �b
is the join of the pair a, b.
Ž . Ž . Ž .iv � v . By taking a � b in iv , we have that L is dual and hence

Ž .annihilator, as already pointed out. So it is complemented by 2.1 . Now it
Ž .follows from 1.7.6 that it is distributive.

Ž . Ž .v � i . Given x � L, write x� to denote the unique complement of x.
Ž .If x � y � 0 for some y � L, then y � y � 1 � y � x 
 x� � y � x�

implies y 	 x�. Thus, L is pseudocomplemented with x �� x�. Now,
x �� 0 implies x � x 
 x �� 1, so L is annihilator and is modular since it
is distributive.

Suppose now that L is a complete lattice and let A denote the set of its
atoms.
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Ž . Ž . Ž . Ž . � �vi � vii . By v � ii , 0, x is annihilator, and since it is also com-
� 4 Ž .plete and atomic, x � � a � A : a 	 x by 2.2 .

Ž . Ž . Ž . Ž .vii � viii . Consider the map f : PP A � L given by f X � � X.
Ž . �1Clearly, f is onto and by 1.8 is one-to-one with f and f order-preserv-

ing. Thus, f is a lattice isomorphism.
Ž . Ž .viii � vi is trivial.

Ž . Ž .Remarks 2.5. The equivalence ii � iii is due to Yood for the lattice
� Ž .�of closed ideals of topological rings Y, 2.9 . On the other hand, Johnson

� �gave in J an example of a commutative semisimple Banach algebra whose
lattice of closed ideals is annihilator but not dual. Note that this lattice

Ž . Ž . Ž .cannot be modular by i � iii of 2.4 . Thus, while lattices of ideals are
modular, lattices of closed ideals need not be modular. Finally, it is well

� Ž .�known CrD, 4.6 that a complete Boolean algebra L is atomic if, and
only if, it is the power set of the set A of its atoms.

Ž . � � 4 Ž . Ž .For a p-semilattice S, write BB S � x : x � S . By 1.7.3 , y � BB S
� y � y � � .

Ž .THEOREM 2.6 Frink�Glivenko . Let S be a pseudocomplemented semi-
lattice.

Ž . Ž .i BB S is a Boolean algebra with the original determination of the
meet operation, the Boolean complement of an element being its pseudocom-
plement, and the join of a pair of elements x and y gi�en by x�y �
Ž � �.�x �y .

Ž . Ž .ii If S is a complete lattice, then the Boolean algebra BB S is also
complete.

Ž . � � Ž .iii The mapping x � x from S onto BB S preser�es meets, the
0-element, pseudocomplements, and joins when they exist.

Ž .Comments on the Proof. Part i of the above theorem was proved for
complete distributive lattices by Glivenko and in its full generality by Frink

� �in Fr2, Theorem 1 . Both proofs use special axiomatizations of Boolean
Ž Ž ..algebras as 2.3 to get around the difficulty of proving distributivity. A

Ž . � �direct proof of i is given in Gr . Another one is as follows: For
Ž . Ž . � � � � Ž .� �x, y � BB S we have by 1.7.4 that x � y � x �y � x � y �

Ž . Ž .BB S . Therefore, BB S is a semilattice which is clearly dual for the
pseudocomplementation inherited from S. Hence, it is a Boolean algebra

Ž . Ž . Ž .by iii � v of 2.4 , with the join of a pair of elements x and y given by
Ž � �.�x�y � x �y .
Ž . Ž .Parts ii and iii were first proved by Glivenko under more restrictive

Ž � �. � �conditions see B, p. 130 and later extended by Frink Fr2, Theorem 2 to
the present form.
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Remarks 2.7. A classical example of the Boolean algebra associated to
a pseudocomplemented lattice is provided by the annihilator ideals of a

Ž � �.semiprime ring see La, p. 111 . Another classical example is given by the
Ž .regular open subsets of a topological space X, T , where A � T is regular

Ž . � � Ž .if, and only if, A � int A . By PC, p. 60 , the Boolean algebra BB T
Ž .associated to the pseudocomplemented lattice T of 1.3 consists of the

regular open subsets of X.
The relationship between a p-semilattice S and its associated Boolean

Ž .algebra BB S can be illuminated by studying uniform elements. Let S be a
semilattice with 0-element. An element e of S is said to be essential if
e � x � 0 for any nonzero element x � S. A nonzero element u of S is
called uniform if any nonzero element x 	 u is essential in the semilattice
� �0, u . Some of the results proved in the next proposition about uniform

� Ž .�elements were already considered in FG2, 3.1 . Nevertheless, they are
included here for completeness.

PROPOSITION 2.8. Let S be a pseudocomplemented semilattice.

Ž .1 If u � S is uniform, so is any nonzero element x 	 u.
Ž .2 A nonzero element u of S is uniform if , and only if , its annihilator

u� is maximal among all annihilators x � , with 0 � x � S.
Ž .3 For each uniform element u of S, there exists a unique maximal

uniform element � of S such that u 	 � , namely, � � u� � .
Ž .4 The maximal uniform elements of S are precisely the atoms of

Ž .BB S .
Ž .5 Maximal uniform elements are mutually orthogonal, i.e., if u and �

are maximal uniform with u � � , then u � � � 0.
Ž . Ž . � �6 If S is atomic, so is BB S . Moreo�er, the mapping a � a is a

bijection from the set A of the atoms of S onto the set M of its maximal
uniform elements.

Ž .Proof. Part 1 is clear.
Ž .2 Suppose that u is a uniform element of S. We claim first that

b�� u� for every nonzero element b 	 u. Since b 	 u we have u�	 b�

Ž . � � �by 1.7.1 . On the other hand, if b � u then b �u � 0, and hence
� Ž �.b � b � b � u � b � 0 by the uniformity of u, which is a contradic-

tion, so the claim is proved. Now let c be a nonzero element of L such
that u�	 c� . If c � u � 0 then c 	 u�	 c� and hence c � 0, which is
a contradiction, so c � u � 0. Then we have by the first part of the proof

� Ž .� � � � �that c 	 c � u � u , and hence c � u , so u is maximal.
Suppose now that u� is maximal among all the annihilators d � , d a

nonzero element of S. If b is a nonzero element of S such that b 	 u,
then u�	 b� and hence u�� b� by the maximality of u� . Now for any
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other nonzero element c of S such that c 	 u, we have that b � c � 0.
For, if b � c � 0 then c 	 b�� u� , and hence c 	 u� �u � 0, which is
a contradiction.

Ž . Ž . � � � �3 Let u � S be uniform. By 1.7.2 , u 	 u . Moreover, u is
Ž . � � � � Ž .uniform because, by 1.7.3 , u � u , which is maximal by 2 . Now let

Ž . � �b be a uniform element of S such that u 	 b. Then, by 1.7.1 , b 	 u
which implies b�� u� by the maximality of b� . Hence, b 	 b� �� u� � ,
as required.

Ž . Ž . Ž .4 It follows from 2 and 3 that any maximal uniform element of
S is of the form u � u� � , where u� is maximal annihilator or, equiva-

Ž . � 4 Ž . �lently, maximal in BB S � 1 . Now, by duality of BB S , u is maximal iff
� � Ž .u � u is minimal, i.e., an atom in BB S .

Ž . Ž .5 It follows from 4 since meet operations are the same in S as in
Ž .BB S , and different atoms are mutually orthogonal.

Ž . Ž .6 Let b be a nonzero element of BB S . Then there exists an atom
a of S such that a 	 b. Hence a� �	 b� � with a� � a maximal uniform

Ž . Ž .element of S by 3 since atoms are clearly uniform and therefore an
Ž . Ž . Ž .atom of BB S by 4 . Since atoms are clearly uniform, we have by 3 that

a� � is maximal uniform for every a � A, so a � a� � defines a mapping
from A to M. If a� �� b� � for two atoms a and b, then a�� b� by
Ž . � �1.7.3 and hence a � b. For a � b � a 	 b � a , which is a contradic-
tion. Therefore, the mapping is an injection. Finally, given u � M there
exists a � A such that a 	 u, and hence a� �	 u� �� u, which implies

� � � � Ž .a � u since a is maximal uniform by 3 .

PROPOSITION 2.9. For a complete pseudocomplemented lattice L the
following conditions are equi�alent:

Ž . Ž .i The Boolean algebra BB L is atomic.
Ž . Ž . Ž .ii BB L is isomorphic to the power set PP M , where M is the set of

the maximal uniform elements of L.
Ž . �iii For any nonzero annihilator x there exists a uniform element u of

L such that u 	 x � .
Ž . Ž .�iv � M is an essential element of L; equi�alently, � M � 0.

Ž . Ž . Ž Ž .. Ž .Proof. i � ii . By 2.6 ii , BB L is complete; and since it is also
Ž .atomic, it is isomorphic to the power set of the set of its atoms by 2.4 .

Ž .However, the atoms of BB L are precisely the maximal uniform elements
Ž .of L 2.8.4 .

Ž . Ž . Ž . Ž .ii � iii . Clearly BB L is atomic, and hence it follows, again by 2.8.4 ,
that for any nonzero annihilator x � there exists u � M such that u 	 x � .
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Ž . Ž . Ž .�iii � iv . If � M � 0 then there exists a uniform element u of L
Ž .� Ž . � � Ž .� � �such that u 	 � M , and hence, by 1.7 , u 	 � M �

Ž .� � � Ž .� M , with u maximal uniform by 2.8.3 , which is a contradiction.
Ž .�Thus, � M � 0.

Ž . Ž . Ž . Ž .� Ž .iv � i . Let 0 � b � BB L . Since � M � 0, it follows from 1.7.5
Ž .that b � u � 0 for some u � M. Set � � b � u. By 2.8.1 , � is uniform,

� � � � � � Ž .with � 	 b � b. But � is maximal uniform by 2.8.3 and there-
Ž . Ž . Ž .fore an atom in BB L by 2.8.4 . Therefore, BB L is atomic.

Ž .Remarks 2.10. 1 Complete pseudocomplemented lattices satisfying
Ž .the equivalent conditions of 2.9 occur in Goldie theory and local Goldie

Ž � �.theory see FG1, Theorem 3 .
Ž . � Ž .�2 In ChM, 3.5 , it was shown that the Boolean algebra of a finite

p-lattice L is isomorphic to the powerset of the set of the atoms of L.
Actually, this result remains true for any atomic complete p-lattice and can

Ž . Ž . Ž .be derived from 2.9 . Indeed, by 2.8.6 , BB L is atomic and the mapping
a � a� � is a bijection from the set A of the atoms of L onto the set M

Ž .Ž . Ž .of the maximal uniform elements of L. Now we apply 2.9 i � ii .
Ž . Ž .3 Another interesting special case of 2.9 occurs when L is a

complete p-lattice satisfying the Ascending Chain Condition. Then its
Ž .associated Boolean algebra BB L satisfies both chain conditions and

hence it is atomic. In the next section we will consider again this question
in relation to the Goldie dimension of a complete pseudocomplemented
lattice.

What can be said about the Boolean algebra of an annihilator lattice?
An element c � 1 in a semilattice S with a greatest element 1 is called a
coatom if c 	 x implies x � c or x � 1 for x � S.

Ž .PROPOSITION 2.11. If S is an annihilator semilattice, then S and BB S
ha�e the same coatoms.

Proof. If c � 1 is a coatom in S, then c�� 0 implies c 	 c� �� 1 and
� � Ž .hence c � c is a maximal annihilator, i.e., a coatom in BB S . Con-

� Ž . �versely, let x be a coatom in BB S . If x 	 y for some y � S, then
x �� x � � �	 y � � implies y � �� x � or y � �� 1. If the first, y 	 y � �

� x � ; if the second, y � �� 1, and hence y �� y � � �� 0, so y � 1.
�Thus, x is a coatom in S.

Ž .Remarks. 2.12 If S is a p-semilattice which is not annihilator, then
the situation can be completely different. Let E denote the complete

Ž .pseudocomplemented lattice defined by the usual euclidean topology of
Ž Ž . Ž ..the real numbers � see 1.3 and 2.7 . It is clear that the coatoms of E

Ž .are precisely the complements of the one-element sets. However, BB E
does not contain atoms, and therefore it has no coatoms. Note also that E



FERNANDEZ LOPEZ AND TOCON BARROSO´ ´ ´74

is not annihilator; the exterior of the complement of a single element set is
empty.

Ž . Ž � �.2.13 A classical result in lattice theory asserts see CrD, p. 89
that a finite distributi�e lattice can be embedded in a direct product of finitely
many finite chains. Let us approach this question from an algebraic point of
view, that is, in terms of pseudocomplemented lattices. If L is a chain we
are finished, so we may assume that L is not a chain. Let x be the0

Žminimum element of L which is covered by at least two elements note
. � � � �that such an element does exist . Clearly, L � 0, x 
 x , 1 where0 0

� �0, x is a chain, so without loss of generality we can suppose x � 0.0 0
Ž . Ž Ž ..Since L is pseudocomplemented 1.2 and finite, we have by 2.9 iv that

the join of the maximal uniform elements of L, say, u 
 ��� 
 u , is1 n
essential; equivalently, � u�� 0. Let � be the mapping of L into thei i

� � � Ž . Ž �direct product of the lattices L � u , 1 defined by � x � x 
 ui i 1
�., . . . , x 
 u . It is clear that � is order-preserving. Moreover, it followsn

Ž . Ž . �from distributivity that � x 	 � y implies x 	 y. Indeed, if x 
 u 	 yi

 u� for 1 	 i 	 n, theni

x � x 
 0 � x 
 u� � x 
 u� 	 y 
 u� � y.Ž . Ž .� � �i i iž /
i i i

Finally, since L is not a chain, n � 1 and the cardinal of each L is lessi
than the cardinal of L. Hence the proof follows by induction.

3. GOLDIE DIMENSION FOR COMPLETE
PSEUDOCOMPLEMENTED LATTICES

Let L be a complete lattice with least element 0. A set X of nonzero
Ž � 4.elements of L is said to be independent if x � � X � x � 0 for all

x � X.

PROPOSITION 3.1. Let L be a complete pseudocomplemented lattice. For
a set X of nonzero elements of L the following conditions are equi�alent:

Ž .i X is independent.
Ž .ii X is finitely independent; i.e., e�ery finite subset of X is indepen-

dent.
Ž .iii The elements of X are mutually orthogonal.

� 4In this case, any n-element subset x , x , . . . , x of X gi�es rise to a chain1 2 n
0 � x � x 
 x � ��� � x 
 ��� 
 x of length n.1 1 2 1 n
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Ž . Ž . Ž . Ž . Ž . Ž .Proof. i � ii and ii � iii are trivial. To prove that iii � i , let
X be a set of mutually orthogonal elements of L. Given x in X, x 	 y �

� 4 Ž . � Ž .�for all y � X � x , and hence, by 1.7.5 , x 	 � y � � y �y � x y � x
Ž Ž � 4..� Ž � 4.� X � x ; equivalently, x � � X � x � 0.

Ž .The last part is a direct consequence of ii .

Clearly, different atoms are mutually orthogonal, and the same is true
Ž .for maximal uniform elements of a complete p-lattice by 2.8.5 . Hence it

Ž .follows from 3.1 that we have

COROLLARY 3.2. Let L be a complete pseudocomplemented lattice. If X is
a subset of atoms or of maximal uniform elements, then X is independent.

Let � be a cardinal number. A complete pseudocomplemented lattice L
Ž .will be said to have Goldie dimension � dim L � � if L contains an

independent subset X of cardinal � and, for every independent subset Y
of L, card Y 	 � .

Ž . Ž .Since L and BB L have the same meet operations, it follows from 3.1
Ž .that any independent subset of BB L remains independent in L. On the

� � Ž .other hand, the mapping x � x preserves orthogonality 1.7.4 and
therefore also independence. Hence it is easy to derive the following
result.

PROPOSITION 3.3. Let L be a complete pseudocomplemented lattice. Then
Ž .L has Goldie dimension if , and only if , so does BB L . In this case,

Ž .dim L � dim BB L .

The following result, providing a sufficient condition for a complete
p-lattice to have Goldie dimension, is very useful.

PROPOSITION 3.4. Let L be a complete pseudocomplemented lattice. If L
contains an independent subset U of uniform elements whose join is essential,
then L has Goldie dimension equal to card U.

Proof. Let X be an independent subset of L. Since �U is essential,
Ž .we have by 1.7.5 that for each x in X there exists a uniform element u in

� 4U such that u � x � 0. Put U � u � U : u � x � 0 . Then the U arex x
Ž .mutually disjoint: if u � U � U for x, y � X, x � y then u � x � 0,x y

Ž . Ž .u � y � 0 with u � x � u � y 	 x � y � 0, which contradicts the uni-
formity of u. Let c be a choice function of the family of all U . By thex

Ž .above, the mapping x � c U is an injection from X into U, so card X 	x
card U.

COROLLARY 3.5. Let L be a complete pseudocomplemented lattice. If L
Ž .satisfies the equi�alent conditions of 2.9 then L has Goldie dimension equal

to card M, where M is the set of the maximal uniform elements of L. In
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particular, if L is atomic then dim L � card A, where A is the set of the atoms
of L.

Ž .Proof. By 3.2 , M is an independent subset, and since L satisfies the
Ž .equivalent conditions of 2.9 , � M is essential. Hence dim L � card M

Ž . Ž .by 3.4 . If L is atomic, then dim L � card M � card A by 2.8.6 .

The existence of an independent subset of uniform elements whose join
is essential is not a necessary condition for a complete p-lattice to have
Goldie dimension, as the following example shows.

EXAMPLE 3.6. Let E be the complete pseudocomplemented lattice
Ž . Ž .defined by the usual euclidean topology of the real numbers � 1.3 . Note

Ž Ž .first that E has no uniform elements indeed, as pointed out in 2.12 ,
Ž .BB E does not contain any atom and therefore E has no uniform elements
Ž . Ž ..by 2.8.3 and 2.8.6 . However, E has Goldie dimension, with dim E � � .0

Clearly, E has a countable independent subset. On the other hand, any
� 4independent subset of E has cardinal 	 � : Let O : 	 � 
 be an0 	

Ž .independent subset of nonempty open subsets of �. For each 	 � 
,
O � � � � and we can take a choice function of the family of the	

Ž .O � �. Then the mapping 	 � c O � � is an injection from 
 into �.	 	

However, the finite Goldie dimension is equivalent to the chain condi-
tions on annihilators.

THEOREM 3.7. For a complete pseudocomplemented lattice L the follow-
ing conditions are equi�alent:

Ž .i L has finite Goldie dimension.
Ž .ii L does not contain infinite chains of annihilators.
Ž . Ž .iii BB L is finite.

In this case, the Goldie dimension, say dim L � n, of L, equal to the
number of maximal uniform elements of L, coincides with the annihilator

Ž . Ž .length of L length of the largest chain of annihilators , and BB L is the
power set of an n-element set.

Ž . Ž .Proof. i � ii . It suffices to see that to each chain of annihilators
1 � a�� a�� ��� � a� of length n we can associate an independent0 1 n

� 4subset x , . . . , x of cardinal n as follows. For each 1 	 k 	 n, set1 n
x � a� � a . Since a� � a� , x � 0. Moreover, for x � x , sayk k�1 k k�1 k k k j
1 	 j � k 	 n, we have

x � x 	 a � a 	 a � a�� 0,j k j k�1 j j

� 4 Ž .which proves that x , . . . , x is an independent set by 3.1 .1 n
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Ž . Ž . Ž .ii � iii . BB L satisfies both ascending and descending chain condi-
Ž . Ž . Ž . Ž .tion. Then, by 2.9 , i � ii , BB L is isomorphic to the power set of a

finite set, and therefore it is finite.
Ž . Ž . Ž . Ž .iii � i . By 3.3 , dim L � dim BB L is finite.

Suppose now that L has finite Goldie dimension, say dim L �
Ž . Ž . Ž .dim BB L � n. As seen in the proof of i � ii , any chain of annihilators

has length 	 n. Conversely, suppose that we are given an independent
� 4 �subset x , . . . , x of L. We construct a chain of annihilators, 1 � a �1 n 0

a�� ��� � a� , as follows.1 n
� � Ž .� �Clearly, x � 1 since x � 0, and x � x 
 x . But x is actually1 1 1 1 2 1
Ž .� Ž .� �greater than x 
 x . For if x 
 x � x , then x � x � 0 im-1 2 1 2 1 1 2

� Ž .� �plies x 	 x � x 
 x 	 x , which is a contradiction since x � 0.2 1 1 2 2 2
Ž .�By putting a � 0, a � x , and a � x 
 x , we obtain the chain of0 1 1 2 1 2

� � �annihilators 1 � a � a � a , and we can go on by recurrence.0 1 2

EXAMPLE 3.8. The following example of the Boolean algebra of a
�pseudocomplemented lattice of finite Goldie dimension is taken from L,

� Ž .p. 338 . Let K be a field and R the commutative semiprime ring
� �K x , . . . , x with the defining relation x ��� x � 0. It is not difficult to1 n 1 n

see that the pseudocomplemented lattice L of all ideals of R has finite
Ž .Goldie dimension n, and consequently BB L is the Boolean algebra of all

subsets of an n-element set.

Ž .A semilattice S has finite length n length S � n if it has a chain of
Ž .length n and every chain of S has length at most n. By 3.7 , any complete

p-lattice L of finite length has finite Goldie dimension, with dim L 	
length L. But the converse is not true, as can be seen by considering an
infinite chain.

For a finite Boolean algebra L, dim L � length L � n, where n is the
Ž .number of atoms of L 2.4 . As we next show, this equality characterizes in

fact the finite Boolean algebras inside the class of all p-lattices.

THEOREM 3.9. A complete pseudocomplemented lattice L is a finite
Boolean algebra if , and only if , L has finite length and dim L � length L.

Proof. Clearly, a finite Boolean algebra satisfies the above condition.
Ž .Ž . Ž .For the converse it suffices to prove, by 2.4 vii � viii , that each x � L

is a joint of atoms. Let A denote the set of the atoms of L and suppose
� 4 �that � a � A: a 	 x � x for some x � L. Write A � a , . . . , a ,1 m

4a , . . . , a , where a 	 x for 1 	 i 	 m and a � x � 0 for m � j 	 n.m� 1 n i j
Ž . Ž .We have that dim L � n by 3.5 and, by the last part of 3.1 ,

0 � a � ��� � a 
 ��� 
 a � x � x 
 a1 1 m m�1

� ��� � x 
 a 
 ��� 
 am� 1 n
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is a chain of length n � 1, which is a contradiction. Therefore, L is a finite
Boolean algebra.

Ž . � �3.10 It was stated in CrD, p. 27 that if a distributi�e lattice L has
finite length n, then L has at most 2 n elements.

We will give a proof of this result involving pseudocomplemented
Žlattices we are allowed to do this since such lattices are pseudocomple-

Ž ..mented by 1.2 . The proof goes by induction on n. Clearly, a lattice of
length 	 1 has at most two elements. Now, the induction step is a
consequence of the following trivial observation.

Let L be a p-lattice and let a be an atom in L. Then L is the disjoint
� �� � �union of the subsets 0, a and a, 1 .

Return to the case of a distributive lattice L of finite length n. By the
Ž . � �� � �above and the fact that both of the distributive lattices 0, a and a, 1

have length less than n, it follows from the induction hypothesis that

� �� � � n�1 n�1 ncard L � card 0, u � card u , 1 	 2 � 2 � 2 .

Remarks 3.11. A pseudocomplemented lattice L with finite length is
not necessarily finite. Consider a complete lattice L with infinite atoms
and length 2 that clearly does exist. Then enlarge it by adding a least

˜element. The lattice L thus obtained is pseudocomplemented and has
Ž Ž ..length 3 see 1.5 .

4. COMPATIBLE PRODUCTS

All the semilattices considered in this section will have a least element 0.
Ž .By a product on a semilattice S we mean a binary operation x, y � xy

on S satisfying the following conditions:

Ž .4.1 If x 	 y then zx 	 zy and xz 	 yz for all z � S.
Ž .4.2 xy 	 x � y for all x, y � S.

If S � L is actually a lattice, we will require a further condition:

Ž . Ž .4.3 x y 
 z 	 xy 
 xz.

Ž . Ž . Ž .Lattices endowed with a product satisfying 4.1 , 4.2 , and 4.3 will be
Ž .called pseudomultiplicati�e lattices. It follows from 4.1 and transitivity that

Ž .4.4 if x 	 y and z 	 � , then xz 	 y� .

Ž . Ž .We also note that, by 4.1 , 4.3 is equivalent to

Ž . Ž .4.5 x y 
 z � xy 
 xz.
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Ž .Moreover, by 4.2 ,

Ž .4.6 x0 � 0 � 0 x.

As will be seen in the next examples, the notion of the pseudomultiplica-
tive lattice is quite general, although we will be especially interested in
semiprime lattices.

Ž .4.7 Let S be a semilattice with a product xy. Then the following
conditions are equivalent:

Ž .i xy � 0 � x � y � 0, for all x, y � S.
Ž . 2ii x � xx � 0 � x � 0, for all x � S.

Ž . Ž . 2 Ž . Ž .Proof. i � ii is clear: x � 0 implies x � x � x � 0. i � ii :
Ž .In general, we have by 4.2 that x � y � 0 implies xy � 0 � yx. Also,

Ž . Ž .2 Ž .2by 4.4 , x � y 	 xy. Thus, if xy � 0 then x � y � 0 and hence
x � y � 0.

A product xy satisfying the above equivalent conditions will be said to
be compatible. A pseudomultiplicative lattice whose product is compatible
will be called semiprime.

Ž .EXAMPLES 4.8 Elementary examples. Any lattice can be regarded as a
pseudomultiplicative lattice in a trivial way, i.e., by defining xy � 0 for all
x, y � L.

On the opposite side, every distributive lattice L is a pseudomultiplica-
tive lattice for the product defined as the meet, xy � x � y, for all
x, y � L. Note that this last product is clearly compatible.

Suppose now that L is a lattice with nonzero core c. Then L becomes a
pseudomultiplicative lattice for the product defined by xy � c whenever
x, y are nonzero, and xy � 0 otherwise. Clearly, the product thus defined
is compatible.

Ž .4.9 Multiplicati�e lattices. In relation to a problem to which we will
� �pay attention later, Kaplansky considered in K, p. 245 complete lattices L

Ž . Ž .endowed with a product, xy, satisfying 4.2 , 4.5 , and

4.5.1 y 
 z x � yx 
 zx.Ž . Ž .

It is easy to see that these lattices are pseudomultiplicative. We will use
the term quasi-multiplicati�e to designate this particular kind of pseudo-
multiplicative lattice, avoiding the word ‘‘multiplicative’’ that has been
used previously to mean lattices with a product subject to more restrictive
conditions.

A complete lattice L is said to be multiplicati�e if it has a multiplication
that is commutative, associative, and distributive over arbitrary joins, and
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the greatest element acts as a multiplicative identity. Multiplicative lattices
are pseudomultiplicative. Indeed, let x, y, z � L. If x 	 y then it follows

Ž .from the distributivity of the product that zy � z y 
 x � zy 
 zx, so
Ž .zx 	 zy. Similarly, xz 	 yz, and therefore the product satisfies 4.1 . To

Ž . Ž .prove 4.2 , we have by 4.1 that, for arbitrary x, y � L, xy 	 x1 � x, and
similarly, xy 	 1 y � y, so xy 	 x � y, as required. The reader is referred

� �to D for results on multiplicative lattices.
Ž . � �4.10 The lattice of ideals of an algebraic system. Following FG2 , by an

algebraic system we mean any of the following algebraic structures: a
Ž .nonassociative algebra, triple, or pair or a quadratic Jordan system

Ž .quadratic Jordan algebra, Jordan triple system, or Jordan pair . As shown
� �in Examples 1�4 of FG2 , the complete lattice of ideals of an algebraic

system becomes a pseudomultiplicative lattice for a natural and suitable
product. For instance, let A be a nonassociative algebra over an arbitrary

� �ring of scalars and let X, Y be nonempty subsets of A. Denote by XY
the ideal of A generated by the linear span of all products xy, x � X and

� �y � Y. Now let B and C be ideals of A. Define the product B�C � BC .
Ž .Then the lattice II A of all ideals of A, endowed with the �-product, is a

Žpseudomultiplicative lattice. Note that if A is actually an associative even
.alternative algebra, then B�C is merely BC. If J is a quadratic Jordan

algebra, the product of two ideals B, C is given by U C, where, as usual,B
x � U denotes the Jordan U-operator.x

ŽWhile the lattice product of a ‘‘linear’’ algebraic system nonassociative
.algebra, triple, or pair is actually distributive over arbitrary joins, this does

not remain true for quadratic Jordan systems: Our decision to adopt the
Ž .nonsymmetrical distributivity condition 4.3 was motivated precisely by the

nonlinearity of the quadratic Jordan product B�C � U C in the firstB
variable. However, quadratic Jordan systems satisfy the weak version of
Ž .4.5.1

4.5.2 y 
 z x 	 yx 
 zx 
 y � z � x ,Ž . Ž .

�which is a direct consequence of the fundamental Jordan identity Lo,
�JP3 . Clearly, an algebraic system is semiprime if, and only if, the lattice of

its ideals is semiprime.
Ž .4.11 The lattice of closed ideals of a topological algebraic system. By a

topological algebraic system we mean any algebraic system A endowed with
a topology which makes continuous the algebraic operations of A. Let A
be a topological algebraic system and let B, C be closed ideals of A.

Ž .Denote now the lattice product of two ideals in II A by juxtaposition and
by S � S the closure operation. By the continuity of the algebraic opera-
tions, we have that BC 	 BC. Hence it is clear that B�C � BC defines a
structure of pseudomultiplicative lattice on the lattice of closed ideals,
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Ž .II A , of A. Again, a topological algebraic system which is semiprime has a
semiprime lattice of closed ideals.

Ž . � �4.12 The lattice of normal subgroups of a group. Following S , we
Ž .can see that the complete lattice NN G of normal subgroups of a group G

is a pseudomultiplicative lattice for the product defined as the commutator
� � Ž � �B, C subgroup of G generated by all the commutators b, c , b � B,

. Ž .c � C , with B, C normal subgroups of G. Such a lattice NN G will be
semiprime if, and only if, the group G does not contain nontrivial normal
subgroups that are abelian.

Ž . Ž .4.13 The nonmodular pentagon L considered in 1.4 is a5
semiprime lattice for the product defined by the condition z 2 � x. Note
that L with this product is not a multiplicative lattice.5

Later we will see that Example 4.13 is a particular case of a general
Ž .process endowing any finite even atomic pseudocomplemented lattice

with a compatible product.
The examples described above provide a source of pseudocomplemented

lattices where the pseudocomplementation is generally given in terms of a
Ž .compatible product. This is clear for a lattice with nonzero core 4.8 , for

Ž . Žthe lattice of ideals closed ideals of a semiprime algebraic topological
. Ž .algebraic system 4.10 and 4.11 , for the lattice of normal subgroups of a

Žsemiprime group where semiprime here means an absence of nontrivial
. Ž . Ž .abelian normal subgroups 4.12 , and for the pentagon given in 4.13 . In

all these cases, the reason for the existence of a pseudocomplementation is
that these lattices are complete and the product is infinitely distributi�e, i.e.,
satisfying

4.5.3 x y � xyŽ . Ž .� �� �ž /
� �

� 4for every x in L and every family y of elements of L. In general, we�

have

Ž . Ž .4.14 Every complete semiprime lattice satisfying 4.5.3 is pseudo-
complemented, where the pseudocomplement, x � , of an element x is
given by the supremum of all y � L annihilating x; i.e., xy � 0.

It should be noted that complete pseudomultiplicative lattices satisfying
Ž . � �4.5.3 were studied in FG2 under the name of algebraic lattices. But later
the authors learned that the term algebraic lattice had been used previ-
ously in lattice theory with a different meaning.

Two other questions regarding compatible products should be consid-
ered. Does a pseudocomplemented lattice necessarily have a compatible
product? And, in such a case, is this compatible product necessarily
unique?
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Ž .As said in 4.8 , a lattice L which is distributive has a natural compatible
product, namely, that defined as the meet xy � x � y, x, y � L. Note that
this product is idempotent, that is, x 2 � x for all x � L. The converse is
also true.

Ž .PROPOSITION 4.15. 1 A lattice L is distributi�e if , and only if , it has a
Ž .unique idempotent product; in fact, such a product coincides with the meet.
Hence, if L is complete, then L is infinitely distributi�e if , and only if , the

Ž .product satisfies 4.5.3 .
Ž .2 A lattice is a Boolean algebra if , and only if , it is annihilator and

has an idempotent product.

Ž .Proof. 1 Suppose that L is a lattice endowed with an idempotent
Ž . Ž . Ž .2product xy. For all x, y � L we have, by 4.4 and 4.2 , x � y � x � y

Ž .	 xy 	 x � y, so xy � x � y. Hence, L is distributive by 4.5 .
Ž . Ž .2 Clearly, any Boolean algebra satisfies these conditions, by 2.4 .

Suppose then that L is an annihilator lattice with an idempotent product.
Ž . Ž .Then L is distributive by 1 and complemented by 2.1 and therefore is a

Boolean algebra.

It is well known that the lattice of ideals of a von Neumann regular
� Ž .�algebra GoW, 7.3 and the lattice of closed ideals of a C*-algebra are

Žinfinitely distributive in fact, the latter is the open set lattice of a
� Ž .�.topological space Di, 3.2.2 . As we will see next, both results can be

Ž .derived from 4.15 .
By a C*-system we will mean any of the following algebraic structures:

an associative or alternative C*-algebra, a JB*-algebra, a JB*-triple, or a
Ž � � .JB-algebra see Di, R, Ru, H for definitions and basic results . It is known

Žthat in all these cases the lattice of closed ideals is idempotent even
.algebraically idempotent for the corresponding lattice product. A unified

proof of this fact can be given by taking into account that any C*-system
Ž .can be regarded as a real or complex JB*-triple. Now apply that every

Ž � Ž .�.element in a JB*-triple has a cubic root see MoR, 1.2 . Also, the lattice
of ideals of a von Neumann regular algebraic system is idempotent. Hence

Ž .we obtain from 4.15

COROLLARY 4.16. The lattice of closed ideals of a C*-system and the
lattice of ideals of a �on Neumann regular algebraic system are infinitely
distributi�e.

A distributive pseudocomplemented lattice can have two different com-
patible products. We only need to consider the three-element chain

� 4C � 0, x, 1 , which is pseudocomplemented and has two different com-2
Žpatible products, namely, the one defined as the meet as in every finite

.distributive lattice and the second given by the fact that this lattice has a
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Ž .core 4.8 . As will be seen now, this anomaly disappears if we restrict
ourselves to Boolean algebras. For this, two further properties on pseudo-
complements will be required.

Ž .4.17 Let S be a p-semilattice with a compatible product xy. For
x, y � S, we have

Ž . Ž 2 .� �1 x � x and
Ž . Ž .� Ž .�2 xy � x � y .

� Ž .�Proof. Part 1 follows as in FG2, 2.2 vi , while Part 2 is a direct
Ž .� Ž .�consequence of Part 1. Indeed, xy 	 x � y implies x � y 	 xy .

Ž .2 Ž .� Ž .2 � Ž .�Conversely, x � y 	 xy implies xy 	 x � y � x � y by
Part 1.

COROLLARY 4.18. A Boolean algebra L has a unique compatible product
xy; that gi�en by the meet.

Ž .Proof. Since Boolean algebras are dual lattices 2.4 , the proof follows
Ž .from 4.17.2 .

Ž .4.19 Let L be a complete lattice and let A denote the set of the
Ž . Ž .atoms of L. Consider the mapping supp: L � PP A defined as supp x �

� 4a � A: a 	 x . It is easy to verify that this mapping has the following
properties for all x, y , y � L:�

Ž . Ž . Ž . Ž .1 supp x � y � supp x � supp y .
Ž . Ž . Ž .2 �supp y 	 supp 
y .� �

Ž . Ž .3 supp 0 � �.
Ž . Ž .4 supp 1 � A.

If L is pseudocomplemented, we have

Ž . Ž . Ž .5 �supp y � supp � y and� �

Ž . Ž Ž .. Ž .6 supp x � � y � �supp x � y .� �

Ž .Indeed, let a � L be such that a does not belong to �supp y . Then�
� Ž .a � y � 0 for all y , so � y 	 a , and hence a � supp � y , which� � � �

Ž . Ž . Ž . Ž .proves 5 . Now 6 follows from 1 and 5 .

Ž .4.20 Let L be a complete pseudocomplemented lattice. The socle
Ž . Ž .mapping soc: L � L is defined by soc x � �supp x for all x � L. This

mapping satisfies among others the following properties:

Ž . Ž .1 soc x 	 x.
Ž . Ž . Ž .2 x 	 y � soc x 	 soc y .
Ž . Ž Ž .. Ž .3 soc soc x � soc x .
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Ž . Ž .� Ž .�4 x 	 y � soc y 	 soc x .
Ž . � Ž .�5 0, soc 1 is a complete annihilator lattice which is atomic.

Ž . Ž . Ž . Ž . Ž . Ž .The properties 1 , 2 , and 3 are clear; 4 follows from 1.8 ; and 5 is
Ž .a consequence of 2.2 .

The following result is a partial answer to the first question formulated
before. In particular, it proves that finite pseudocomplemented lattices
have a compatible product.

THEOREM 4.21. Let L be a complete pseudocomplemented lattice which is
Žatomic. Then L becomes a semiprime lattice for the commutati�e and

. Ž .associati�e product defined by xy � soc x � y .

Ž .Proof. Let us show that xy � soc x � y is a compatible product satis-
Ž . Ž . Ž .fying the required properties. Indeed, 4.1 and 4.2 follow from 4.20.2

Ž . Ž . Ž .and 4.20.1 respectively, and 4.3 is a consequence of 4.19.6 . Finally, it is
clear by atomicity of L that xy � 0 iff x � y � 0, which completes the
proof.

Ž .It follows from 4.18 that for an atomic complete Boolean algebra L
Ž .the product defined in 4.21 is the unique compatible product on L and

Ž .therefore coincides with the meet; i.e., x � y � soc x � y for all x, y � L.
If L is merely annihilator instead of dual, we still have a partial unique-
ness for compatible products. Indeed,

Ž .4.22 Let L be an atomic complete annihilator lattice. For every
2 Ž .compatible product xy on L, x � soc x .

Ž . Ž . Ž 2 . 2Proof. It follows from 4.17.1 that soc x � soc x 	 x and from
Ž . Ž . Ž �. 2 Ž Ž . Ž �..2.2 that 1 � soc x 
 soc x . Hence, x 	 x1 � x soc x 
 soc x

2Ž . Ž . Ž .� x soc x 	 soc x . Therefore, x � soc x .

Ž .Remarks 4.23. The partial uniqueness proved in 4.22 is no longer true
without the annihilator condition. Consider, as in the comment after
Ž .4.16 , a three-element chain. On the other hand, it is possible to give an
example of an atomic complete annihilator lattice with two different
compatible products. To construct such an example add three new ele-

Ž . � 4ments, say y, z, � , to the power set, PP A , of the set A � a, b, c
Ž . � 4 Ž . � 4 Ž . � 4satisfying the relations i 0 � y � b , ii a, b � z � A, and iii b, c �

� � A. It is easy to see that the lattice L thus obtained is annihilator and,
Ž .since it is finite, is atomic and complete. Therefore, by 4.21 , we have a

compatible product on L defined by taking the join of the common
support of two elements. It is still possible to define a new compatible

� 4 Ž .product on L such that z� � b � y � soc z � � .
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5. PRIME ELEMENTS IN PSEUDOMULTIPLICATIVE LATTICES

Let L be a pseudomultiplicative lattice with a greatest element 1 and
product denoted by xy. An element p � 1 in L will be called prime if
xy 	 p implies x 	 p or y 	 p, for x, y � L. It is straightforward that if
the meet of the set of the prime elements of L is the least element 0, then
the product is compatible. The converse is true for the lattice of ideals of a
semiprime ring. However, this does not remain true in general.

Ž . Ž . Ž Ž . .5.1 Following 2.12 , the complete Boolean algebra BB E , �, �
of the regular open subsets of �, with its unique compatible product
BC � B�C � B � C, is a semiprime lattice with no prime elements.

Proof. Let P be a regular open subset of � with P � �. Then P
cannot be the complementary of a single element of �, so there exist two
real numbers x and y, say x � y, which are not in P. Take z � � such

Ž .that x � z � y and consider the open regular subsets B � ��, z �P,
Ž .C � z, �� �P. By distributivity of the Boolean operations, BC � B�C

� B � C � P, but neither B nor C is contained in P. Thus, P is not
prime.

From now on, by a strongly semiprime lattice we will mean a pseudomul-
tiplicative lattice such that the meet of its prime elements is 0. As we have
just seen, strongly semiprime lattices are semiprime, but the converse is
not true in general.

� �In his paper K , Kaplansky noted that in any semiprime nonassociative
ring the intersection of the prime ideals is 0. In fact, he provided a proof of
this result which could also be applied to groups, with normal subgroups

Ž Ž ..playing the role of ideals and commutators as the product see 4.12 . This
led him to formulate the question for complete quasimultiplicative lattices
Ž Ž ..see 4.9 such that any nonzero element contains a nonzero compact

� �element, thus generalizing in fact a theorem by Keimel Ke for complete
algebraic semiprime multiplicative lattices. On the other hand, Rosický

� � � �pointed out in Ro, Example 1 that the unit interval 0, 1 is a strongly
semiprime complete multiplicative lattice which, however, is not algebraic
Ž � � .in fact, the unique compact element in 0, 1 is 0 and extended Keimel’s
theorem to continuous multiplicative lattices, covering the example of the
unit interval.

Ž .These results Kaplanky’s and Rosicky’s remain true under slightly´
more general conditions that allow one to include lattices of ideals of
algebraic systems which are not necessarily linear, i.e., quadratic Jordan
systems. For completeness we include the proof.
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� �Following Ro , an element u in a complete lattice L is said to be below
� 4x � L, written u 	 x, if whenever there is a chain y with x 	 � y ,� �

then u 	 y for some y It is clear that u 	 x � u 	 x. Note that an� �

element c � L is compact iff c 	 c.

THEOREM 5.2. Let L be a complete semiprime lattice whose product also
Ž .satisfies 4.5.2 and is such that for any nonzero element x � L there exists a

nonzero u � L such that u 	 x. Then L is strongly semiprime.

Proof. We only need to see that for every 0 � x � L there exists a
prime element p � L such that x � p. By hypothesis, there exists a
nonzero element f with f 	 x. With f at hand, take f to be1 1 n n�1
a nonzero element such that f 	 f 2. By using Zorn’s lemma, theren�1 n
exists p � L being maximal with respect to the property f � p for all n.n
We claim that p is prime. Suppose on the contrary that we have y, z � L
such that yz 	 p with y � p and z � p. Taking y� � y 
 p and z� � z 
 p,
we have that y� � p and z� � p, and hence, by the maximality of p, there
exist f 	 y� and f 	 z� for some n, m, say, m � n. Then f 	 f 2 	n m m�1 m

Ž . Ž . Ž .y�z�. But, by 4.2 , 4.3 , and 4.5.2 ,

y�z� � y 
 p z 
 p � y 
 p z 
 y 
 p p 	 yz 
 p 	 p ,Ž . Ž . Ž . Ž .

which is a contradiction since f � p for all n. Therefore p is prime.n
Moreover, x � p, since otherwise f 	 x 	 p � f 	 p, which again is a1 1
contradiction.

Ž .It follows from 1.7.5 that any atom in a complete pseudocomplemented
Ž . Ž .lattice is compact. Hence, we obtain as a consequence of 5.2 and 4.21 ,

Ž .COROLLARY 5.3. 1 Any atomic complete lattice with a compatible
Ž .product satisfying 4.5.2 is strongly semiprime. In particular:

Ž .2 Any atomic complete pseudocomplemented lattice is strongly
Ž . Ž .semiprime for the product xy � soc x � y defined in 4.21 .

Ž . Ž .Remarks 5.4. 1 As pointed out in 4.10 , algebraic systems satisfy the
Ž . Ž .condition 4.5.2 , so it follows from 5.2 that any semiprime algebraic

system is strongly semiprime. The reader could consult different versions
of this result for lattices of ideals of nonassociative algebraic systems, such

� �as alternative rings Z, Proof of Theorem 6, p. 162 , quadratic Jordan
� � � �algebras Th , or quadratic Jordan triple systems Mc .

Ž .2 It is natural to ask whether for a semiprime topological algebraic
system A the intersection of its closed prime ideals is 0. It seems that the
answer to this question is unknown even if A is a commutative Banach

� �algebra. Nevertheless, a positive answer has been given by Somerset So1
for semiprime Banach algebras whose lattice of closed ideals is a countably
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generated continuous lattice. A concrete class of Banach algebras to which
� �this applies is the class of TAF-algebras So2 .

Our next aim is to study prime elements in pseudocomplemented
lattices endowed with a compatible product.

LEMMA 5.5. Let L be a pseudocomplemented lattice with a compatible
product, and let x � L be such that x �� 1. Then x � is prime if , and only if ,
it is a maximal annihilator. In this case, x � is a minimal prime.

Proof. Suppose first that x �� 1 is prime. If x �	 y � for some y � L,
we have by the primeness of x � that 0 � yy �	 x � implies y 	 x � or
y �	 x � . If it is the first, y 	 x �	 y � implies y � 0, and hence y �� 1;
if the second, x �� y � . Thus x � is maximal annihilator. Conversely,
assume that x � is a maximal annihilator, and let a, b � L be such that

� Ž . Ž .ab 	 x . Then, by 4.1 and 4.2 ,

1 a bx 	 ab � x � 0.Ž . Ž . Ž .
� Ž .�On the other hand, bx 	 x implies x 	 bx and hence, by the maxi-

� � Ž .� Ž .� � Ž .�mality of x , x � bx or bx � 1. If the first, x � bx implies
Ž . � Ž .� Ž .� � �by 1 that a 	 x ; if the second, bx � 1 implies bx 	 bx � 1 � 0,

so b 	 x � . Therefore x � is prime.
Suppose finally that x � satisfies the above equivalent conditions, and

let p be a prime element such that p 	 x � . As before, 0 � xx �	 p
implies x 	 p or x �	 p. In the first case, x � 0, which is a contradiction

� � �since x � 1. Thus x 	 p, which proves that x is minimal prime.

The following proposition, which generalizes a well-known result for
Ž � Ž .�.lattices of ideals of semiprime rings see L, 11.41 , provides a way of

producing prime elements by means of uniform elements. Note that it also
Ž .completes the statement of 2.8 .

PROPOSITION 5.6. Let L be a pseudocomplemented lattice with a compati-
ble product. For a nonzero element u � L, the following conditions are
equi�alent:

Ž . �i u is a maximal annihilator,
Ž . �ii u is a minimal prime,
Ž . �iii u is prime,
Ž .iv u is uniform.

Ž . Ž . Ž . Ž . Ž .Proof. i � ii follows from 5.5 , and ii � iii is trivial. Finally,
Ž . Ž . Ž . Ž . Ž . Ž .iii � iv and iv � i follow from 2.8.2 and 5.5 .

COROLLARY 5.7. Let L be a complete pseudocomplemented lattice with a
Ž .compatible product. If L satisfies the equi�alent conditions of 2.9 , then L is

strongly semiprime. In particular, this is true if L has finite Goldie dimension.
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Ž . � Ž .�Proof. By 1.7.5 , �u � �u � 0, where u ranges over all the� � �
� Ž .maximal uniform elements of L; but each u is prime by 5.6 . The last�

Ž . Ž .part follows from 3.7 and 2.9 .

6. AN EXTENSION OF YOOD’S THEOREM TO
PSEUDOCOMPLEMENTED LATTICES

WITH A COMPATIBLE PRODUCT

As commented in the Introduction, the aim of this section is to extend
to complete pseudocomplemented lattices a decomposition theorem for

� Ž .�topological rings due to Y, 2.6 . Our main task will be to produce atoms
starting from prime elements.

LEMMA 6.1. Let L be a pseudocomplemented lattice with a compatible
product xy. If c is a coatom of L such that c�� 0, then

Ž .1 c is a minimal prime, and
Ž . Ž �. 22 c is an atom.

Ž . � � � � �Proof. 1 Since c � 0, c 	 c � 1, so c � c is a maximal
Ž .annihilator and hence a minimal prime by 5.6 .

Ž . Ž �. 22 Let us see that a � c is an atom. First note that a � 0 since
Ž . �the product is compatible 4.7 . Now let x 	 a 	 c . Since c is a coatom,

either c 
 x � c or c 
 x � 1. In the first case, x 	 c � c�� 0. In the
Ž . Ž . Ž . Ž �. 2 � � Ž .second, by 4.1 , 4.2 , and 4.3 , a � c 	 c 1 � c c 
 x 	 x.

Therefore, a is an atom.

A careful analysis of the above proof allows us to see that the atom
Ž �. 2 Ž .c constructed in 2 is independent of the choice of the compatible
product. Indeed, let a be any atom dominated by c� . Since c is a coatom,
we have as above that 1 � c 
 a and hence

2 2� � � 2 �c 	 c 1 � c c 
 a 	 a � a 	 c .Ž . Ž . Ž .
In general, a coatom c need not be prime. Consider the three-element

� 4chain C � 0, x, 1 with the compatible product defined by the condition2
2 Ž .1 � x as in 4.8 . Note that x is a coatom in C which is not prime.2

PROPOSITION 6.2. Let L be an annihilator lattice with a compatible
product xy. For c � 1 in L, the following conditions are equi�alent:

Ž .i c is a minimal prime.
Ž .ii c is prime.
Ž .iii c is a coatom.
Ž . �iv c � a , where a is an atom.
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Ž . Ž .Proof. i � ii is clear.
Ž . Ž . �ii � iii . Let c 	 x. Since c is prime x 	 c or x 	 c. If the first

holds, x � c; if the second, x �	 c 	 x, so x �� 0 and hence x � 1 since
L is annihilator.
Ž . Ž . � Ž . � �iii � iv . Since c � 0, it follows as in 6.1.1 that c � c . Now, by

Ž . Ž �. 2 Ž . � ŽŽ �. 2 .� � �6.1.2 , a � c is an atom, and, by 4.17.1 , a � c � c � c.
Ž . Ž . Ž .iv � i follows from 5.6 and the fact that atoms are uniform ele-

ments.

THEOREM 6.3. For a complete lattice L the following conditions are
equi�alent:

Ž .i L is pseudocomplemented and the greatest element 1 is the join of
the atoms of L.

Ž .ii L is annihilator and atomic.
Ž .iii L is annihilator and there exists a product in L for which L is a

strongly semiprime lattice.

Ž . Ž . Ž .Proof. i � ii follows from 2.2 .
Ž . Ž . Ž .ii � iii . It follows from 5.3.2 .
Ž . Ž . Ž . Ž . � Ž .�iii � i . By 6.2 and 1.7.5 , 0 � � a � � A , where A is the set�

of the atoms of L. Hence 1 � � A since L is annihilator.
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