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1. INTRODUCTION

Let G be a connected semi-simple complex Lie group. We define and
study the multi-parameter quantum group C, ,[ G] in the case where ¢ is
a complex parameter that is not a root of unity. Using a method of twisting
bigraded Hopf algebras by a cocycle, [2], we develop a unified approach
to the construction of C, ,[G] and of the multi-parameter Drinfeld
double D, ,. Using a general method of deforming bigraded pairs of Hopf
algebras, we construct a Hopf pairing between these algebras from which
we deduce a Peter-Weyl-type theorem for C, ,[ G]. We then describe the
prime and primitive spectra of C, ,[ G], generalizing a result of Joseph. In
the one-parameter case this description was conjectured, and established in
the SL(n)-case, by the first and second authors in [ 15, 16]. It was proved
in the general case by Joseph in [18, 19]. In particular the orbits in
Prim C, ,[ G] under the natural action of the maximal torus H are
indexed, as in the one-parameter case by the elements of the double Weyl
group Wx W. Unlike the one-parameter case there is not in general a
bijection between Symp G and Prim C, ,[ G]. However in the case when
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the symplectic leaves are algebraic such a bijection does exist since the
orbits corresponding to a given we W x W have the same dimension.

In the first section we discuss the Poisson structures on G defined by
classical r-matrices of the form r=a—u where a=3, g e, Ae_,e N g
and ue A?h. Given such an r one constructs a Manin triple of Lie groups
(GxG, G, G,). Unlike the one-parameter case (where u=0), the dual
group G, will generally not be an algebraic subgroup of G x G. In fact this
happens if and only if ue A?hg. Since the quantized universal enveloping
algebra U, (g) is a deformation of the algebra of functions on the algebraic
group G, [11], this explains the difficulty in constructing multi-parameter
versions of U,(g). From [22, 30], one has that the symplectic leaves are the
connected components of G N G,xG, where xe G. Since r is H-invariant,
the symplectic leaves are permuted by H with the orbits being contained in
Bruhat cells in G x G indexed by W x W. In the case where G, is algebraic,
the symplectic leaves are also algebraic and an explicit formula is given for
their dimension.

The philosophy of [15, 16] was that, as in the case of enveloping
algebras of algebraic solvable Lie algebras, the primitive ideals of C,[G]
should be in bijection with the symplectic leaves of G (in the case u=0).
Indeed, since the Lie bracket on g, = Lie(G,) is the linearization of the
Poisson structure on G, Prim C, ,[ G] should resemble Prim U(g,). The
study of the muli-parameter versions C, ,[G] is similar to the case of
enveloping algebras of general solvable Lie algebras. In the general case
Prim U(g,) is in bijection with the co-adjoint orbits in g* under the action
of the “adjoint algebraic group” of g,, [ 12]. It is therefore natural that,
only in the case where the symplectic leaves are algebraic, does one expect
and obtain a bijection between the symplectic leaves and the primitive
ideals.

In Section 2 we define the notion of an L-bigraded Hopf [K-algebra,
where L is an abelian group. When A4 is finitely generated such bigradings
correspond bijectively to morphisms from the algebraic group LY to the
(algebraic) group R(A) of one-dimensional representations of 4. For any
antisymmetric bicharacter p on L, the multiplication in 4 may be twisted
to give a new Hopf algebra 4,. Moreover, given a pair of L-bigraded Hopf
algebras 4 and U equipped with an L-compatible Hopf pairing 4 x U - K,
one can deform the pairing to get a new Hopf pairing between A4,
and U,. This deformation commutes with the formation of the Drinfeld
double in the following sense. Suppose that 4 and U are bigraded Hopf
algebras equipped with a compatible Hopf pairing 4°° x U — K. Then the
Drinfeld double 4 » U inherits a bigrading such that (AxU),=4,x U,.

Let C,[ G] denote the usual one-parameter quantum group (or quantum
function algebra) and let U, (g) be the quantized enveloping algebra
associated to the lattice L of weights of G. Let U,(b™) and U,(b~) be the
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usual sub-Hopf algebras of U, (g) corresponding to the Borel subalgebras
b* and b~ respectively. Let D (g)=U,/(b*)xU,b~) be the Drinfeld
double. Since the groups of one-dimensional representations of U,(b™),
U,(b™), D,(g) and C,[G] are all isomorphic to H=L", these algebras are
all equipped with L-bigradings. Moreover the Rosso-Tanisaki pairing is
compatible with bigradings on U,(b*), and U,(b~). For any anti-sym-
metric bicharacter p on L one may therefore twist simultaneously the Hopf
algebras U, b*), U,(b~) and D, (g) in such a way that D, (g)=
U, ,(b")xU, ,(b~). The algebra D, (g) is the “multi-parameter quan-
tized universal enveloping algebra” constructed by Okado and Yamane
[25] and previously in special cases in [9, 32]. The canonical pairing
between C,[G] and U,(g) induces a L-compatible pairing between C,[ G ]
and D (g). Thus there is an induced pairing between the multi-parameter
quantum group C, ,[ G] and the multi-parameter double D, ,-1(g). Recall
that the Hopf algebra C,[ G] is defined as the restricted dual of U (g) with
respect to a certain category % of modules over U,(g). There is a natural
deformation functor from this category to a category %, of modules over
D, ,-1(g)and C, ,[ G] turns out to be the restricted dual of D, ,-1(g) with
respect to this category. This Peter-Weyl theorem for C, ,[ G] was also
found by Andruskiewitsch and Enriquez in [ 1] using a different construc-
tion of the quantized universal enveloping algebra and in special cases in
[5, 14].

The main theorem describing the primitive spectrum of C, ,[G] is
proved in the final section. Since C, ,[ G] inherits an L-bigrading, there is
a natural action of H as automorphisms of C, ,[ G]. For each we Wx W,
we construct an algebra 4, =(C, ,[G]/I,)s, which is a localization of a
quotient of C, ,[G]. For each prime PeSpecC, ,[ G] there is a unique
we Wx W such that P>1, and PA, is proper. Thus SpecC, ,[G]=
LlwewsxwSpec, C, ,[G] where Spec, C, ,[G]=Spec 4, is the set of
primes of type w. The key results are then Theorems 4.14 and 4.15 which
state that an ideal of A4, is generated by its intersection with the center and
that H acts transitively on the maximal ideals of the center. From this it
follows that the primitive ideals of C, ,[ G] of type w form an orbit under
the action of H.

An earlier version of our approach to the proof of Joseph’s theorem is
contained in the unpublished article [ 17]. The approach presented here is
a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [ 20, 21] on
the irreducible representations of multi-parameter function algebras and
compact quantum groups. The bijection between symplectic leaves of the
compact Poisson group and irreducible =-representations of the compact
quantum group found by Soibelman in the one-parameter-case, breaks
down in the multi-parameter case.

q. P
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After this work was completed, the authors became aware of the work
of Constantini and Varagnolo [7, 8] which has some overlap with the
results in this paper.

1. POISSON LIE GROUPS

1.1. Notation. Let g be a complex semi-simple Lie algebra associated to
a Cartan matrix [a;], <, <, Let {d,} ,,-, be relatively prime positive
integers such that [d;a;], <, ;<, is symmetric positive definite.

Let h be a Cartan subalgebra of g, R the associated root system,
B={a,, .., a,} abasis of R, R the set of positive roots and W the Weyl
group. We denote by P and Q the lattices of weights and roots respectively.
The fundamental weights are denoted by @, ..., w, and the set of dominant

n

integral weights by P*=>"_ | Nw,. Let (—, —) be a non-degenerate
g-invariant symmetric bilinear form on g; it will identify g, resp. [), with
its dual g*, resp. h*. The form (—, —) can be chosen in order to induce
a perfect pairing P x Q — Z such that

(m;, ;) =0,d,, (a;, ;) =d;a;

i> i % ity

Hence d; = («;, «;)/2 and (a, «) € 2Z for all x e R. For each «; we denote by
h; el the corresponding coroot: @;(h;) =4,. We also set

=@ g,,, bEF=h@dn*, Dd=gxg, t=bhxh ur=nExnt.

aeR ¢

Let G be a connected complex semi-simple algebraic group such that
Lie(G) =g and set D =G x G. We identify G (and its subgroups) with the
diagonal copy inside D. We denote by exp the exponential map from d to
D. We shall in general denote a Lie subalgebra of d by a gothic symbol and
the corresponding connected analytic subgroup of D by a capital letter.

1.2. Poisson Lie Group Structure on G. Let a=3 _g e, Ae_,€ Ag
where the e, are root vectors such that (e,, e;) =J, 5. Let ue A% and
set r=a—u. Then it is well known that r satisfies the modified Yang-
Baxter equation [ 3, 20] and that therefore the tensor n(g) = (), 7 —(rg), 7
furnishes G with the structure of a Poisson Lie group, see [ 13, 22, 30] ((/,),,
and (r,), are the differentials of the left and right translation by ge G).

We may write u=3,_; <, u;h;®h; for a skew-symmetric 7 x n matrix
[u;]. The element u can be considered either as an alternating form on h*
or a linear map u € End [) by the formula

Vxeb, u(x) = u, (x, h;)h;.
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The Manin triple associated to the Poisson Lie structure on G given by r
is described as follows. Set u, =u + /€ End }) and define

Fh-t, Hx)=—(u_(x)uy(x), a=30b), g =adu’.

Following [30] one sees easily that the associated Manin triple is (D, g, g,)
where ¢ is identified with the diagonal copy inside d. Then the corre-
sponding triple of Lie groups is (D, G, G,), where 4 =exp(a) is an analytic
torus and G,=AU™. Notice that g, is a solvable, but not in general
algebraic, Lie subalgebra of b.

The following is an easy consequence of the definition of a and the
identities u, +u_ =2u, u, —u_=2I:

a={(x,y)et|x+y=u(y—x)} ={(x,y)etu (x)=u_(y)}. (L)

Recall that exp: ) — H is surjective; let L, be its kernel. We shall denote
by X(K) the group of characters of an algebraic torus K. Any y e X(H) is
given by y(exp x) =exp dy(x), xel), where dy e h* is the differential of y.
Then

X(H)~L=L,.:={eb* | &Ly, < 2irZ}.

One can show t1~1at L has a basis of dominant weights.
Recall that if G is a connected simply connected algebraic group with Lie
algebra g and maximal torus A, we have

L;=P°=@ 2inZh,, X(H)=P, Q<cLcP, =,(G)=L,/P°~P/L
j=1

Notice that L,/P° is a finite group and exp u(L ;) is a subgroup of H. We
set

I'n={(a,a)eT|a*=1}, Ad={(a,a)eT|a’*eexpu(Ly)},

I'=sAnH={(a,a)eT|a=expx=expy,x+y=u(y—x)}.
It is easily seen that I'=G N G,.

ProrposITION 1.1. We have A=1T-1T,.

Proof. We obviously have I'ycA. Let (exph,exph)el, hel. By
definition there exist (x, y)ea, /,, [, € L such that

x:h+ll, y:h+129 Y+x:”(y_x)

Hence y+x=2h+1,+1,=u(l,—1,) and (exp h)*>=exp 2h=exp u(l,—1I,).
This shows (exp i, exph)e 4. Thus I'-I'y < 4.
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Let (a,a)ed, a=exph, hel. From a*cexpu(Ly) we get I I'eLy
such that 2h=u(l')+/] Set x=h—12-1/2, y=h+1'/2—1/2. Then
y+x=u(y—x) and we have exp(—1[/2—1"/2)=exp(/'/2—1/2), since
I'eLy. If b=exp(—/'/2+1/2) we obtain expx=expy=ab ', hence
(a,a)=(expx,expy)-(b,b)el-Iy. Therefore I'-I'y=A4. |

Remark. When u is “generic” [y is not contained in /. For example,
take G to be SL(3,C) and u=a(h,; ® h, —h, ® h,) with a ¢ Q.

Considered as a Poisson variety, G decomposes as a disjoint union of
symplectic leaves. Denote by Symp G the set of these symplectic leaves.
Since r is H-invariant, translation by an element of H is a Poisson
morphism and hence there is an induced action of H on Symp G. The key
to classifying the symplectic leaves is the following result, cf. [ 22, 30].

THEOREM 1.2. The symplectic leaves of G are exactly the connected com-
ponents of G G,xG, for xeG.

Remark that A4, I" and G, are in general not closed subgroups of D. This
has for consequence that the analysis of Symp G made in [ 15, Appendix A ]
in the case u =0 does not apply in the general case.

Set Q= HG,=TU™. Then Q is a Borel subgroup of D and, recalling that
the Weyl group associated to the pair (G, T') is W x W, the corresponding
Bruhat decomposition yields D=, c wxw OWO = | l,,c wx w OQWG,. There-
fore any symplectic leaf is contained in a Bruhat cell OwQ for some
we Wx W.

DerINITION. A leaf .o/ is said to be of type w if .o/ « QwQ. The set of
leaves of type w is denoted by Symp,, G.

For each we Wx Wset w=(w_,,w_), w, € W, and fix a representative
w in the normaliser of 7. One shows as in [15, Appendix A] that
G OWwG,#J, for all we Wx W; hence Symp,, G# & and G n G, wG,
# 3, since OwQ =), ey hG WG,.

The adjoint action of D on itself is denoted by Ad. Set

U, =Adw(U)nU"™, A,={aed|awG,=WwG.,},

T, ={teT|(G,6G,=GWwG,), H,=HAT,.
Recall that U is isomorphic to C™ where /(w)=1(w_)+I(w_) is the
length of w. We set s(w)=dim H/,.

Lemma 13. (i) A, =Adw(A)nAand T),=A-Adw(A)=AH’,.

(i) We have Lie(A4},)=a,,={3(x) | xeKer(u_w 'u, —u wi'u_)}
and dim a), =n — s(w).
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Proof. (i) The first equality is obvious and the second is an easy con-
sequence of the bijection, induced by multiplication, between U, x Tx U™
and OwQ = OwG,.

(i) By definition we have a),={3(x)|xebh, w '(¥x))ea}. From
(1.1) we deduce that H(x)ea) if and only if u, w '(—u_(x))=
_w (—u(x)).

It follows from (i) that dim 7,=n+dim H/,=2n—dim A4;,, hence

dimal,=n—s(w). |

Recall that ue End b is an alternating bilinear form on bh*. It is easily
seen that VA, ueb*, u(A, )= —("u(A), u), where ‘ue End h* is the trans-
pose of u.

Notation. Set u=—-o, @, =0+, ow)=®_w_o, - w, D_,
where w_ € W is considered as an element of End h*.

Observe that ‘u, = —® - and that

u(2, ) = (DL, n), for all A, uebh*. (L.2)

Furthermore, since the transpose of w, e End h* is w'e End ), we have
‘o(w)=u_w_'u, —u,w;,'u_. Hence by Lemma 1.3

s(w) = codim Kery+ a(w), dim A4, = dim Kery« a(w). (L.3)

1.3. The Algebraic Case. As explained in 1.1 the Lie algebra g, is in
general not algebraic. We now describe its algebraic closure. Recall that a
Lie subalgebra mt of d is said to be algebraic if m is the Lie algebra of a
closed (connected) algebraic subgroup of D.

DerINITION.  Let m be a Lie subalgebra of d. The smallest algebraic Lie
subalgebra of d containing m is called the algebraic closure of m and will
be denoted by .

Recall that g, =a@u ™. Notice that u™ is an algebraic Lie subalgebra of
D; hence it follows from [4, Corollary I1.7.7] that §,=a®u™*. Thus we
only need to describe da. Since t is algebraic we have a=t and we are
reduced to characterize the algebraic closure of a Lie subalgebra of
t=Lie(T).

The group T'=H x H is an algebraic torus (of rank 2r). The map y+ dy
identifies X(7") with L x L.

Let f <t be a subalgebra. We set

t={0eX(T)|t<Ker, 6}

The following proposition is well known. It can for instance be deduced
from the results in [4, I1.8].
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ProprosITION 1.4. Let t be a subalgebra of t. Then f—ﬂ(,efi Kertb’
and T is the Lie algebra of the closed connected algebraic subgroup K=
Noerr Ker, 6.

COROLLARY 1.5. We have
ot ={(LweX(T)| @, i+ ®_p=0},

a= m Kert(;“: /,l), Z = ﬂ KerT(is /,t)
(2, pu)€a

(Au)eat

Proof. From the definition of a =39(l)) we obtain

(Lu)eat=Vxeb, A(—u_(x))+u(—u_ (x))=0.

The first equality then follows from ‘u, = — @ . The remaining assertions
are consequences of Proposition 1.4. ||

Set

hp=0Q®;P° =@ Q;, DHE=Q0®,;P=@ Qu,

i=1 i=1

L-Q®, ot = {(hu)ehtxbE | . i+ d_u—0}.
Observe that dimg ag =rk, a* and that, by Corollary 1.5,
dim @ =2n—dimg ag. (1.4)
Lemma 1.6, aj={vebd | dvebd}.
Proof. Define a Q-linear map
{vebk | dvebE} > ag, v (=@ _v, d ).
It is easily seen that this provides the desired isomorphism. ||

THEOREM 1.7. The following assertions are equivalent:

) g, is an algebraic Lie subalgebra of d;
) u(PxP)cQ;

(i11) dmeN¥*, d(mP) <P,
) I'is a finite subgroup of T.
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Proof. Recall that g, is algebraic if and only if a=4a, ie. n=dima=
dim a. By (1.4) and Lemma 1.6 this is equivalent to @(P)chE =0Q®, P.
The equivalence of (i) to (iii) then follows from the definitions, (1.2) and
the fact that ‘u= — .

To prove the equivalence with (iv) we first observe that, by Proposi-
tion 1.1, I" is finite if and only if exp u(L ;) is finite. Since L,/P° is finite
this is also equivalent to exp u(P°) being finite. This holds if and only if
u(mP°) < P° for some me N* Hence the result. |

When the equivalent assertions of Theorem 1.7 hold, we shall say that
we are in the algebraic case or that u is algebraic. In this case all the sub-
groups previously introduced are closed algebraic subgroups of D and we
may define the algebraic quotient varieties D/G, and G= G/I". Let p be the
projection G— G. Observe that G is open in D/G, and that the Poisson
bracket of G passes to G. We set

%,=GWwG,/G,,  €,=0wG, /G, = |) h%,
heH

‘@\& = (gw N G’ ‘%w = (gw N Ga ng =p B l(gw)'

The next theorem summarizes the description of the symplectic leaves in
the algebraic case.

Tueorem 1.8. 1. Symp, G# & for all we Wx W, SympG =

l_|we Wxw Sympw G

2. Each symplectic leaf of G, resp. G, is of the form h#,,, resp. hof,
for some he H and we W x W, where </, denotes a fixed connected compo-
nent of p~"(,).

3. €,=A,xU, where A,=A/A, is a torus of rank s(w). Hence
dim €, =dim %#,,=dim ./, =[(w) + s(w) and H/Stab,, <7, is a torus of rank
n—s(w).

D)

Proof. The proofs are similar to those given in [15, Appendix A] for

the case u=0. |

2. DEFORMATIONS OF BIGRADED HOPF ALGEBRAS

2.1. Bigraded Hopf Algebras and Their Deformations. Let L be an
(additive) abelian group. We will say that a Hopf algebra (A4, i, m, ¢, 4, S)
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over a field K is an L-bigraded Hopf algebra if it is equipped with an L x L
grading

A: @ Alﬂu

(AL u)eLxL
such that
(1) Kedgy, A, Ay py<=A; sy, (e Ais a graded algebra)
(2) A(A/l,u)cz\reLALv®A7v,,u
(3) A# —u implies &(A4, ,)=0
(4) S(A/l,,u)CA,u,ﬂ‘

For sake of simplicity we shall often make the following abuse of notation:

Ifae4; , we will write A(a)=3% a, ,®a_, ,,a; €4, ,,a_,,€A_, ,.

Let p: LxL — K* be an antisymmetric bicharacter on L in the sense
that p is multiplicative in both entries and that, for all 1, u €L,

(1) plu, u)=1; (2) p(A, 1) =p(p, —A).

Then the map p: (L x L) x (LxL)— K* given by
ﬁ((;{s lu)s (/lla /’t/)) :p(j" )“,)p(lua #')71

is a 2-cocycle on L x L such that (0, 0)=1.
One may then define a new multiplication, m,, on 4 by

VaeA; ,,beA, ,,a-b=p(A, 1) p(u, ')~ " ab. (2.1)

THEOREM 2.1. A, :=(A4,i,m,, ¢, 4,8) is an L-bigraded Hopf algebra.

p

Proof. The proof is a slight generalization of that given in [2]. It is well
known that A4,=(A4,7,m,) is an associative algebra. Since 4 and ¢ are
unchanged, (4, 4, ¢) is still a coalgebra. Thus it remains to check that ¢, 4
are algebra morphisms and that S is an antipode.

Let xeAd; , and ye A, ,. Then

e(x-y)=p(d, ') plu, 1)~ " e(xy)
=p( ) plus ')~ 0, 0, _oe(x)e(y)
=p(A, XY p(—4, —2") " e(x) e(y)

=é&(x)e(y)
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So & is a homomorphism. Now suppose that 4(x)=3 x, ,®x_, , and
Ay)=2y, v®y_, . Then

A(x)'A(y):<Zx/l,v®xv,/t>'<zy/l’,v'®yv',,u’>

zzxfl,v'y/l',v'®x7v,,u'yfv’,,u’

=p(2 ) plps 1)~ 2 pO, V) T p(=v, =V X5, Vi
X Vv

=p(2 ') plp, ')~ A(xp)

=A4(x-y)

So 4 is also a homomorphism. Finally notice that
Z S(X(l)) Xy = Z S(x;, v) Xy u
:Zp(va _v)p(/tlu)il S(x/l,v)va,/z

:p(/la :u)il Z S(xxi,v) : va,p.
=p(Z 1)~ e(x)
— 5(x)

A similar calculation shows that " x;,- S(x(;)) =&(x). Hence S is indeed
an antipode. |

Remark. The isomorphism class of the algebra 4, depends only on the
cohomology class [ 5]e HALx L, KK*), [2, Section 3].

Remark. Theorem 2.1 is a particular case of the following general con-
struction. Let (4, i, m) be a [K-algebra. Assume that FeGL, (A ® A) is
given such that (with the usual notation)

(1) Fim@1)=(m®1) FuF3; F1@m)=(1Q®@m) F\,F\;
(2) Fi®1)=i®; F(I1®i)=1®i
(3) F\,F\3Fy=Fy5F3F,,, ie. F satisfies the Quantum Yang—Baxter
Equation.
Set myz=moF. Then (A4, i, m) is a K-algebra.

Assume furthermore that (A, i, m, ¢, 4, S) is a Hopf algebra and that
(4) F:A® A— A® A is morphism of coalgebras
(5) mF(S®1)4=m(S®1)4, mF(1®S)d=m(1® S)A4.
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Then Ap:=(A,i,mp,e,4,S) is a Hopf algebra. The proofs are
straightforward verifications and are left to the interested reader.

When A is an L-bigraded Hopf algebra and p is an antisymmetric
bicharacter as above, we may define Fe GL,(A® A) by

VaeA; ,,VbeA, ,,Fla®b)=p(l ) p(u,u') 'a®b.

A,
It is easily checked that F satisfies the conditions (1) to (5) and that the
Hopf algebras 4, and A4, coincide.

A related construction of the quantization of a monoidal category is
given in [24].

2.2. Diagonalizable Subgroups of R(A). In the case where L is a finitely
generated group and A is a finitely generated algebra (which is the case for
the multiparameter quantum groups considered here), there is a simple
geometric interpretation of L-bigradings. They correspond to algebraic
group maps from the diagonalizable group L to the group of one dimen-
sional representations of A.

Assume that K is algebraically closed. Let (4, i, m,¢, 4, S) be a Hopf
[K-algebra. Denote by R(A) the multiplicative group of one dimensional
representations of A, i.e. the character group of the algebra 4. Notice that
when A is a finitely generated [K-algebra, R(A4) has the structure of an
affine algebraic group over K, with algebra of regular functions given by
IK[R(A)] = A/J where J is the semi-prime ideal (), g Ker /. Recall that
there are two natural group homomorphisms /, r: R(A4) — Aut,(A4) given
by

=2 h(S(x)) Xy =2 b x) Xz
Fu(X) =z x(l)h(x(Z))~

THEOREM 2.2. Let A be a finitely generated Hopf algebra and let L be a
finitely generated abelian group. Then there is a natural bijection between:

(1) L-bigradings on A,

(2) Hopf algebra maps A — KL (where KL denotes the group
algebra);

(3) morphisms of algebraic groups LY — R(A).

Proof. The bijection of the last two sets of maps is well-known. Given
an L-bigrading on 4, we may define a map ¢: 4 — KL by ¢(a, ,) =e(a) u,.
It is easily verified that this is a Hopf algebra map. Conversely, given a
map LY - R(4) we may construct an L bigrading using the following
result.
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THEOREM 2.3. Let (A, i, m, &, 4, S) be a finitely generated Hopf algebra
over K. Let H be a closed diagonalizable algebraic subgroup of R(A). Denote
by L the (additive) group of characters of H and by { —, —>: Lx H—- K*
the natural pairing. For (1, u)e L x L set

A)y,,u: {XEA | VhEH, Zh(x): <;“7 h> X, rh(x) = <Iu> h>x}
Then (A, i, m, ¢, A, S) is an L-bigraded Hopf algebra.

Proof. Recall that any element of A4 is contained in a finite dimensional
subcoalgebra of 4. Therefore the actions of H via r and [ are locally finite.
Since they commute and H is diagonalizable, A4 is L x L. diagonalizable.
Thus the decomposition 4= @, ,ycr«1 4, , 15 a grading.

Now let C be a finite dimensional subcoalgebra of 4 and let {c,, .., ¢,}
be a basis of H x H weight vectors. Suppose that A(c;) =3 t,® c;. Then
since ¢; =3 t;&(c;), the t;span C and it is easily checked that A(¢;)=
Yt ®t,,. Since 1,(¢;) =3 h"'(t;) ¢, for all he H and the ¢, are weight
vectors, we must have that /(¢;) =0 for i#j. This implies that

Ih(tij)zhil(tii) Lis rh(tij)zh(tjj)t[j

and that the map 4,(h) =Ah(z;) is a character of H. Thus 7/,e4_, , and
hence

Aty) =Y 14 @ty€) A 5 5, ®A ;, ;.

This gives the required condition on 4. If 14+ x #0 then there exists an
he H such that { =4, h) #{u, h). Let xe 4, ,. Then

s by e(x) =e(r,(x)) =h(x) =e(l,-1(x)) = =4, h) &(x).
Hence ¢(x) =0. The assertion on S follows similarly. [

Remark. 1In particular, if G is any algebraic group and H is a
diagonalizable subgroup with character group L, then we may deform the
Hopf algebra K[ G ] using an antisymmetric bicharacter on L. Such defor-
mations are algebraic analogs of the deformations studied by Rieffel in
[27].

2.3. Deformations of Dual Pairs. Let A and U be a dual pair of Hopf
algebras. That is, there exists a bilinear pairing < | >: A x U— K such that:
1) Lall)=ela); <1|uy=e(u)

2) <a|u1uz>=2<am|u1><a<2>|uz>
3) Lajay|uy=3% <a |”(1)><az|”(2)>

(
(
(
(4) (S(a)|uy =<a|Su)).
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Assumed that A4 is bigraded by L, U is bigraded by an abelian group Q
and that there is a homomorphism ~: Q — L such that

(A, | U, ;>#0  onlyif A+u=7+90. (2.2)
In this case we will call the pair {4, U} an L-bigraded dual pair. We shall
be interested in Sections 3 and 4 in the case where Q=L and ~ = Id.

Remark. Suppose that the bigradings above are induced from sub-
groups H and H of R(A) and R(U) respectively and that the map Q- L
is induced from a map A+ /4 from H to H. Then the condition on the pair-
ing map be restated as the fact that the form is ad-invariant in the sense
that for all ae 4, ue U and he H,

Cadyaluy=<alad;u)
where ad, a=r,/,(a).

THEOREM 2.4. Let {A, U} be the bigraded dual pair as described above.
Let p be an antisymmetric bicharacter on L and let p be the induced
bicharacter on Q. Define a bilinear form { | »,: A, -1 x U;— K by

< A/l|u >7 (}"ayv)ilp(:uag)il <a/1,,u|uy,é>'
Then < | », is a Hopf pairing and {A,-1, U,

r
Proof. LletaeA, i=1,2. Then

} is an L-bigraded dual pair.
and let u;e U

ot Vi, 0i°
Caluyuyy,=p(Fy, 72) p(d1,02) "' pU 71+ 75)
x p(u, 51 “‘52)71 {alujuyy.

Suppose that A(a)=3,a, ,®a_, ,. Then by the assumption on the
pairing, the only possible value of v for which Cay ,|uya_, ,|uyy is
non-zero is v=7y, +51 J=u—7,—0,. Therefore

Cagy Ly, <ay [ uy =p(2, 7)) " p(v, 67) " p(—=v, 72)
xpp, 62) " Cagy |y y<ag | us)
=p(2 7)) Pl = 72— 065, 00) " p(A—7, =0, 72)
X p(p, 65) " <a(1)|u1><a<z>|u2>
=p(F1, 72) (01, 05) "' p(A, 71+ 72)
X p(u, 6,4 0,) ' La|uyusd
=<alujuyy,.

This proves the first axiom. The others are verified similarly. [
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COROLLARY 2.5. Let {A, U,p} be as in Theorem 2.4. Let M be a right
A-comodule with structure map p: M - M & A. Then M is naturally endowed
with U and U left module structures, denoted by (u, x) > ux and (u, x) —
u-x respectively. Assume that M= @, M, for some K-subspaces such
that p(M;) =3, M _,® A, ;. Then we have U, sM, =M, , s and the two
structures are related by

- -

Vue U, ;, VxeM,, u-x=pA y—09)p(y, o) ux.

Proof. Notice that the coalgebras 4 and A, are the same. Set
p(x) =2 X, ® x(y, for all xe M. Then it is easily checked that the follow-
ing formulas define the desired U and U; module structures:

YueU, ux=Y) xo{xmlud, wu-x=Y x0<xq | u),.

When xe M, and ue U, ; the additional condition yields

u-x=Yy X, p(v, =7) p(h, —0)<x0, | u.

But (x| uy #0 forces —v=/1—y’—5v, hence u-x=p(4, 7—9)p(y, 0) X

-

Zx(0)<x(1) | u) =p(4,7—9) p(7, 5)”)@ |

Denote by A°° the opposite algebra of the [K-algebra A. Let
{A°°, U, { | >} be a dual pair of Hopf algebras. The double Ax U is
defined as follows, [10, 3.3]. Let I be the ideal of the tensor algebra
T(A® U) generated by elements of type

1-1,, 1-1, (a)
xx'—x®x/, x,x' €A, w—-—y®y, vy eU (b)
x(1)®y(1)<x(2)|y(2)>_<x(1)|J’(1)> Vo) ® X2, xed,yeU (c)

Then the algebra Ax U:=T(AQ® U)/I is called the Drinfeld double of
{4, U}. It is a Hopf algebra in a natural way:

Ala@u) = (a(1)®“(1))® (“(2)®“(2))»
sla@Qu)=ela)e(u), Sa®@u)=(S(@)®1)(1®S(u)).

Notice for further use that 4 x U can equally be defined by relations of
type (a), (b), (c, ,) or (a), (b), (c, ,), where we set

X®y= <x<1) |y(1)><x(3) | S(J’(3))> Yi2)® X0, xed, yeU (Cx,y)
J’®x:<x(1)|S(y(1))><x(3)|J’(3)> X2)® Y02, xed,yeU (Cy,x)
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THEOREM 2.6. Let {A°°, U} be an L-bigraded dual pair, p be an
antisymmetric bicharacter on L and p be the induced bicharacter on Q. Then
AwU inherits an L-bigrading and there is a natural isomorphism of
L-bigraded Hopf algebras:

(AnU),=A,x U,

Proof. Recall that as a [K-vector space 4 x U identifies with 4 ® U.
Define an L-bigrading on 4 x U by

Va, f €L, (AxU), s= > A4, ,QU, ;

To verify that this yields a structure of graded algebra on 4 x U it suffices
to check that the defining relations of 4 x U are homogeneous. This is clear
for relations of type (a) or (b). Let x; ,eA4, , and y, se U, ;. Then the

Ayt
corresponding relation of type (c) becomes
Z x}., v yy,§<x—v,;4 | J’—g,5> - <xl,;4 | y;',é> y—é,ﬁx—v,/l' (*)
v, &
When a term of this sum is non-zero we obtain —v+u = —C+40, A+v=

7+& Hence A —j= —v+E=—u + 5, which shows that the relation (%) 1s
homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1 hold.
Hence A x U is an L-bigraded Hopf algebra.

Notice that (A4,)°?=(A°?),-1, so that Theorem 2.4 defines a suitable
pairing between (A4,)°" and U,. Thus 4,x U, is defined. Let ¢ be the
natural surjective homomorphism from 7(4 ® U) onto 4,x U,. To check
that ¢ induces an isomorphism it again suffices to check that ¢ vanishes on
the defining relations of (4 x U),. Again, this is easy for relations of type
(a) and (b). The relation (=) says that

PO Pl x| Vs Xou b
—p(E V) p(S, — 1), 0 | ¥y s> Vcis Xy =0

in (4 x U),. Multiply the left hand side of this equation by p(4, —7) p(u, —9)
and apply ¢. We obtain the following expression in 4, U,:

p(_V, 5) p(lu’ _5{)<va,# | yfg“,r5> x),, v y"/,é
_p(is _];) p(V, _5)<x/1,‘u |y/é> yff,(sva,‘u
which is equal to
<x—\/4|y g()>px/l ,g <x)u|y}§> Y- C()x—\/t

But htis is a defining relation of type (¢) in 4, U, hence zero.
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It remains to see that ¢ induces an isomorphism of Hopf algebras, which
is a straightforward consequence of the definitions. ||

2.4. Cocycles. Let L be, in this section, an arbitrary free abelian group
with basis {w, .., w,} and set h* =C ®, L. We freely use the terminology
of [2]. Recall that H*L, C*) is in bijection with the set 2 of multi-
plicatively antisymmetric 7 x n-matrices y =[y;]. This bijection maps the
class [¢] onto the matrix defined by y; = c(w;, ®;)/c(w;, ®,;). Furthermore
it is an isomorphism of groups with respect to component-wise multiplica-
tion of matrices.

Remark. The notation is as in 2.1. We recalled that the isomorphism
class of the algebra 4, depends only on the cohomology class [p]e
H*(L xL, K*). Let y € # be the matrix associated to p and y ! its inverse
in . Notice that the multiplicative matrix associated to [p] is then
y=[1 yil] in the basis given by the (w;, 0), (0, w;) € L x L. Therefore the
isomorphism class of the algebra 4, depends only on the cohomology class
[ple H(L, IK*).

Let he C*. If xe C we set ¢* =exp(—xh/2). In particular ¢ =exp( —#/2).
Let u: Lx L — C be a complex alternating Z-bilinear form. Define

p:LxL— C*, p(/l,,u)zexp<—zu(/l,,u))zq“/z)““"‘). (2.3)

Then it is clear that p is an antisymmetric bicharacter on L.

Observe that, since h* = C ®, L, there is a natural isomorphism of additive
groups between A? ) and the group of complex alternating Z-bilinear forms on
L, where ) is the C-dual of h*. Set &, = {ue A*b | u(L x L) = (4in/h)Z}.

THEOREM 2.7. There are isomorphisms of abelian groups:

H (L, C*=A# =N\ b/%,.

Proof. The first isomorphism has been described above. Let
y=[y;]e# and choose u;, 1<i<j<n such that y,=exp(—(%/2) u;).
We can define ue A> b by setting u(w,, ;) =u;, 1 <i<j<n It is
then easily seen that one can define an injective morphism of abelian
groups

o H¥(L,C*) = > \N*b/Z,, () =[u]
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where [u] is the class of u. If ue A? b, define a 2-cocycle p by the formula
(2.3). Then the multiplicative matrix associated to [ p] € H*(L, C*) is given
by

h
yg'/'zp(wi’ w_/)/p(w_/, ;) =plw,, a)j)2 =eXp <_2 u(w;, CU])>

This shows that [u] =¢([y;]); thus ¢ is an isomorphism. [|

We list some consequences of Theorem 2.7. We denote by [« ] an element
of A°h/%Z, and we set [ p]=¢ ~([u]). We have seen that we can define a
representative p by the formula (2.3).

1. [p] of finite order in H*(L, C*) < u(L x L) = (in/h)Q, and ¢ root
of unity </ einQ.

2. Notice that u =0 is algebraic, whether ¢ is a root of unity or not.
Assume that ¢ is a root of unity; then we get from 1 that

[ p] of finite order < u is algebraic.

3. Assume that ¢ is not a root of unity and that ##0. Then [ p] of
finite order implies (0) #u(L x L) < (in/h)Q. This shows that

0 #u algebraic = [ p] is not of finite order.

DEFINITION.  The bicharacter p: (A, u) > ¢'"/? “*# is called g-rational if
ue A?b is algebraic.

3. MULTIPARAMETER QUANTUM GROUPS

3.1. One-Parameter Quantized Enveloping Algebras. The notation is as
in Sections 1 and 2. In particular we fix a lattice L such that Q <« L < P and
we denote by G the connected semi-simple algebraic group with maximal
torus H such that Lie (G)=g and X(H)=L.

Let g € C* and assume that ¢ is not a root of unity. Let he C\izQ such
that ¢ =exp(—#/2) as in 2.4. We set

Qi:qdia in:(‘If_q,‘il)ils I<i<gn

Denote by U° the group algebra of X(H), hence

UOZC[k;;)LeL], kozl, k;ykﬂ:k;y_'_”.
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Set k;=k,,, 1<i<n. The one parameter quantized enveloping algebra
associated to this data, cf. [33], is the Hopf algebra

U/g)=Ue, f:1<i<n]
with defining relations:
kyekit=q""e;  k; fikit=q7"f;
e, fi—fiei=0;q,(ki—k; ")

B c[ V=] ek, i Y
Y (=1 i e; 1 eef =0, if i#j
qi

1_ay [1—51

y} flrekf e =0, i i)
k qi .

where [m],=(t—t"")---(¢"—¢~") and [}],=[m]/[k],[m—k],. The
Hopf algebra structure is given by

Alk,) =k, ®@k,, e(k;)=1, S(k,)=k;!

Ale))=e;®@1+k;®e;,  Af)=fi®k; ' +1Q/,

ele;)=e(f;)=0,  S(e;)=—kle,  S(f;)=—/ik;.
We define subalgebras of U (g) as follows
Um*)=C[e,;1<i<n], U~ )=C[f,;1<i<n]

q
UMb =Ue,:1<i<n], U b )=U[f.;1<i<n].

q

For simplicity we shall set U* = U,(n*). Notice that U° and U,(b*) are
Hopf subalgebras of U, (g). Recall [23] that the multiplication in U (g)
induces isomorphisms of vector spaces

U(s)=2U U QU =U"RU'QU".
Set Q. =@P7_, N, and
VpeQ,, U ={ueU* |VieL, kuk;"'=q"% = u}.
Then one gets: U* = @4, Uiy
3.2. The Rosso—Tanisaki-Killing Form. Recall the following result, [ 28, 33].
THEOREM 3.1. 1. There exists a unique non degenerate Hopf pairing

YU bN)PRQU(bT)—-C
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satisfying the following conditions:
(1) <k) | k,u> = qi(/l”u);
(ii) VieL, 1<i<n, <{k,|fi)={<e/|k;)=0;
(i) VI<ij<n el ;> =—0,d.
2. Ify,neQ,, (US| UZ,>#0 implies y=n.

The results of Section 2.3 then apply and we may define the associated
double:

D,(g)=U, (b )xU,b™).
It is well known, e.g. [10], that
Dq(g) = C[S/l’ t}n eiaf;'; }veLa 1 < l<n]

where 5, =k, ®1, t,=1Qk,, e,=¢,® 1, f;=1& f;. The defining relations
of the double given in Section 2.3 imply that

St =1,5;, eif}_f}efzéijC?i(sa;_t;I)

1 =q('1‘“>f>6j, tiejt)Tl :q(}u“j)e_’

§,€;8, J

tij}t;l :qf(/l,zx)fj_.
s, fisy =am "
It follows that
Dq(g)/(si_tAa/leL):’Uq(g)a e;— e, f;’_)f;’ Sl’_)kia IAHk).'

Observe that this yields an isomorphism of Hopf algebras. The next
proposition collects some well known elementary facts.

PROPOSITION 3.2. 1. Any finite dimensional simple U,(b*)-module is
one dimensional and R(U (b*)) identifies with H via

VheH,  hk;)=<Ah),  hle;)=0,  h(f;)=0.
2. R(D,g)) identifies with H via

Vhe H, hs;))=<2h), h(t,))=<2h)y ", h(e;)=h(f;)=0.

CoroLLARY 33. 1. {U

ADT)P U (b))} is an L-bigraded dual pair.
We have

kie Uq(bi)—/l,ia eie Uq(b+)—oci,07 f‘ie Uq(b_)(), —ot
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2. D,(g) is an L-bigraded Hopf algebra where

S/"LEDq(g)f/l,).! t/IEDq(g)/l,f),s eiEDq(g)fo(,,O’ .fiqu(g)O,oc,'

Proof. 1. Observe that for all he H,

lh(k/z) = hil(k).) = < _j-’ h> k/zs ”h(k,l) = h(k}.) = </13 h> km
lh(ei):hil(ki)ei:<_ai’h>e[5 ri(e)=e;

LW =f  rlf)=hk") fi={—o 1) f.

It is then clear that U* (=U) and U, ,=U" for all yeQ,. The
claims then follow from these formulas Theorem 2.3, Theorem 3.1, and the
definitions.

2. The fact that D (g) is an L-bigraded Hopf algebra follows from
Theorem 2.3. The assertions about the L x L degree of the generators is
proved by direct computation using Proposition 3.2. ||

Remark. We have shown in Theorem 2.6 that, as a double, D (g)
inherits an L-bigrading given by:

Dy(8)s p= Y U b%), ,®@U,b7), .

A—y=a,u—0o=p

It is easily checked that this bigrading coincides with the bigrading
obtained in the above corollary by means of Theorem 2.3.

3.3. One-Parameter Quantized Function Algebras. Let M be a left
D,(g)-module. The dual M* will be considered in the usual way as a left
D, (g)-module by the rule: (uf)(x)=f(S(u)), xeM, feM*, ueD |[g).
Assume that M is an U, (g)-module. An element xe M is said to have
weight ue L if k,x=q"»*)x for all Z€L; we denote by M, the subspace of
elements of weight u.

It is known, [13], that the category of finite dimensional (left) U (g)-
modules is a completely reducible braided rigid monoidal category. Set
L™ =LnP" and recall that for each 4 eL™ there exists a finite dimen-
sional simple module of highest weight 4, denoted by L(A), cf. [29] for
instance. One has L(A)* =~ L(wyA) where w, is the longest element of W.

Let %, be the subcategory of finite dimensional U, (g)-modules consisting
of finite direct sums of L(A4), A€ L*. The category %, is closed under ten-
sor products and the formation duals. Notice that %, can be considered as
a braided rigid monoidal category of D (g)-modules where s,, ¢, acts as k;,
on an object of €.
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Let M eobj(%,), then M=@ , .
coordinate function ¢, e U,(g)* by

M,. For fe M*, ve M we define the

VueUy/g), ¢ lu)=<fuv)

where {, > is the duality pairing. Using the standard isomorphism
(M®N)*~N*® M* one has the following formula for multiplication,

Crolrv=Creofvev:

DerINITION.  The quantized function algebra C,[G] is the restricted
dual of %,: that is to say

C,LG]1=Cl[c;,;veM, fe M* Meobj(E,)].
The algebra C,[G] is a Hopf algebra; we denote by 4, ¢, S the comulti-

plication, counit and antipode on C,[G]. If {v,, .., v, fi, ... f;} is a dual
basis for M € obj(%,) one has

Aer) Z%,@Cm, e )=<fivy,  Slep)=c, . (3.1)

Notice that we may assume that v,e M, , fe M*, . We set
CM)=Clc¢s s feM*veM),  CM), ,=Cc;;feMfveM,).
Then C(M) is a subcoalgebra of C,[G] such that C(M)=

D 1 erxr C(M); ,. When M=L(A) we abbreviate the notation to
C(M)= C(A). It is then classical that

ClGl= & C(4).

AeL*t
Since C,[G] = U,(g)* we have a duality pairing
,»:CJLG]xD,g)—C.
Observe that there is a natural injective morphism of algebraic groups
H—- R(C,[G]), hlc,,)=<u h)elc,) forall veM,, M eobj(?F,).
The associated automorphisms r,, /, € Aut(C,[ G]) are then described by

vcf,veC(M))v,,us rh(C/;L‘):<1uah> Crvs l/l(cf; l’):<;“;h>cflv'
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Define
VA, u)eLxL,
CJlGl.,.={aeCG]|ra)=Lp ) a l(a)={I h)a}.

THEOREM 3.4. The pair of Hopf algebras {C [ G], D (g)} is an L-bigraded
dual pair.

Proof. 1t follows from (3.1) that C,[G] is an L-bigraded Hopf algebra.
The axioms (1) to (4) of 2.3 are satisfied by definition of the Hopf algebra
C,[G]. We take " to be the identity map of L. The condition (2.2) is con-
sequence of D (g), s M, =M, , sfor all Me%,. To verify this inclusion,
notice that

7, 0

ejEDq(g)fzxj,Os _f}qu(g)O,o(]’ ejM,uCM

Mo

ijﬂ CM#*O(/'

The result then follows easily. ||

Consider the algebras D,-i(g) and C,-1[G] and use " to distinguish
elements, sub-algebras, etc. of D,-i1(g) and C,-1[G]. It is easily verified
that the map o: D ,(g) — D,-1(g) given by
S8, t—= 1, ei'_)qg/zﬁfoc," f}'_)q}/zéifo(_il

is an isomorphism of Hopf algebras.

For each AeL*, ¢ gives a bijection : L(—w,4) — L(A) which sends
veL(—wy4), onto e VN «- Therefore we obtain an isomorphism
0:C,1[G]—C,[G] such that

Ve L(—wyA)* ,, veL(—wyd),, a(Cro)=cppe (3.2)
Notice that

O-(Dq(g)y,(i):Dq’l(g)fy, —0 and U(Cq’l[G]l,y):Cq[G]f/l, —ue
(3.3)

3.4. Deformation of One-Parameter Quantum Groups. We continue with
the same notation. Let [ p] € H*(L, C*). As seen in Section 2.4 we can, and
we do, choose p to be an antisymmetric bicharacter such that

ViueLl,  p(Zp)=q"2 s
for some ue A%h. Recall that je Z>(LxL, C*), cf. 2.1.

We now apply the results of Section 2.1 to D,(g) and C,[G]. Using

Theorem 2.1 we can twist D,(g) by 5~ ' and C,[G] by p. The resulting
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L-bigraded Hopf algebras will be denoted by D, ,-1(g) and C, ,[ G]. The
algebra C, ,[ G] will be referred to as the multi-parameter quantized func-
tion algebra. Versions of D, ,-1(g) are referred to by some authors as the
multi-parameter quantized enveloping algebra. Alternatively, this name can
be applied to the quotient of D, ,-1(g) by the radical of the pairing with
C,,LG].

Tueorem 3.5. Let U, ,-1(b™) and U, ,-1(b™) be the deformations by
p~'of U (b™) and U,(b™) respectively. Then the deformed pairing

< | >[771: Uq,l)*l(b+)0p® Uqﬂpfl(b_) — (C
is a non-degenerate Hopf pairing satisfying:

VxeU™*, yeU~, Juel, <x-k;|y-k,,1=q""*" x|y
(3.4)

Moreover,

U, (07 )x U, ,-1(b" )= (U (b ) U b )),-1=D, ,-1(g).

Proof. By Theorem 2.4 the deformed pairing is given by

<aA,,, | u, (s>,r1 =p(4, ) pu, 5)<ax,ﬂ | u, 5D
To prove (3.4) we can assume that xe U*_ , ye U, _,. Then we obtain
Cxky | yokyy, =Pty 1) p(h u—v)x-k; |y -k,
=p(A 2u) pA—p,y =) g~ x|y

by the definition of the product - and [33, 2.1.3]. But {x | y> =0 unless
7=, hence the result. Observe in particular that {x |y}, 1={x|y).
Therefore [33, 2.1.4] shows that < | ), -1 is non-degenerate on U x U _,.
It is then not difficult to deduce from (3.4) that { | ) ,-1 is non-degenerate.
The remaining isomorphism follows from 2.6. ||

Many authors have defined multi-parameter quantized enveloping
algebras. In [ 14, 25] a definition is given using explicit generators and rela-
tions, and in [ 1] the construction is made by twisting the comultiplication,
following [ 26]. It can be easily verified that these algebras and the algebras
D, ,-1(g) coincide. The construction of a multi-parameter quantized func-
tion algebra by twisting the multiplication was first performed in the
GL(n)-case in [2].
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The fact that D, ,-1(g) and C, ,[ G] form a Hopf dual pair has already
been observed in particular cases, see e.g. [ 14]. We will now deduce from
the previous results that this phenomenon holds for an arbitrary semi-
simple group.

Tueorem 3.6. {C, ,[G],D, ,-1(a)} is an L-bigraded dual pair. The
associated pairing is given by

vae@q,p[G]k,y’ VMEDq,p’l(g)y,ﬁa <Cl, u>p:p(/1’ V)p(,u» 5)<a> M>

Proof. This follows from Theorem 2.4 applied to the pair {4, U} =
{C,[G], D(g)} and the bicharacter p~' (recall that the map ~ is the
identity). |

Let M eobj(%,). The left D (g)-module structure on M yields a right
C,[ G]-comodule structure in the usual way. Let {v,, .., v; fi, ... fi} be a
dual basis for M. The structure map p: M > M®C,[G], is given by
p(x)=3,v,®¢;, . for xe M. Using this comodule structure on M, one can
check that

M,={xeM|VYheH, r,x)={u h)x}.

ProPOSITION 3.7. Let M e€obj(%,). Then M has a natural structure of
left D, ,-1(g) module. Denote by M " this module and by (u, x)+ u-x the
action of D, ,-1(g). Then

q.p
VueD,g), s VxeM,, u-x=p(A o—y)p(d,y)ux.

Proof. The proposition is a translation in this particular setting of
Corollary 2.5. |

Denote by %, , the subcategory of finite dimensional left D, ,-1(g)-
modules whose objects are the M, M € obj(%,). It follows from Proposi-
tion 3.7 that if M € obj(%,), then M =@ ,., M,,, where

nel
M,={xeM|VaeL,s, x=p(p, 20) ¢"*x, t, - x=p(u, —2a) g"*“x}.

Notice that p(u, +2u) g * =g+ @),

Tueorem 3.8. 1. The functor M — M from %, to 6, ,
alence of rigid monoidal categories.

2. The Hopf pairing < , >, identifies the Hopf algebra C, ,[ G] with
the restricted dual of €, ,, i.e. the Hopf algebra of coordinate functions on
the objects of 6, ,.

is an equiv-

P
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Proof. 1. One needs in particular to prove that, for M, Ne obj(fgq),
the;e are natural isomorphisms of D, ,-1(g)-modules: ¢,, y: (MQ@N) —
M ® N . These isomorphisms are given by x®@ y+> p(4, #)x®y for all
xeM,, yeN,. The other verifications are elementary.

2. We have to show that if Meobj(%,), fe M*, veM and ue
D, ,-1(g), then {c,,,uy,=<f,u-v). It suffices to prove the result in the

q. P

case where fe M}, ve M, and ue D, ,-1(g), ;. Then

(fouvy =plp, 0—y) p(o, 7)< fuv)
=0 iyrou P(—A+7y+0,0—7)p(0,p) [, uv)
=p(4, 7) p(p, 6) fyuvy
=<{Cputt))
by Theorem 3.6. |

Recall that we introduced in Section 3.3 isomorphisms o: D, (g) —
-i(g) and 0:C,[G]—-C,1[G]. From (3.3) it follows that, after
' or p, o induces isomorphisms

D,

q
twisting by p~

Dq’p—l(g)z)Dq—l’p—l(g), qulsp[G]SCq’p[G]

which satisfy (3.2).

3.5. Braiding Isomorphisms. We remarked above that the categories

%, , are braided. In the one parameter case this braiding is well-known. Let

M and N be objects of %,. Let E: M@ N — M ® N be the operator given
by

Em®n)=q¢**"m@n

formeM,; and neN,. Let : M @ N - N® M be the usual twist operator.
Finally let C be the operator given by left multiplication by

BeQ 4

where Cj is the canonical element of D (g) associated to the non-degenerate
pairing U, ® U~ ;— C described above. Then one deduces from [33, 4.3]
that the operators

Oy y=72CE"""MON->NQM

define the braiding on %,.
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As mentioned above, the category %, , inherits a braiding given by

Vs n= (PN,MOQM,NOQ”;[,IN

where @,, v is the isomorphism (M® N)" M ® N introduced in the
proof of Theorem 3.8 (the same formula can be found in [1, Section 10]
and in a more general situation in [24]). We now note that these general
operators are of the same form as those in the one parameter case. Let M
and N be objects of %, , and let E: M@ N — M ® N be the operator given
by
Em®n)=q¢'*+**"“m®n

for me M, and ne N,. Denote by Cj the canonical element of D, ,-1(g)
associated to the nondegenerate pairing U, ,-1(b™) ;@ U, ,-1(b7)o 4

—>C and let C: M® N—> M ® N be the operator given by left multiplica-
tion by

C: Z C/)).
peQ+

THEOREM 3.9. The braiding operators 5, » are given by
Yry=10CoEL

Moreover (W n)* =Y ape, ne.

Proof. The assertions follows easily from the analogous assertions for
Ou.n- |

The following commutation relations are well known [31], [21, 42.2].
We include a proof for completeness.

COROLLARY 3.10. Let A, A"e L™, let ge L(A')*, and fe L(A)* , and let
v € L(A),. Then for any ve L(A'),,

— q(<l3+/1, y)— (P *”"7)0/; .

Cov Clivg= ¢

1" Cew

(D4 A, y)— (D 4 s 77)
+q' " (@sen Z Cfroa Cavv
veQ4

where f,e(U, ,~(b*) f)_,,, and g, e(U, ,~(b7)g)_, , are such that

2[H®8=2sco+\io; Co/®g).
Proof. Let y =V, 4 1) Notice that

Crog woi®v) = CY (f®@g).vi®uv-
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Using the theorem above we obtain

VI @g) =g~ <g ®f+ng®fv>

and

Y, ®v) =g~ "+ (0 @u,). (3.5)

Combining these formulae yields the required relations. ||

4. PRIME AND PRIMITIVE SPECTRUM OF C,_ ,[G]

In this section we prove our main result on the primitive spectrum of
C,.,[ G1; namely that the H orbits inside Prim, C, ,[ G] are parametrized
by the double Weyl group. For completeness we have attempted to make
the proof more or less self-contained. The overall structure of the proof is
similar to that used in [ 16] except that the proof of the key 4.12 (and the
lemmas leading up to it) form a modified and abbreviated version of
Joseph’s proof of this result in the one-parameter case [ 18]. One of the
main differences with the approach of [18] is the use of the Rosso—
Tanisaki form introduced in 3.2 which simplifies the analysis of the adjoint
action of C, ,[ G]. The ideas behind the first few results of this section go
back to Soibelman’s work in the one-parameter ‘compact’ case [ 31]. These
ideas were adapted to the multi-parameter case by Levendorskii [20].

4.1. Parameterization of the Prime Spectrum. Let ¢, p be as in Section
3.4. For simplicity we set

A=C, [G]

and the product a-b as defined in (2.1) will be denoted by ab.
For each 4 e L* choose weight vectors

U4 € L(A)/lﬂ Uwo/l GL(A)WQ/U f—A EL(A)iAa f—wo/i EL(A)iM’O/‘

such that <f7/19 UA> = <f7wl)/1a Uwo/l> = 1. Set

AT=32 X Cep AT =3 Y Cepyy

ueL™ feL(pw* peL™® feL(u)*

Recall the following result.

THEOREM 4.1.  The multiplication map A* ® A~ — A is surjective.
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Proof. Clearly it is enough to prove the theorem in the one-parameter
case. When L =P the result is proved in [31, 3.1] and [18, Theorem 3.7].
The general case can be deduced from the simply-connected case as
follows. One first observes that C,[G] = Cq[(i] =@ ,.p+ C(A). Therefore
any ae€ C,[G] can be written in the forma=3 4 4rcp+ sy, C,e, , Where
A —A" eL Let A€P and {v;; f;}, be a dual basis of L(A). Then we have

1= 8( Copfe A Z CtiovaCorfoar

i

Let A’ be as above and choose A such that 4+ A'eL™. Then, for all i,
CropCrio, €C(A+A)NAT and ¢ ¢ eC(—wO(A—I—A”))mA_.

Ui, At g v
The result then follows by inserting 1 between the terms ¢ropandeg , o

Remark. The algebra A4 is a Noetherian domain (this result will not be
used in the sequel). The fact that 4 is a domain follows from the same
result in [ 18, Lemma 3.1]. The fact that 4 is Noetherian is a consequence
of [ 18, Proposition 4.1] and [6, Theorem 3.7].

For each y e W define the following ideals of 4

I;L = <Cf;l:A |fE(Uq,p_l(b+) L(A)'VA)Lﬂ AEL+>:
I; = <Cf, VoA |.fe(Uq,p’l(b7) L(A)ywoA)La A€L+>

where ()* denotes the orthogonal in L(A)*. Notice that I, =0(l]), oas
in Section 3.4, and that 77 is an L x L homogeneous ideal of A.

Notation. For w=(w,,w_)e Wx W set I, =17 +1 . For AeL"

set Cown= C/',“»+A, vg € C(A) —wyd, A4 and 5\1’/1 = CL'\\»?A,f A € C( M}0 )M p_ A, — A

LEmma 42. Let AeL™ and ae A Then

e
— (DPyiwiA,n)— (DA y) +
cpqa=qltrretn “*ac, ,mod I}

~ — (DA ) —(D_w_An) -
éoa=q ac,,mod I .

Proof. The first identity follows from Corollary 3.10 and the defini-
tion of /.7 . The second identity can be deduced from the first one by

applying a. ||

We continue to denote by ¢, , and ¢, , the images of these elements in
A/I,. Tt follows from Lemma 4.2 that the sets

&, ={ac, | aeC* AeL*}, &, ={al,, |aeC* AL},
E=8,. 6,

Wy
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are multiplicatively closed sets of normal elements in A/I,,. Thus &, is an
Ore set in A4/I,,. Define

Aw = (A/]w)é‘“-'

Notice that ¢ extends to an isomorphism a: A, — A, where w=(w_, w ).

wo

ProrosiTiON 4.3. For all we Wx W, A,,#(0).

Proof. Notice first that since the generators of 4,, and the elements of
&, are L x L homogeneous, it suffices to work in the one-parameter case.
The proof is then similar to that of [15, Theorem 2.2.3] (written in the
SL(n)-case). For completeness we recall the steps of this proof. The tech-
nical details are straightforward generalizations to the general case of [ 15,
loc. cit.].

For 1<i<n denote by U,|sl;(2)) the Hopf subalgebra of U,(g)
generated by e, f;, h'. The associated quantized function algebra 4,
C,[SL(2)] is naturally a quotient of 4. Let o, be the reflection associated
to the root «;. It is easily seen that there exist M;* and M, , non-zero
(A;)(o,.e) and (4;)(..,,) modules respectively. These modules can then be
viewed as non-zero A-modules.

Let w, =0, ---0,, and w_=0; ---0;,
Then

be reduced expressions for w, .

Mi*l'® ®M;;®M;® ®Mj:,
is a non-zero 4,-module. ||
In the one-parameter case the proof of the following result was found
independently by the authors in [16, 1.2] and Joseph in [18, 6.2].
THEOREM 4.4. Let PeSpecC, ,[G]. There exists a unique we Wx W
such that P> 1, and (P/1,)n &, = .

Proof. Fix a dominant weight A. Define an ordering on the weight
vectors of L(A)* by f<f"if f"e U, ,-1(b™) f. This is a preordering which
induces a partial ordering on the set of one dimensional weight spaces.
Consider the set:

F(A)={feL(A)Ff]|cs,, EP}.

Let /' be an element of % (A) which is maximal for the above ordering.
Suppose that f” has the same property and that f and /" have weights ¢ and
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u' respectively. By Corollary 3.10 the two elements c,,, and ¢, ,, are

normal modulo P. Therefore we have, modulo P,

(DA, A)—(Dpp, 1)
B e Crov Crivy

2D A, A)— (D oy ) — (D gt 1)
cf, L‘Acf’sv/l'

CoaCrioa=9d
=q

But, since u is alternating, 2(@ A, A) — (P pu, 1’ ) — (D u', 1) =2(A, A) —
2(u, u'). Since P is prime and ¢ is not a root of unity we can deduce that
(A, A)=(u, u"). This forces u=u' € W(—A). In conclusion, we have shown
that for all dominant A there exists a unique (up to scalar multiplication)
maximal element g, e % (A) with weight —w_ A4, w,e W. Applying the
argument above to a pair of such elements, ¢, , ,, and ¢, , ., yields that
(x A, wpA"Yy=(A, A") for all A, A" e L*. Then it is not difficult to show
that this furnishes a unique w, € W such that w,  A=w_ A for all AeL™*.
Thus for each A eL*,

CgsUAEP<:>g4ffw+/l'

Hence P> 1] and Pné,, = . It is easily checked that such a w_ must
be unique. Using o one deduces the existence and uniqueness of w_. |

DEFINITION. A prime ideal P such that P>, and Pné&,= & will be
called a prime idal of type w. We denote by Spec, C, ,[G], resp.
Prim,, C, ,[G], the subset of Spec C, ,[G] consisting of prime, resp.
primitive, ideals of type w.

Clearly Spec,,C, ,[G] = Spec4,, and  o(Spec,C, -1 ,[G]) =
Spec,, C, ,[ G]. The following corollary is therefore clear.

COROLLARY 4.5. One has

Spec Cq,p[ G] = |_| Specw Cq, p[G]a

weWx W

PrimC, ,[G]= || Prim,C,,[G].

weWx W

We end this section by a result which is the key idea in [18] for
analyzing the adjoint action of 4 on A,,. It says that in the one parameter
case the quantized function algebra C,[B~] identifies with U, (b™)
through the Rosso-Tanisaki—Killing form [ 10, 17, 18]. Evidently this con-
tinues to hold in the multi-parameter case. For completeness we include a
proof of that result.

Set C, ,[B~]1=4/l,,. ..
induces a Hopf algebra map ¢: 4— U, ,-1(b")° where U,

9P~

The embedding U, ,-1(b7) - D, ,-1(g)
1(b™)°
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denotes the cofinite dual. On the other hand the non degenerate Hopf
algebra pairing { | ),-1 furnishes an injective morphism 0: U, ,-1(b™)°" —
U, ,-1(b7)*

q. P

ProrosiTion 4.6. 1. C, ,[B™] is an L-bigraded Hopf algebra.

2. Themap y=0~"¢:C, ,[B~1- U, ,-1(b*)” is an isomorphism of
Hopf algebras.

Proof. 1. 1Itis easy to check that I, , is an L x L graded bi-ideal of
the bialgebra A. Let ue L™ and fix a dual basis {v,;f_,}, of L(x) (with
the usual abuse of notation). Then

2 Cons e, =280 ) e =e(e )
v v

Taking y =5 = pu yields ¢,c, =1 modulo [, .. If y=wu and  # wou, the
above relation shows that S(c, . )¢ .., €1, - Thus I, . is a Hopf
ideal.

2. We first show that

VAdeL™, C/;UAEC(A)—)L,/U Nx,eUy_,, ¢(C/,UA):‘9(xz‘k—A)‘
(4.1)

Set c=¢;,,. Then ¢(U~,) =0 unless n =4 — /; denote by ¢ the restriction
of ¢ to U™. By the non-degeneracy of the pairing on U} ,xU;_ , we
know that there exists a unique x, € U} _, such that ¢ = 6(x;). Then, for all
yeU;_ ,, we have

cdy-k)=Lfiy-k, v>=q" " T y)=q " x,,p)
=Lx; k4 y-k,,

by (3.4). This proves (4.1).

We now show that ¢ is injective on A™*. Suppose that c¢=
¢r,,€C(A)_; 4nKer¢g, hence ¢=0 on U, ,-1(b"). Since L(4)=
u,,(b7)v,=D, ,-1(g)v, it follows that ¢ =0. An easy weight argument
using (4.1) shows then that ¢ is injective on 4.

It is clear that Ker¢>1/,,, ., and that 474~ =4 implies @(A4)=
#(A*[¢,; meL™]). Since 5#=c;1 modulo /,,, ., by part 1, if ae 4 there
exists ve L™ such that ¢(c,) #(a)ep(A™). The inclusion I, ., <Ker ¢
follows easily. Therefore y is a well defined Hopf algebra morphism.

If a,eB, there exists AeL™ such that L(A4),_, #(0). Pick
0#feL(A)* ;... Then (4.1) shows that, up to some scalar, ¢(c,,,)=
O(e;-k_,). If AeL, there exists A€ WAnL™; in particular L(A4);# (0).
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Let velL(A), and feL(A)*, such that {f,v)=1. Then it is easily
verified that ¢(c,,)=0(k_,). This proves that y is surjective, and the
proposition. ||

4.2. The adjoint action. Recall that if M is an arbitrary A-bimodule one
defines the adjoint of 4 on M by

Yae A, xeM, ad(a)-x=73 a;,xS(aq)).

Then it is well known that the subspace of ad-invariant elements
M*={xeM |VaeA, ad(a)-x=¢(a)x} is equal to {xeM |VaeA,
ax=xaj.

Henceforth we fix we Wx W and work inside 4,,. For Ae L™, fe L(A)*
and ve L(A) we set

Zj_'*— = C»:Al Crioa z, = E;Al Cofoa

Let {w,, .., w,} be a basis of L such that w,e L* for all i. Observe that
cwaCwy and ¢, ¢, differ by a non-zero scalar (similarly for ¢, ,¢,,). For
each =3, l.w,e L we define normal elements of 4,, by

n

Cyp = n (’nw, Cop = l_[ nw, dl _( w)czu})

i=1 =

Notice then that, for 4eL™, the “new” ¢, , belongs to (IZ*CA,-?“,+ Yy
(similarly for ¢,,,). Define subalgebras of 4, by

Cw:C[ijraZ;a C‘,M;f'EL(A)*,UEL(A),AELJF,}VEL]
=C[z/;feL(A)*, 4eL"], C,=C[z, ;veLl(A),AeL™"].

Recall that the torus H acts on A4, , by r,(a) =u(h)a, where u(h) =<, h).
Since the generators of I, and the elements of &, are eigenvectors for H,
the action of H extends to an action on A4,,. The algebras C,, and C are
obviously H-stable.

Tueorem 4.7. 1. Cl=C[z/,z, ;fe L(A)*, ve L(4), AeL"].
2. The set 9={d,; AeL"} is an Ore subset of C!. Furthermore
A,=(C,), and A" =(C"),,.

3. For each ieL, let (A,),={acA,|r,(a)=Ah)a}. Then A4, =
@, (A4,), and (A,,),=A"c,,. Moreover each (A,), is an ad-invariant
subspace.
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Proof. Assertion 1 follows from
VhEHa rh(zfi) :Zfs rh(cwxl) :/l(h)cw/ls rh(Ewi) :}'(h)il Ew}n

Let {v,; f;}; be a dual basis for L(A). Then
I=eles . 00)= Z S(er o) €hroa= Z Confafivea

Multiplying both sides of the equation by d, and using the normality of
¢, and ¢, yields d, =%, a;z, sz for some a;€ C. Thus ¥ = C¥. Now by
Theorem 4.1 any element of 4, can be written in the form ¢, , ¢/, ,,d 1!
where v, =v,,, v=v_,,and 4,, 4,, AeL*. This element lies in (4,,); if
and only if 4, — A, =/. In this case ¢/, , ¢y, »,d ;" is equal, up to a scalar,
to the element z [z, d 1 4,61 €(CI) 5 c,,;. Since the adjoint action com-

mutes with the right action of H, (4,,), is an ad-invariant subspace. The
remaining assertions then follow. |

We now study the adjoint action of C, ,[G] on 4,,. The key result is
Theorem 4.12.

Lemma 4.8. Let T,={z/ |fe L(A)*}. Then C; = . T4

Proof. 1t suffices to prove that if A4, A'e L™ and fe L(A)¥, then there
exists a ge L(A + A")* such that z* =z . Clearly we may assume that f'is
a weight vector. Let 1. L(A+ A")—> L(A)® L(A") be the canonical map.
Then

Criva Cf—nqr/l'q v T Cf—\t'+/l'®/; va®va = Cagvapn

where g =1*(f_,,, v+ ®f). Multiplying the images of these elements in 4,
by the inverse of ¢,,,, 4 € C*¢c, ¢, yields the desired result. [|

PROPOSITION 4.9. Let E be an object of %,, and let AeL™. Let
0: L(A) > EQ L(A)® E* be the map (1®@y "1 ®1) where 1: C > EQ E*
is the canonical embedding and Wy ~': E* @ L(A) —» L(A) ® E* is the inverse
of the braiding map described in Section 3.5. Then for any c=
ce,€C(E)_, , and fe L(A)*

+ _ (DPyiwiAd )+
ad(e) -z =¢""" "z e e

In particular C '} is a locally finite C, ,[ G ]-module for the adjoint action.

q.p
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Proof. Let {v; g}, be a dual basis of E where v,eE,, g;e E*, . Then
1(1)=>v,®g,. By (3.5) we have

W_l(gi®UA):ai(UA®gf)

(D4 A, vi) _ (P _vi, A)

where a;,=¢~ q . On the other hand the commutation
relations given in Corollary 3.10 imply that ¢, ¢, | =ba;c, ¢, ,,, Where

& Vi~ wAa
b=g®+"+41_ Therefore

+ —1 _ —1
ad(c) ’ Zf - Z baich Ce.0iCrvCogi ™ bch Cror®@s.Tani®ui®g;
=bcle, o1
wA v ®f®g, a(vg)*

Since the map ¢ is a morphism of D, ,-1(g)-modules it is easy to see that

Coor@g aws) = Cor(v@s®g). va |

LemmA 4.10. Let c=c, ,€C, ,[G]_, ,, fe L(A)* be as in the previous
theorem and xe U, ,-1(b™) be such that y(c) = x. Then

Cs=1x) - fioa™ Corv@/®g). va

Proof. Notice that it suffices to show that

Cs100)-£04(V) = Corvar@e). va( V)

for all ye U, ,-1(b™). Denote by < | > the Hopf pairing < | »,-1 between
U, ,~(b")°®and U, ,-1(b7) as in Section 3.4. Let y be the one dimen-
sional representation of U, ,-1(b™) associated to v, and let 7=y - y. Notice
that y(x)={x|t_,>; so j(c)=c(t_,). Recalling that y is a morphism of
coalgebras and using the relation (¢ of Section 2.3 in the double
U, ,~(b")xU, ,-1(b™), we obtain

9,

xy)

Cs—1(x).f, uA()’) =flxyv,)

=2 {xay [ v <xa [ S(ra)) f(y2)Xe)0.4)
=2 (x|l ya<xe | S(ra)) 1(x2) f(ya0.4)
=2 {xa (X)) vy <xa) | Sy f(y2)v.4)
= (el (V) e(S(¥3)) f(y2)v.4)

=Z ry(cc)(Vay) ¢ o, (¥2) S(ca)(y3))-
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(®—vi, 1)

Since r;(c, ,,) =4
that

<. v;» ON€ shows as in the proof of Proposition 4.9

cS’](x)-/;L'A(y) :Z V;z(c(l))(J/(l)) ¢y, vA(J/(z)) S(C(z))(J’(z))
= Z q(¢7Vi’A)(Cg, V,-Cj; UACv,g,-)(.y)

= Cﬂ*(u@f@g}, vA(y)’
as required. |

TueoreM 4.11.  Consider C| as a C, ,[ G ]-module via the adjoint action.
Then

(1) SocC/l!=C.

(2) AnnC o1, ..

(3) The elements ¢, , , ueL™, act diagonalizably on C .
(4) SocC}={zeC}|Annz>],,}.

Proof. For AeL™, define a U, ,-1(b™)-module by

SA = (Uq,p’l(b-'—) UerA)* =L(A)*/( Uq, ’1(b+) UW+A)L'

It is easily checked that Soc S, = (Ef_,w,, see [18, 7.3]). Let 0: S, > T,
be the linear map given by fi— z;". Denote by { the one-dimensional
representation of C, ,[G] given by {(c)=c(t_, ,). Let c=v, €
C(E)_,. ,. Then I.(c)=¢q'*-""+P¢=q (?+7+4")¢ Then, using Proposi-
tion 4. 9 and Lemma 4. 10 we obtain,

ad(ly(c))-0(f)=q "+ "ad(c) - 2} =231y, = (S (7)) /)

Hence, ad(//(c))-3(f)=6(S '(y(c)) f) for all ceA. This immediately
implies part (2) since Kery> 1, ., and (1., o)) =1, - If S, is given
the structure of an 4-module via S 'y, then 6 is a homomorphism from S,
to the module 7, twisted by the automorphism /.. Since o(f_,, , ,) =1 it
follows that ¢ is bijective and that Soc T, =J(Soc S ) =C. Part (1) then
follows from Lemma 4.8. Part (3) follows from the above formula and the
fact that (¢, , , )=s_,. Since 4/l ., is generated by the images of the
elements ¢, , , (4) is a consequence of the definitions. ||

THEOREM 4.12.  Consider C!! as a C, [ G ]-module via the adjoint action.
Then

Soc C# =C.
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Proof. By Theorem 4.11 we have that Soc C;} =C. Using the map o,
one obtains analogous results for C, . The map C;®C, - C” is a
module map for the adjoint action which is surjective by Theorem 4.1. So
it suffices to show that Soc C} ® C, =C. The following argument is taken
from [18].

By the analog of Theorem 4.11 for C,’ we have that the elements ¢, ,
act as commuting diagonalizable operators on C . Therefore an element
of CH®C, may be written as Y a;®b,; where the b; are linearly inde-
pendent weight vectors. Let c¢,,, be a generator of /. Suppose that
>a;®b;eSoc(CH®C). Then

0=ad(c,,,) <Za ®b> Y ad(e,,,)-a;®ad(c, )b,

iJ

22 ad(qf;er).ai®ad(cf_/1,v/1)'bi
=Y ad(cy,,)-a;@u;b;

for some a; € C*. Thus ad(c;,,)-a;=0 for all i. Thus the g; are annihilated
by the left ideal generated by the c¢,,,. But this left ideal is two-sided
modulo 7, ., and Ann Cf =1, . . Thus the a; are annihilated by 7, .,
and so lie in Soc C} by Theorem 4.11. Thus Y a,®b,eSoc(C® C )=
C®C. 1

COROLLARY 4.13.  The algebra A" contains no nontrivial ad-invariant
ideals. Furthermore, (A™)* =C.

Proof. Notice that Theorem 4.12 implies that C*/ contains no nontrivial
ad-invariant ideals. Since 4% is a localization of C*/ the same must be true
for A”. Let ae(A”)*\C. Then a is central and so for any aeC, (a—«)
is a non-zero ad-invariant ideal of A”’. This implies that a — o is invertible
in A% for any a € C. This contradicts the fact that 4 has countable dimen-
sion over C. |

THEOREM 4.14. Let Z,, be the center of A,,. Then

(1) Z,=A4%;

(2) Z,=@®,..Z, where Z,=Z,nAc,;;

(3) If Z,#(0), then Z, = Cu, for some unit u,;

(4) The group H acts transitively on the maximal ideals of Z,,.
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Proof. The proof of (1) is standard. Assertion (2) follows from
Theorem 4.7. Let u; be a non-zero element of Z;. Then u, =ac,, A, for some
ae A" . This implies that a is normal and hence a generates an ad-invariant
ideal of 47, Thus a (and hence also u;) is a unit by Theorem 4.13. Since
Z,=_C, it follows that Z, = Cu,. Since the action of H is given by r,(u,) =
A(h)u,, it is clear that H acts transitively on the maximal ideals of Z,,. |

THEOREM 4.15.  The ideals of A,, are generated by their intersection with
the center Z,,.

Proof. Any eclement fe A, may be written uniquely in the form
f=Xa;c,, where a, e A”. Define n: 4,,— A" to be the projection given
by n(3} a,c,,) =a, and notice that = is a module map for the adjoint
action. Define the support of f to be Supp(f)={ieL|a,#0}. Let I be an
ideal of A4,,. For any set Y =L such that 0 € Y define

Iy={be A | b=n(f) for some feI such that Supp(f)<Y}

If 7 is ad-invariant then I, is an ad-invariant ideal of 4 and hence is either
(0) or 47,

Now let I'=(InZ,)A, and suppose that /#I'. Choose an element
f=Xa,c,,eI\I' whose support S has the smallest cardinality. We may
assume without loss of generality that 0 € S. Suppose that there exists ge I’
with Supp(g) < S. Then there exists a g'el’ with Supp(g’)c S and
n(g')=1. But then f—a,g' is an element of I' with smaller support
than F. Thus there can be no elements in I’ whose support is contained
in S. So we may assume that n(f)=a,=1. For any ceC, ,[G], set
f.=ad(c)-f—e(c)f. Since n(f.)=0 it follows that |Supp(f.)| < |Supp(f)|
and hence that f.=0. Thus feInA**=1nZ,, a contradiction. |

Putting these results together yields the main theorem of this section,
which completes Corollary 4.5 by describing the set of primitive ideals of

type w.

THEOREM 4.16. For we W x W the subsets Prim,, C, [ G] are precisely
the H-orbits inside Prim C, ,[ G ].

Finally we calculate the size of these orbits in the algebraic case. Set
L,={2€eL|Z,#(0)}. Recall the definition of s(w) from (1.3) and that p
is called g-rational if u is algebraic. In this case we know by Theorem 1.7
that there exists m e N* such that @&(mL) < L.

PropoOSITION 4.17. Suppose that p is qg-rational. Let A€L and y,=
Cw';b,migwchrmA' Then
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(1) y, is ad-semi-invariant. In fact, for any ce A _, ,,

ad(c) -y, =¢q"""""e(c) p;.

where o(w)=®_w_&, —D . w, D_
(2) L,n2mL=2Ker ag(w) nmL
(3) dimZ,=n—s(w)

Proof. Using Lemma 4.2, we have that for ce 4

=17

_ (D iwi D _mi, —n) (PP _mi ), (P_w_D L min)

v, =49 q q q

(P _D mi, —yp)

yic

(ma(w) A, n

=q y;e.

From this it follows easily that
ad(c) -y, =q"""""e(c) p,.

Since (up to some scalar) y, =d).d, 'c 2 it follows from Theorem 4.7
that y,e(4,,) _,,,. However, as a C, ,[ G]-module via the adjoint action,
Ay, 24" ®Cy, and hence Soc A” y,=Cy,. Thus Z_,,,,#(0) if and

° w

only if y, is ad-invariant; that is, if and only if ma(w)4 =0. Hence
dim Z,,=rk L, =rk(L,, » 2mL) =rk Ker,,; a(w)
=dim Kery. a(w) =n—s(w)
as required. ||
Finally, we may deduce that in the algebraic case the size of the H-orbits

Symp,, G and Prim,, C, ,[ G] are the same, cf. Theorem 1.8.

THEOREM 4.18.  Suppose that p is g-rational and let we W x W. Then
VPePrim,C, [G], dim(H/Stab, P)=n—s(w).

Proof. This follows easily from Theorems 4.15, 4.16 and Proposition
4.17. 1
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