Algebraic Structure of Multiparameter Quantum Groups

Timothy J. Hodges*

University of Cincinnati, Cincinnati, Ohio 45221-0025

Thierry Levasseur[†]

Université de Poitiers, 86022 Poitiers, France

and

Margarita Toro[‡]

View metadata, citation and similar papers at core.ac.uk

Received Julie 1, 1994

1. INTRODUCTION

Let G be a connected semi-simple complex Lie group. We define and study the multi-parameter quantum group $\mathbb{C}_{q,p}[G]$ in the case where q is a complex parameter that is not a root of unity. Using a method of twisting bigraded Hopf algebras by a cocycle, [2], we develop a unified approach to the construction of $\mathbb{C}_{a,p}[G]$ and of the multi-parameter Drinfeld double $D_{a,p}$. Using a general method of deforming bigraded pairs of Hopf algebras, we construct a Hopf pairing between these algebras from which we deduce a Peter-Weyl-type theorem for $\mathbb{C}_{a,p}[G]$. We then describe the prime and primitive spectra of $\mathbb{C}_{a,p}[G]$, generalizing a result of Joseph. In the one-parameter case this description was conjectured, and established in the SL(n)-case, by the first and second authors in [15, 16]. It was proved in the general case by Joseph in [18, 19]. In particular the orbits in Prim $\mathbb{C}_{a,p}[G]$ under the natural action of the maximal torus H are indexed, as in the one-parameter case by the elements of the double Weyl group $W \times W$. Unlike the one-parameter case there is not in general a bijection between Symp G and Prim $\mathbb{C}_{a,p}[G]$. However in the case when

* The first author was partially supported by grants from the National Security Agency and the C. P. Taft Memorial Fund. E-mail address: hodges@ucbeh.san.uc.edu.

[†] E-mail address: thierry.levasseur@matpts.uni-poitiers.fr.

[‡] The third author was partially supported by a grant from Calciencias. E-mail address: mmtoro@perseus.unalmed.edu.co.

the symplectic leaves are *algebraic* such a bijection does exist since the orbits corresponding to a given $w \in W \times W$ have the same dimension.

In the first section we discuss the Poisson structures on G defined by classical r-matrices of the form r = a - u where $a = \sum_{\alpha \in \mathbf{R}_+} e_{\alpha} \wedge e_{-\alpha} \in \bigwedge^2 \mathfrak{g}$ and $u \in \bigwedge^2 \mathfrak{h}$. Given such an r one constructs a Manin triple of Lie groups $(G \times G, G, G_r)$. Unlike the one-parameter case (where u = 0), the dual group G_r will generally not be an algebraic subgroup of $G \times G$. In fact this happens if and only if $u \in \bigwedge^2 \mathfrak{h}_{\mathbb{Q}}$. Since the quantized universal enveloping algebra $U_q(\mathfrak{g})$ is a deformation of the algebra of functions on the algebraic group G_r [11], this explains the difficulty in constructing multi-parameter versions of $U_q(\mathfrak{g})$. From [22, 30], one has that the symplectic leaves are the connected components of $G \cap G_r x G_r$ where $x \in G$. Since r is H-invariant, the symplectic leaves are permuted by H with the orbits being contained in Bruhat cells in $G \times G$ indexed by $W \times W$. In the case where G_r is algebraic, the symplectic leaves are also algebraic and an explicit formula is given for their dimension.

The philosophy of [15, 16] was that, as in the case of enveloping algebras of algebraic solvable Lie algebras, the primitive ideals of $\mathbb{C}_q[G]$ should be in bijection with the symplectic leaves of G (in the case u=0). Indeed, since the Lie bracket on $\mathfrak{g}_r = \operatorname{Lie}(G_r)$ is the linearization of the Poisson structure on G, $\operatorname{Prim} \mathbb{C}_{q,p}[G]$ should resemble $\operatorname{Prim} U(\mathfrak{g}_r)$. The study of the muli-parameter versions $\mathbb{C}_{q,p}[G]$ is similar to the case of enveloping algebras of general solvable Lie algebras. In the general case $\operatorname{Prim} U(\mathfrak{g}_r)$ is in bijection with the co-adjoint orbits in \mathfrak{g}_r^* under the action of the "adjoint algebraic group" of \mathfrak{g}_r , [12]. It is therefore natural that, only in the case where the symplectic leaves are algebraic, does one expect and obtain a bijection between the symplectic leaves and the primitive ideals.

In Section 2 we define the notion of an L-bigraded Hopf K-algebra, where L is an abelian group. When A is finitely generated such bigradings correspond bijectively to morphisms from the algebraic group L^{\vee} to the (algebraic) group R(A) of one-dimensional representations of A. For any antisymmetric bicharacter p on L, the multiplication in A may be twisted to give a new Hopf algebra A_p . Moreover, given a pair of L-bigraded Hopf algebras A and U equipped with an L-compatible Hopf pairing $A \times U \to \mathbb{K}$, one can deform the pairing to get a new Hopf pairing between $A_{p^{-1}}$ and U_p . This deformation commutes with the formation of the Drinfeld double in the following sense. Suppose that A and U are bigraded Hopf algebras equipped with a compatible Hopf pairing $A^{op} \times U \to \mathbb{K}$. Then the Drinfeld double $A \bowtie U$ inherits a bigrading such that $(A \bowtie U)_p \cong A_p \bowtie U_p$. Let $\mathbb{C}_q[G]$ denote the usual one-parameter quantum group (or quantum

Let $\mathbb{C}_q[G]$ denote the usual one-parameter quantum group (or quantum function algebra) and let $U_q(\mathfrak{g})$ be the quantized enveloping algebra associated to the lattice **L** of weights of *G*. Let $U_q(\mathfrak{b}^+)$ and $U_q(\mathfrak{b}^-)$ be the

usual sub-Hopf algebras of $U_a(g)$ corresponding to the Borel subalgebras b^+ and b^- respectively. Let $D_a(g) = U_a(b^+) \bowtie U_a(b^-)$ be the Drinfeld double. Since the groups of one-dimensional representations of $U_q(\mathfrak{b}^+)$, $U_q(\mathfrak{b}^-)$, $D_q(\mathfrak{g})$ and $\mathbb{C}_q[G]$ are all isomorphic to $H = \mathbf{L}^{\vee}$, these algebras are all equipped with L-bigradings. Moreover the Rosso-Tanisaki pairing is compatible with bigradings on $U_q(b^+)$, and $U_q(b^-)$. For any anti-symmetric bicharacter p on L one may therefore twist simultaneously the Hopf algebras $U_q(\mathfrak{b}^+)$, $U_q(\mathfrak{b}^-)$ and $D_q(\mathfrak{g})$ in such a way that $D_{q,p}(\mathfrak{g}) \cong U_{q,p}(\mathfrak{b}^+) \bowtie U_{q,p}(\mathfrak{b}^-)$. The algebra $D_{q,p}(\mathfrak{g})$ is the "multi-parameter quantized universal enveloping algebra" constructed by Okado and Yamane [25] and previously in special cases in [9, 32]. The canonical pairing between $\mathbb{C}_{a}[G]$ and $U_{a}(\mathfrak{g})$ induces a L-compatible pairing between $\mathbb{C}_{a}[G]$ and $D_a(g)$. Thus there is an induced pairing between the multi-parameter quantum group $\mathbb{C}_{q,p}[G]$ and the multi-parameter double $D_{q,p^{-1}}(\mathfrak{g})$. Recall that the Hopf algebra $\mathbb{C}_{a}[G]$ is defined as the restricted dual of $U_{a}(\mathfrak{g})$ with respect to a certain category \mathscr{C} of modules over $U_{q}(\mathfrak{g})$. There is a natural deformation functor from this category to a category \mathscr{C}_p of modules over $D_{q,p^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q,p}[G]$ turns out to be the restricted dual of $D_{q,p^{-1}}(\mathfrak{g})$ with respect to this category. This Peter–Weyl theorem for $\mathbb{C}_{q,p}[G]$ was also found by Andruskiewitsch and Enriquez in [1] using a different construction of the quantized universal enveloping algebra and in special cases in [5, 14].

The main theorem describing the primitive spectrum of $\mathbb{C}_{q,p}[G]$ is proved in the final section. Since $\mathbb{C}_{q,p}[G]$ inherits an L-bigrading, there is a natural action of H as automorphisms of $\mathbb{C}_{q,p}[G]$. For each $w \in W \times W$, we construct an algebra $A_w = (\mathbb{C}_{q,p}[G]/I_w)_{\mathscr{E}_w}$ which is a localization of a quotient of $\mathbb{C}_{q,p}[G]$. For each prime $P \in \operatorname{Spec} \mathbb{C}_{q,p}[G]$ there is a unique $w \in W \times W$ such that $P \supset I_w$ and PA_w is proper. Thus $\operatorname{Spec} \mathbb{C}_{q,p}[G] \cong$ $\bigsqcup_{w \in W \times W} \operatorname{Spec}_w \mathbb{C}_{q,p}[G]$ where $\operatorname{Spec}_w \mathbb{C}_{q,p}[G] \cong \operatorname{Spec} A_w$ is the set of primes of type w. The key results are then Theorems 4.14 and 4.15 which state that an ideal of A_w is generated by its intersection with the center and that H acts transitively on the maximal ideals of the center. From this it follows that the primitive ideals of $\mathbb{C}_{q,p}[G]$ of type w form an orbit under the action of H.

An earlier version of our approach to the proof of Joseph's theorem is contained in the unpublished article [17]. The approach presented here is a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [20, 21] on the irreducible representations of multi-parameter function algebras and compact quantum groups. The bijection between symplectic leaves of the compact Poisson group and irreducible *-representations of the compact quantum group found by Soibelman in the one-parameter-case, breaks down in the multi-parameter case. After this work was completed, the authors became aware of the work of Constantini and Varagnolo [7, 8] which has some overlap with the results in this paper.

1. POISSON LIE GROUPS

1.1. Notation. Let g be a complex semi-simple Lie algebra associated to a Cartan matrix $[a_{ij}]_{1 \le i,j \le n}$. Let $\{d_i\}_{1 \le i \le n}$ be relatively prime positive integers such that $[d_i a_{ij}]_{1 \le i,j \le n}$ is symmetric positive definite.

Let h be a Cartan subalgebra of g, **R** the associated root system, $\mathbf{B} = \{\alpha_1, ..., \alpha_n\}$ a basis of **R**, \mathbf{R}_+ the set of positive roots and *W* the Weyl group. We denote by **P** and **Q** the lattices of weights and roots respectively. The fundamental weights are denoted by $\varpi_1, ..., \varpi_n$ and the set of dominant integral weights by $\mathbf{P}^+ = \sum_{i=1}^n \mathbb{N} \varpi_i$. Let (-, -) be a non-degenerate g-invariant symmetric bilinear form on g; it will identify g, resp. h, with its dual g*, resp. h*. The form (-, -) can be chosen in order to induce a perfect pairing $\mathbf{P} \times \mathbf{Q} \to \mathbb{Z}$ such that

$$(\boldsymbol{\varpi}_i, \boldsymbol{\alpha}_i) = \delta_{ij} d_i, \qquad (\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_j) = d_i a_{ij}.$$

Hence $d_i = (\alpha_i, \alpha_i)/2$ and $(\alpha, \alpha) \in 2\mathbb{Z}$ for all $\alpha \in \mathbf{R}$. For each α_j we denote by $h_i \in \mathfrak{h}$ the corresponding coroot: $\varpi_i(h_i) = \delta_{ij}$. We also set

 $\mathfrak{n}^{\pm} = \bigoplus_{\alpha \in \mathbf{R}_+} \mathfrak{g}_{\pm \alpha}, \quad \mathfrak{b}^{\pm} = \mathfrak{h} \oplus \mathfrak{n}^{\pm}, \quad \mathfrak{d} = \mathfrak{g} \times \mathfrak{g}, \quad \mathfrak{t} = \mathfrak{h} \times \mathfrak{h}, \quad \mathfrak{u}^{\pm} = \mathfrak{n}^{\pm} \times \mathfrak{n}^{\mp}.$

Let G be a connected complex semi-simple algebraic group such that $\text{Lie}(G) = \mathfrak{g}$ and set $D = G \times G$. We identify G (and its subgroups) with the diagonal copy inside D. We denote by exp the exponential map from \mathfrak{d} to D. We shall in general denote a Lie subalgebra of \mathfrak{d} by a gothic symbol and the corresponding connected analytic subgroup of D by a capital letter.

1.2. Poisson Lie Group Structure on G. Let $a = \sum_{\alpha \in \mathbf{R}_+} e_{\alpha} \wedge e_{-\alpha} \in \bigwedge^2 \mathfrak{g}$ where the e_{α} are root vectors such that $(e_{\alpha}, e_{\beta}) = \delta_{\alpha, -\beta}$. Let $u \in \bigwedge^2 \mathfrak{h}$ and set r = a - u. Then it is well known that r satisfies the modified Yang-Baxter equation [3, 20] and that therefore the tensor $\pi(g) = (l_g)_* r - (r_g)_* r$ furnishes G with the structure of a Poisson Lie group, see [13, 22, 30] $((l_g)_*$ and $(r_g)_*$ are the differentials of the left and right translation by $g \in G$).

We may write $u = \sum_{1 \le i, j \le n} u_{ij} h_i \otimes h_j$ for a skew-symmetric $n \times n$ matrix $[u_{ij}]$. The element *u* can be considered either as an alternating form on \mathfrak{h}^* or a linear map $u \in \text{End } \mathfrak{h}$ by the formula

$$\forall x \in \mathfrak{h}, \qquad u(x) = \sum_{i,j} u_{i,j}(x, h_i) h_j.$$

The Manin triple associated to the Poisson Lie structure on G given by r is described as follows. Set $u_+ = u \pm I \in \text{End } \mathfrak{h}$ and define

$$\vartheta: \mathfrak{h} \to \mathfrak{t}, \qquad \vartheta(x) = -(u_{-}(x), u_{+}(x)), \qquad \mathfrak{a} = \vartheta(\mathfrak{h}), \qquad \mathfrak{g}_{r} = \mathfrak{a} \oplus \mathfrak{u}^{+}.$$

Following [30] one sees easily that the associated Manin triple is $(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}_r)$ where \mathfrak{g} is identified with the diagonal copy inside \mathfrak{d} . Then the corresponding triple of Lie groups is (D, G, G_r) , where $A = \exp(\mathfrak{a})$ is an analytic torus and $G_r = AU^+$. Notice that \mathfrak{g}_r is a solvable, but not in general algebraic, Lie subalgebra of \mathfrak{d} .

The following is an easy consequence of the definition of a and the identities $u_{+} + u_{-} = 2u$, $u_{+} - u_{-} = 2I$:

$$\mathfrak{a} = \{(x, y) \in \mathfrak{t} \mid x + y = u(y - x)\} = \{(x, y) \in \mathfrak{t} \mid u_+(x) = u_-(y)\}.$$
(1.1)

Recall that exp: $\mathfrak{h} \to H$ is surjective; let L_H be its kernel. We shall denote by $\mathbf{X}(K)$ the group of characters of an algebraic torus K. Any $\chi \in \mathbf{X}(H)$ is given by $\chi(\exp x) = \exp d\chi(x), x \in \mathfrak{h}$, where $d\chi \in \mathfrak{h}^*$ is the differential of χ . Then

$$\mathbf{X}(H) \cong \mathbf{L} = L_{H^{\circ}} := \{ \xi \in \mathfrak{h}^* \mid \xi(L_H) \subset 2i\pi\mathbb{Z} \}.$$

One can show that L has a basis of dominant weights.

Recall that if \tilde{G} is a connected simply connected algebraic group with Lie algebra g and maximal torus \tilde{H} , we have

$$L_{\widetilde{H}} = \mathbf{P}^{\circ} = \bigoplus_{j=1}^{n} 2i\pi \mathbb{Z}h_{j}, \quad \mathbf{X}(\widetilde{H}) \cong \mathbf{P}, \quad \mathbf{Q} \subseteq \mathbf{L} \subseteq \mathbf{P}, \quad \pi_{1}(G) = L_{H}/\mathbf{P}^{\circ} \cong \mathbf{P}/\mathbf{L}.$$

Notice that L_H/\mathbf{P}° is a finite group and $\exp u(L_H)$ is a subgroup of *H*. We set

$$\Gamma_0 = \{ (a, a) \in T \mid a^2 = 1 \}, \qquad \Delta = \{ (a, a) \in T \mid a^2 \in \exp u(L_H) \},\$$

$$\Gamma = A \cap H = \{ (a, a) \in T \mid a = \exp x = \exp y, x + y = u(y - x) \}.$$

It is easily seen that $\Gamma = G \cap G_r$.

PROPOSITION 1.1. We have $\Delta = \Gamma \cdot \Gamma_0$.

Proof. We obviously have $\Gamma_0 \subset \Delta$. Let $(\exp h, \exp h) \in \Gamma$, $h \in \mathfrak{h}$. By definition there exist $(x, y) \in \mathfrak{a}$, $l_1, l_2 \in L_H$ such that

$$x = h + l_1,$$
 $y = h + l_2,$ $y + x = u(y - x).$

Hence $y + x = 2h + l_1 + l_2 = u(l_2 - l_1)$ and $(\exp h)^2 = \exp 2h = \exp u(l_2 - l_1)$. This shows $(\exp h, \exp h) \in \Delta$. Thus $\Gamma \cdot \Gamma_0 \subseteq \Delta$. Let $(a, a) \in \Delta$, $a = \exp h$, $h \in \mathfrak{h}$. From $a^2 \in \exp u(L_H)$ we get $l, l' \in L_H$ such that 2h = u(l') + l. Set x = h - l/2 - l'/2, y = h + l'/2 - l/2. Then y + x = u(y - x) and we have $\exp(-l/2 - l'/2) = \exp(l'/2 - l/2)$, since $l' \in L_H$. If $b = \exp(-l'/2 + l/2)$ we obtain $\exp x = \exp y = ab^{-1}$, hence $(a, a) = (\exp x, \exp y) \cdot (b, b) \in \Gamma \cdot \Gamma_0$. Therefore $\Gamma \cdot \Gamma_0 = \Delta$.

Remark. When *u* is "generic" Γ_0 is not contained in Γ . For example, take *G* to be $SL(3, \mathbb{C})$ and $u = \alpha(h_1 \otimes h_2 - h_2 \otimes h_1)$ with $\alpha \notin \mathbb{Q}$.

Considered as a Poisson variety, G decomposes as a disjoint union of symplectic leaves. Denote by Symp G the set of these symplectic leaves. Since r is H-invariant, translation by an element of H is a Poisson morphism and hence there is an induced action of H on Symp G. The key to classifying the symplectic leaves is the following result, cf. [22, 30].

THEOREM 1.2. The symplectic leaves of G are exactly the connected components of $G \cap G_r x G_r$ for $x \in G$.

Remark that A, Γ and G_r are in general not closed subgroups of D. This has for consequence that the analysis of Symp G made in [15, Appendix A] in the case u = 0 does not apply in the general case.

Set $Q = HG_r = TU^+$. Then Q is a Borel subgroup of D and, recalling that the Weyl group associated to the pair (G, T) is $W \times W$, the corresponding Bruhat decomposition yields $D = \bigsqcup_{w \in W \times W} QwQ = \bigsqcup_{w \in W \times W} QwG_r$. Therefore any symplectic leaf is contained in a Bruhat cell QwQ for some $w \in W \times W$.

DEFINITION. A leaf \mathscr{A} is said to be of type w if $\mathscr{A} \subset QwQ$. The set of leaves of type w is denoted by $\operatorname{Symp}_w G$.

For each $w \in W \times W$ set $w = (w_+, w_-)$, $w_{\pm} \in W$, and fix a representative \dot{w} in the normaliser of T. One shows as in [15, Appendix A] that $G \cap Q\dot{w}G_r \neq \emptyset$, for all $w \in W \times W$; hence $\operatorname{Symp}_w G \neq \emptyset$ and $G \cap G_r \dot{w}G_r \neq \emptyset$, since $QwQ = \bigcup_{h \in H} hG_r \dot{w}G_r$.

The adjoint action of D on itself is denoted by Ad. Set

$$\begin{split} U_w^- &= \operatorname{Ad} w(U) \cap U^+, \qquad \qquad A'_w &= \left\{ a \in A \mid a \dot{w} G_r = \dot{w} G_r \right\}, \\ T'_w &= \left\{ t \in T \mid t G_r \dot{\omega} G_r = G_r \dot{w} G_r \right\}, \qquad H'_w = H \cap T'_w. \end{split}$$

Recall that U_w^- is isomorphic to $\mathbb{C}^{l(w)}$ where $l(w) = l(w_+) + l(w_-)$ is the length of w. We set $s(w) = \dim H'_w$.

LEMMA 1.3. (i) $A'_{w} = \operatorname{Ad} w(A) \cap A \text{ and } T'_{w} = A \cdot \operatorname{Ad} w(A) = AH'_{w}.$ (ii) We have $\operatorname{Lie}(A'_{w}) = \mathfrak{a}'_{w} = \{\vartheta(x) \mid x \in \operatorname{Ker}(u_{-}w_{-}^{-1}u_{+} - u_{+}w_{+}^{-1}u_{-})\}$ and $\dim \mathfrak{a}'_{w} = n - s(w).$ *Proof.* (i) The first equality is obvious and the second is an easy consequence of the bijection, induced by multiplication, between $U_w^- \times T \times U^+$ and $QwQ = QwG_r$.

(ii) By definition we have $\mathfrak{a}'_w = \{\vartheta(x) \mid x \in \mathfrak{h}, w^{-1}(\vartheta(x)) \in \mathfrak{a}\}$. From (1.1) we deduce that $\vartheta(x) \in \mathfrak{a}'_w$ if and only if $u_+ w_+^{-1}(-u_-(x)) = u_- w_-^{-1}(-u_+(x))$.

It follows from (i) that dim $T'_w = n + \dim H'_w = 2n - \dim A'_w$, hence dim $a'_w = n - s(w)$.

Recall that $u \in \text{End } \mathfrak{h}$ is an alternating bilinear form on \mathfrak{h}^* . It is easily seen that $\forall \lambda, \mu \in \mathfrak{h}^*$, $u(\lambda, \mu) = -({}^{t}u(\lambda), \mu)$, where ${}^{t}u \in \text{End } \mathfrak{h}^*$ is the transpose of u.

Notation. Set ${}^{t}u = -\Phi$, $\Phi_{\pm} = \Phi \pm I$, $\sigma(w) = \Phi_{-}w_{-}\Phi_{+} - \Phi_{+}w_{+}\Phi_{-}$, where $w_{+} \in W$ is considered as an element of End \mathfrak{h}^* .

Observe that ${}^{t}u_{+} = -\Phi_{\mp}$ and that

$$u(\lambda, \mu) = (\Phi \lambda, \mu), \quad \text{for all} \quad \lambda, \mu \in \mathfrak{h}^*.$$
 (1.2)

Furthermore, since the transpose of $w_{\pm} \in \text{End } \mathfrak{h}^*$ is $w_{\pm}^{-1} \in \text{End } \mathfrak{h}$, we have ${}^{t}\sigma(w) = u_{-}w_{-}^{-1}u_{+} - u_{+}w_{+}^{-1}u_{-}$. Hence by Lemma 1.3

 $s(w) = \operatorname{codim} \operatorname{Ker}_{\mathfrak{h}^*} \sigma(w), \quad \dim A'_w = \dim \operatorname{Ker}_{\mathfrak{h}^*} \sigma(w).$ (1.3)

1.3. The Algebraic Case. As explained in 1.1 the Lie algebra g_r is in general not algebraic. We now describe its algebraic closure. Recall that a Lie subalgebra m of ϑ is said to be algebraic if m is the Lie algebra of a closed (connected) algebraic subgroup of *D*.

DEFINITION. Let m be a Lie subalgebra of ϑ . The smallest algebraic Lie subalgebra of ϑ containing m is called the algebraic closure of m and will be denoted by \tilde{m} .

Recall that $\mathfrak{g}_r = \mathfrak{a} \oplus \mathfrak{u}^+$. Notice that \mathfrak{u}^+ is an algebraic Lie subalgebra of \mathfrak{d} ; hence it follows from [4, Corollary II.7.7] that $\tilde{\mathfrak{g}}_r = \tilde{\mathfrak{a}} \oplus \mathfrak{u}^+$. Thus we only need to describe $\tilde{\mathfrak{a}}$. Since t is algebraic we have $\tilde{\mathfrak{a}} \subseteq \mathfrak{t}$ and we are reduced to characterize the algebraic closure of a Lie subalgebra of $\mathfrak{t} = \operatorname{Lie}(T)$.

The group $T = H \times H$ is an algebraic torus (of rank 2*n*). The map $\chi \mapsto d\chi$ identifies $\mathbf{X}(T)$ with $\mathbf{L} \times \mathbf{L}$.

Let $\mathfrak{k} \subset \mathfrak{t}$ be a subalgebra. We set

$$\mathfrak{t}^{\perp} = \{ \theta \in \mathbf{X}(T) \mid \mathfrak{t} \subset \operatorname{Ker}_{\mathfrak{t}} \theta \}.$$

The following proposition is well known. It can for instance be deduced from the results in [4, II.8].

PROPOSITION 1.4. Let \mathfrak{t} be a subalgebra of \mathfrak{t} . Then $\tilde{\mathfrak{t}} = \bigcap_{\theta \in \mathfrak{t}^{\perp}} \operatorname{Ker}_{\mathfrak{t}} \theta$ and $\tilde{\mathfrak{t}}$ is the Lie algebra of the closed connected algebraic subgroup $\tilde{K} = \bigcap_{\theta \in \mathfrak{t}^{\perp}} \operatorname{Ker}_{T} \theta$.

COROLLARY 1.5. We have

$$\mathfrak{a}^{\perp} = \{ (\lambda, \mu) \in \mathbf{X}(T) \mid \Phi_{+} \lambda + \Phi_{-} \mu = 0 \},$$
$$\tilde{\mathfrak{a}} = \bigcap_{(\lambda, \mu) \in \mathfrak{a}^{\perp}} \operatorname{Ker}_{\mathfrak{t}}(\lambda, \mu), \qquad \tilde{A} = \bigcap_{(\lambda, \mu) \in \mathfrak{a}^{\perp}} \operatorname{Ker}_{T}(\lambda, \mu).$$

Proof. From the definition of $a = \vartheta(b)$ we obtain

$$(\lambda, \mu) \in \mathfrak{a}^{\perp} \Leftrightarrow \forall x \in \mathfrak{h}, \ \lambda(-u_{-}(x)) + \mu(-u_{+}(x)) = 0.$$

The first equality then follows from ${}^tu_{\pm} = -\Phi_{\mp}$. The remaining assertions are consequences of Proposition 1.4.

Set

$$\begin{split} \mathfrak{h}_{\mathbb{Q}} &= \mathbb{Q} \otimes_{\mathbb{Z}} \mathbf{P}^{\circ} = \bigoplus_{i=1}^{n} \mathbb{Q} h_{i}, \qquad \mathfrak{h}_{\mathbb{Q}}^{*} = \mathbb{Q} \otimes_{\mathbb{Z}} \mathbf{P} = \bigoplus_{i=1}^{n} \mathbb{Q} \boldsymbol{\varpi}_{i} \\ \mathfrak{a}_{\mathbb{Q}}^{\perp} &= \mathbb{Q} \otimes_{\mathbb{Z}} \mathfrak{a}^{\perp} = \left\{ (\lambda, \mu) \in \mathfrak{h}_{\mathbb{Q}}^{*} \times \mathfrak{h}_{\mathbb{Q}}^{*} \mid \boldsymbol{\varPhi}_{+} \lambda + \boldsymbol{\varPhi}_{-} \mu = 0 \right\}. \end{split}$$

Observe that $\dim_{\mathbb{Q}} \mathfrak{a}_{\mathbb{Q}}^{\perp} = rk_{\mathbb{Z}} \mathfrak{a}^{\perp}$ and that, by Corollary 1.5,

$$\dim \tilde{\mathfrak{a}} = 2n - \dim_{\mathbb{Q}} \mathfrak{a}_{\mathbb{Q}}^{\perp}. \tag{1.4}$$

LEMMA 1.6. $\mathfrak{a}_{\mathbb{Q}}^{\perp} \cong \{ v \in \mathfrak{h}_{\mathbb{Q}}^* \mid \Phi v \in \mathfrak{h}_{\mathbb{Q}}^* \}.$

Proof. Define a Q-linear map

$$\{v \in \mathfrak{h}^*_{\mathbb{Q}} \mid \Phi v \in \mathfrak{h}^*_{\mathbb{Q}}\} \to \mathfrak{a}^{\perp}_{\mathbb{Q}}, v \mapsto (-\Phi_{-}v, \Phi_{+}v).$$

It is easily seen that this provides the desired isomorphism.

THEOREM 1.7. The following assertions are equivalent:

- (i) g_r is an algebraic Lie subalgebra of \mathfrak{d} ;
- (ii) $u(\mathbf{P} \times \mathbf{P}) \subset \mathbb{Q};$
- (iii) $\exists m \in \mathbb{N}^*, \ \Phi(m\mathbf{P}) \subset \mathbf{P};$
- (iv) Γ is a finite subgroup of T.

Proof. Recall that g_r is algebraic if and only if $\mathfrak{a} = \tilde{\mathfrak{a}}$, i.e. $n = \dim \mathfrak{a} = \dim \tilde{\mathfrak{a}}$. dim $\tilde{\mathfrak{a}}$. By (1.4) and Lemma 1.6 this is equivalent to $\Phi(\mathbf{P}) \subset \mathfrak{h}_{\mathbb{Q}}^* = \mathbb{Q} \otimes_{\mathbb{Z}} \mathbf{P}$. The equivalence of (i) to (iii) then follows from the definitions, (1.2) and the fact that ${}^{\prime}u = -\Phi$.

To prove the equivalence with (iv) we first observe that, by Proposition 1.1, Γ is finite if and only if $\exp u(L_H)$ is finite. Since L_H/\mathbf{P}° is finite this is also equivalent to $\exp u(\mathbf{P}^\circ)$ being finite. This holds if and only if $u(m\mathbf{P}^\circ) \subset \mathbf{P}^\circ$ for some $m \in \mathbb{N}^*$. Hence the result.

When the equivalent assertions of Theorem 1.7 hold, we shall say that we are in the *algebraic case* or that *u* is *algebraic*. In this case all the subgroups previously introduced are closed algebraic subgroups of *D* and we may define the algebraic quotient varieties D/G_r and $\overline{G} = G/\Gamma$. Let *p* be the projection $G \rightarrow \overline{G}$. Observe that \overline{G} is open in D/G_r and that the Poisson bracket of *G* passes to \overline{G} . We set

$$\begin{aligned} \mathscr{C}_{\psi} &= G_r \, \dot{\psi} G_r / G_r, \qquad \mathscr{C}_w = Q w G_r / G_r = \bigcup_{h \in H} h \mathscr{C}_{\psi} \\ \mathscr{B}_{\psi} &= \mathscr{C}_{\psi} \cap \overline{G}, \qquad \mathscr{B}_w = \mathscr{C}_w \cap \overline{G}, \qquad \mathscr{A}_w = p^{-1} (\mathscr{B}_w). \end{aligned}$$

The next theorem summarizes the description of the symplectic leaves in the algebraic case.

THEOREM 1.8. 1. $\operatorname{Symp}_{w} G \neq \emptyset$ for all $w \in W \times W$, $\operatorname{Symp} G = \bigcup_{w \in W \times W} \operatorname{Symp}_{w} G$.

2. Each symplectic leaf of \overline{G} , resp. G, is of the form $h\mathscr{B}_{\psi}$, resp. $h\mathscr{A}_{\psi}$, for some $h \in H$ and $w \in W \times W$, where \mathscr{A}_{ψ} denotes a fixed connected component of $p^{-1}(\mathscr{B}_{\psi})$.

3. $\mathscr{C}_{\psi} \cong A_{w} \times U_{w}^{-}$ where $A_{w} = A/A'_{w}$ is a torus of rank s(w). Hence $\dim \mathscr{C}_{\psi} = \dim \mathscr{B}_{\psi} = \dim \mathscr{A}_{\psi} = l(w) + s(w)$ and $H/\operatorname{Stab}_{H} \mathscr{A}_{\psi}$ is a torus of rank n - s(w).

Proof. The proofs are similar to those given in [15, Appendix A] for the case u = 0.

2. DEFORMATIONS OF BIGRADED HOPF ALGEBRAS

2.1. Bigraded Hopf Algebras and Their Deformations. Let L be an (additive) abelian group. We will say that a Hopf algebra $(A, i, m, \varepsilon, \Delta, S)$

over a field \mathbb{K} is an L-bigraded Hopf algebra if it is equipped with an $L \times L$ grading

$$A = \bigoplus_{(\lambda,\,\mu)\,\in\,\mathbf{L}\,\times\,\mathbf{L}} A_{\lambda,\,\mu}$$

such that

(1) $\mathbb{K} \subset A_{0,0}, A_{\lambda,\mu}A_{\lambda',\mu'} \subset A_{\lambda+\lambda',\mu+\mu'}$ (i.e. A is a graded algebra)

(2)
$$\Delta(A_{\lambda,\mu}) \subset \sum_{\nu \in \mathbf{L}} A_{\lambda,\nu} \otimes A_{-\nu,\mu}$$

- (3) $\lambda \neq -\mu$ implies $\varepsilon(A_{\lambda,\mu}) = 0$
- (4) $S(A_{\lambda,\mu}) \subset A_{\mu,\lambda}$.

For sake of simplicity we shall often make the following abuse of notation: If $a \in A_{\lambda, \mu}$ we will write $\Delta(a) = \sum_{\nu} a_{\lambda, \nu} \otimes a_{-\nu, \mu}$, $a_{\lambda, \nu} \in A_{\lambda, \nu}$, $a_{-\nu, \mu} \in A_{-\nu, \mu}$.

Let $p: \mathbf{L} \times \mathbf{L} \to \mathbb{K}^*$ be an antisymmetric bicharacter on \mathbf{L} in the sense that p is multiplicative in both entries and that, for all $\lambda, \mu \in \mathbf{L}$,

(1)
$$p(\mu, \mu) = 1;$$
 (2) $p(\lambda, \mu) = p(\mu, -\lambda).$

Then the map $\tilde{p}: (\mathbf{L} \times \mathbf{L}) \times (\mathbf{L} \times \mathbf{L}) \to \mathbb{K}^*$ given by

$$\tilde{p}((\lambda, \mu), (\lambda', \mu')) = p(\lambda, \lambda') p(\mu, \mu')^{-1}$$

is a 2-cocycle on $\mathbf{L} \times \mathbf{L}$ such that $\tilde{p}(0, 0) = 1$.

One may then define a new multiplication, m_p , on A by

$$\forall a \in A_{\lambda,\mu}, b \in A_{\lambda',\mu'}, a \cdot b = p(\lambda,\lambda') p(\mu,\mu')^{-1} ab.$$
(2.1)

THEOREM 2.1. $A_p := (A, i, m_p, \varepsilon, \Delta, S)$ is an L-bigraded Hopf algebra.

Proof. The proof is a slight generalization of that given in [2]. It is well known that $A_p = (A, i, m_p)$ is an associative algebra. Since Δ and ε are unchanged, (A, Δ, ε) is still a coalgebra. Thus it remains to check that ε, Δ are algebra morphisms and that S is an antipode.

Let $x \in A_{\lambda,\mu}$ and $y \in A_{\lambda',\mu'}$. Then

$$\varepsilon(x \cdot y) = p(\lambda, \lambda') p(\mu, \mu')^{-1} \varepsilon(xy)$$

= $p(\lambda, \lambda') p(\mu, \mu')^{-1} \delta_{\lambda, -\mu} \delta_{\lambda', -\mu'} \varepsilon(x) \varepsilon(y)$
= $p(\lambda, \lambda') p(-\lambda, -\lambda')^{-1} \varepsilon(x) \varepsilon(y)$
= $\varepsilon(x) \varepsilon(y)$

So ε is a homomorphism. Now suppose that $\Delta(x) = \sum x_{\lambda,\nu} \otimes x_{-\nu,\mu}$ and $\Delta(y) = \sum y_{\lambda',\nu'} \otimes y_{-\nu',\mu'}$. Then

$$\begin{split} \Delta(x) \cdot \Delta(y) &= \left(\sum x_{\lambda, \nu} \otimes x_{-\nu, \mu}\right) \cdot \left(\sum y_{\lambda', \nu'} \otimes y_{-\nu', \mu'}\right) \\ &= \sum x_{\lambda, \nu} \cdot y_{\lambda', \nu'} \otimes x_{-\nu, \mu} \cdot y_{-\nu', \mu'} \\ &= p(\lambda, \lambda') p(\mu, \mu')^{-1} \sum p(\nu, \nu')^{-1} p(-\nu, -\nu') x_{\lambda, \nu} y_{\lambda', \nu'} \\ &\otimes x_{-\nu, \mu} y_{-\nu', \mu'} \\ &= p(\lambda, \lambda') p(\mu, \mu')^{-1} \Delta(xy) \\ &= \Delta(x \cdot y) \end{split}$$

So \varDelta is also a homomorphism. Finally notice that

$$\sum S(x_{(1)}) \cdot x_{(2)} = \sum S(x_{\lambda,\nu}) \cdot x_{-\nu,\mu}$$
$$= \sum p(\nu, -\nu) p(\lambda,\mu)^{-1} S(x_{\lambda,\nu}) x_{-\nu,\mu}$$
$$= p(\lambda,\mu)^{-1} \sum S(x_{\lambda,\nu}) \cdot x_{-\nu,\mu}$$
$$= p(\lambda,\mu)^{-1} \varepsilon(x)$$
$$= \varepsilon(x)$$

A similar calculation shows that $\sum x_{(1)} \cdot S(x_{(2)}) = \varepsilon(x)$. Hence S is indeed an antipode.

Remark. The isomorphism class of the algebra A_p depends only on the cohomology class $[\tilde{p}] \in H^2(\mathbf{L} \times \mathbf{L}, \mathbb{K}^*)$, [2, Section 3].

Remark. Theorem 2.1 is a particular case of the following general construction. Let (A, i, m) be a \mathbb{K} -algebra. Assume that $F \in GL_{\mathbb{K}}(A \otimes A)$ is given such that (with the usual notation)

- (1) $F(m \otimes 1) = (m \otimes 1) F_{23}F_{13}; F(1 \otimes m) = (1 \otimes m) F_{12}F_{13}$
- (2) $F(i \otimes 1) = i \otimes 1; F(1 \otimes i) = 1 \otimes i$

(3) $F_{12}F_{13}F_{23} = F_{23}F_{13}F_{12}$, i.e. F satisfies the Quantum Yang-Baxter Equation.

Set $m_F = m \circ F$. Then (A, i, m_F) is a K-algebra.

Assume furthermore that $(A, i, m, \varepsilon, \Delta, S)$ is a Hopf algebra and that

- (4) $F: A \otimes A \to A \otimes A$ is morphism of coalgebras
- (5) $mF(S \otimes 1) \varDelta = m(S \otimes 1) \varDelta; mF(1 \otimes S) \varDelta = m(1 \otimes S) \varDelta.$

Then $A_F := (A, i, m_F, \varepsilon, \Delta, S)$ is a Hopf algebra. The proofs are straightforward verifications and are left to the interested reader.

When A is an L-bigraded Hopf algebra and p is an antisymmetric bicharacter as above, we may define $F \in GL_{\mathbb{K}}(A \otimes A)$ by

$$\forall a \in A_{\lambda, \mu}, \forall b \in A_{\lambda', \mu'}, F(a \otimes b) = p(\lambda, \lambda') p(\mu, \mu')^{-1} a \otimes b.$$

It is easily checked that F satisfies the conditions (1) to (5) and that the Hopf algebras A_F and A_p coincide.

A related construction of the quantization of a monoidal category is given in [24].

2.2. Diagonalizable Subgroups of R(A). In the case where L is a finitely generated group and A is a finitely generated algebra (which is the case for the multiparameter quantum groups considered here), there is a simple geometric interpretation of L-bigradings. They correspond to algebraic group maps from the diagonalizable group L^{\vee} to the group of one dimensional representations of A.

Assume that \mathbb{K} is algebraically closed. Let $(A, i, m, \varepsilon, \Delta, S)$ be a Hopf \mathbb{K} -algebra. Denote by R(A) the multiplicative group of one dimensional representations of A, i.e. the character group of the algebra A. Notice that when A is a finitely generated \mathbb{K} -algebra, R(A) has the structure of an affine algebraic group over \mathbb{K} , with algebra of regular functions given by $\mathbb{K}[R(A)] = A/J$ where J is the semi-prime ideal $\bigcap_{h \in R(A)} \operatorname{Ker} h$. Recall that there are two natural group homomorphisms $l, r: R(A) \to \operatorname{Aut}_{\mathbb{K}}(A)$ given by

$$l_h(x) = \sum h(S(x_{(1)})) x_{(2)} = \sum h^{-1}(x_{(1)}) x_{(2)}$$
$$r_h(x) = \sum x_{(1)} h(x_{(2)}).$$

THEOREM 2.2. Let A be a finitely generated Hopf algebra and let \mathbf{L} be a finitely generated abelian group. Then there is a natural bijection between:

(1) L-bigradings on A;

(2) Hopf algebra maps $A \to \mathbb{K}\mathbf{L}$ (where $\mathbb{K}\mathbf{L}$ denotes the group algebra);

(3) morphisms of algebraic groups $\mathbf{L}^{\vee} \to R(A)$.

Proof. The bijection of the last two sets of maps is well-known. Given an L-bigrading on A, we may define a map $\phi: A \to \mathbb{K}\mathbf{L}$ by $\phi(a_{\lambda,\mu}) = \varepsilon(a) u_{\lambda}$. It is easily verified that this is a Hopf algebra map. Conversely, given a map $\mathbf{L}^{\vee} \to R(A)$ we may construct an \mathbf{L} bigrading using the following result.

THEOREM 2.3. Let $(A, i, m, \varepsilon, \Lambda, S)$ be a finitely generated Hopf algebra over \mathbb{K} . Let H be a closed diagonalizable algebraic subgroup of R(A). Denote by \mathbf{L} the (additive) group of characters of H and by $\langle -, - \rangle : \mathbf{L} \times H \to \mathbb{K}^*$ the natural pairing. For $(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}$ set

$$A_{\lambda,\mu} = \{ x \in A \mid \forall h \in H, \, l_h(x) = \langle \lambda, h \rangle \, x, \, r_h(x) = \langle \mu, h \rangle \, x \}.$$

Then $(A, i, m, \varepsilon, \Delta, S)$ is an L-bigraded Hopf algebra.

Proof. Recall that any element of A is contained in a finite dimensional subcoalgebra of A. Therefore the actions of H via r and l are locally finite. Since they commute and H is diagonalizable, A is $\mathbf{L} \times \mathbf{L}$ diagonalizable. Thus the decomposition $A = \bigoplus_{(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}} A_{\lambda, \mu}$ is a grading.

Now let *C* be a finite dimensional subcoalgebra of *A* and let $\{c_1, ..., c_n\}$ be a basis of $H \times H$ weight vectors. Suppose that $\Delta(c_i) = \sum t_{ij} \otimes c_j$. Then since $c_i = \sum t_{ij} \varepsilon(c_j)$, the t_{ij} span *C* and it is easily checked that $\Delta(t_{ij}) = \sum t_{ik} \otimes t_{kj}$. Since $l_h(c_i) = \sum h^{-1}(t_{ij}) c_j$ for all $h \in H$ and the c_i are weight vectors, we must have that $h(t_{ij}) = 0$ for $i \neq j$. This implies that

$$l_h(t_{ij}) = h^{-1}(t_{ii}) t_{ij}, \quad r_h(t_{ij}) = h(t_{ij}) t_{ij}$$

and that the map $\lambda_i(h) = h(t_{ii})$ is a character of *H*. Thus $t_{ij} \in A_{-\lambda_i, \lambda_j}$ and hence

$$\Delta(t_{ij}) = \sum t_{ik} \otimes t_{kj} \in \sum A_{-\lambda_i, \lambda_k} \otimes A_{-\lambda_k, \lambda_j}.$$

This gives the required condition on Δ . If $\lambda + \mu \neq 0$ then there exists an $h \in H$ such that $\langle -\lambda, h \rangle \neq \langle \mu, h \rangle$. Let $x \in A_{\lambda, \mu}$. Then

$$\langle \mu, h \rangle \varepsilon(x) = \varepsilon(r_h(x)) = h(x) = \varepsilon(l_{h^{-1}}(x)) = \langle -\lambda, h \rangle \varepsilon(x)$$

Hence $\varepsilon(x) = 0$. The assertion on S follows similarly.

Remark. In particular, if G is any algebraic group and H is a diagonalizable subgroup with character group L, then we may deform the Hopf algebra $\mathbb{K}[G]$ using an antisymmetric bicharacter on L. Such deformations are algebraic analogs of the deformations studied by Rieffel in [27].

2.3. Deformations of Dual Pairs. Let A and U be a dual pair of Hopf algebras. That is, there exists a bilinear pairing $\langle | \rangle$: $A \times U \rightarrow \mathbb{K}$ such that:

(1)
$$\langle a \mid 1 \rangle = \varepsilon(a); \langle 1 \mid u \rangle = \varepsilon(u)$$

(2)
$$\langle a \mid u_1 u_2 \rangle = \sum \langle a_{(1)} \mid u_1 \rangle \langle a_{(2)} \mid u_2 \rangle$$

- (3) $\langle a_1 a_2 | u \rangle = \sum \langle a_1 | u_{(1)} \rangle \langle a_2 | u_{(2)} \rangle$
- (4) $\langle S(a) | u \rangle = \langle a | S(u) \rangle.$

Assumed that A is bigraded by L, U is bigraded by an abelian group Q and that there is a homomorphism $: \mathbf{Q} \to \mathbf{L}$ such that

$$\langle A_{\lambda,\mu} | U_{\gamma,\delta} \rangle \neq 0$$
 only if $\lambda + \mu = \check{\gamma} + \check{\delta}$. (2.2)

In this case we will call the pair $\{A, U\}$ an L-bigraded dual pair. We shall be interested in Sections 3 and 4 in the case where $\mathbf{Q} = \mathbf{L}$ and $\mathbf{I} = Id$.

Remark. Suppose that the bigradings above are induced from subgroups H and \check{H} of R(A) and R(U) respectively and that the map $\mathbf{Q} \to \mathbf{L}$ is induced from a map $h \mapsto \check{h}$ from H to \check{H} . Then the condition on the pairing map be restated as the fact that the form is ad-invariant in the sense that for all $a \in A$, $u \in U$ and $h \in H$,

$$\langle \operatorname{ad}_h a \mid u \rangle = \langle a \mid \operatorname{ad}_{\check{h}} u \rangle$$

where $ad_h a = r_h l_h(a)$.

THEOREM 2.4. Let $\{A, U\}$ be the bigraded dual pair as described above. Let p be an antisymmetric bicharacter on \mathbf{L} and let \check{p} be the induced bicharacter on \mathbf{Q} . Define a bilinear form $\langle | \rangle_p : A_{p^{-1}} \times U_{\check{p}} \to \mathbb{K}$ by

$$\langle a_{\lambda,\mu} | u_{\gamma,\delta} \rangle_p = p(\lambda,\check{\gamma})^{-1} p(\mu,\check{\delta})^{-1} \langle a_{\lambda,\mu} | u_{\gamma,\delta} \rangle.$$

Then $\langle | \rangle_p$ is a Hopf pairing and $\{A_{p^{-1}}, U_{\check{p}}\}$ is an L-bigraded dual pair.

Proof. Let $a \in A_{\lambda, \mu}$ and let $u_i \in U_{\gamma_i, \delta_i}$, i = 1, 2. Then

$$\langle a \mid u_1 u_2 \rangle_p = p(\check{\gamma}_1, \check{\gamma}_2) p(\check{\delta}_1, \check{\delta}_2)^{-1} p(\lambda, \check{\gamma}_1 + \check{\gamma}_2)^{-1} \\ \times p(\mu, \check{\delta}_1 + \check{\delta}_2)^{-1} \langle a \mid u_1 u_2 \rangle.$$

Suppose that $\Delta(a) = \sum_{v} a_{\lambda, v} \otimes a_{-v, \mu}$. Then by the assumption on the pairing, the only possible value of v for which $\langle a_{\lambda, v} | u_1 \rangle \langle a_{-v, \mu} | u_2 \rangle$ is non-zero is $v = \check{\gamma}_1 + \check{\delta}_1 - \lambda = \mu - \check{\gamma}_2 - \check{\delta}_2$. Therefore

$$\begin{split} \langle a_{(1)} | u_1 \rangle_p \langle a_{(2)} | u_2 \rangle = p(\lambda, \check{\gamma}_1)^{-1} p(\nu, \check{\delta}_1)^{-1} p(-\nu, \check{\gamma}_2)^{-1} \\ & \times p(\mu, \check{\delta}_2)^{-1} \langle a_{(1)} | u_1 \rangle \langle a_{(2)} | u_2 \rangle \\ = p(\lambda, \check{\gamma}_1)^{-1} p(\mu - \check{\gamma}_2 - \check{\delta}_2, \check{\delta}_1)^{-1} p(\lambda - \check{\gamma}_1 - \check{\delta}_1, \check{\gamma}_2)^{-1} \\ & \times p(\mu, \check{\delta}_2)^{-1} \langle a_{(1)} | u_1 \rangle \langle a_{(2)} | u_2 \rangle \\ = p(\check{\gamma}_1, \check{\gamma}_2) p(\check{\delta}_1, \check{\delta}_2)^{-1} p(\lambda, \check{\gamma}_1 + \check{\gamma}_2)^{-1} \\ & \times p(\mu, \check{\delta}_1 + \check{\delta}_2)^{-1} \langle a | u_1 u_2 \rangle \\ = \langle a | u_1 u_2 \rangle_p. \end{split}$$

This proves the first axiom. The others are verified similarly.

COROLLARY 2.5. Let $\{A, U, p\}$ be as in Theorem 2.4. Let M be a right A-comodule with structure map $\rho: M \to M \otimes A$. Then M is naturally endowed with U and $U_{\vec{p}}$ left module structures, denoted by $(u, x) \mapsto ux$ and $(u, x) \mapsto u \cdot x$ respectively. Assume that $M = \bigoplus_{\lambda \in \mathbf{L}} M_{\lambda}$ for some \mathbb{K} -subspaces such that $\rho(M_{\lambda}) \subset \sum_{\nu} M_{-\nu} \otimes A_{\nu,\lambda}$. Then we have $U_{\gamma,\delta}M_{\lambda} \subset M_{\lambda-\vec{\gamma}-\vec{\delta}}$ and the two structures are related by

$$\forall u \in U_{\gamma, \delta}, \qquad \forall x \in M_{\lambda}, \qquad u \cdot x = p(\lambda, \, \breve{\gamma} - \breve{\delta}) \, p(\breve{\gamma}, \, \breve{\delta}) \, ux.$$

Proof. Notice that the coalgebras A and $A_{p^{-1}}$ are the same. Set $\rho(x) = \sum x_{(0)} \otimes x_{(1)}$ for all $x \in M$. Then it is easily checked that the following formulas define the desired U and U_{ρ} module structures:

$$\forall u \in U, \qquad ux = \sum x_{(0)} \langle x_{(1)} \mid u \rangle, \qquad u \cdot x = \sum x_{(0)} \langle x_{(1)} \mid u \rangle_p.$$

When $x \in M_{\lambda}$ and $u \in U_{\gamma, \delta}$ the additional condition yields

$$u \cdot x = \sum x_{(0)} p(v, -\check{y}) p(\lambda, -\check{\delta}) \langle x_{(1)} | u \rangle$$

But $\langle x_{(1)} | u \rangle \neq 0$ forces $-v = \lambda - \breve{\gamma} - \breve{\delta}$, hence $u \cdot x = p(\lambda, \breve{\gamma} - \breve{\delta}) p(\breve{\gamma}, \breve{\delta}) \times \sum x_{(0)} \langle x_{(1)} | u \rangle = p(\lambda, \breve{\gamma} - \breve{\delta}) p(\breve{\gamma}, \breve{\delta}) ux$.

Denote by A^{op} the opposite algebra of the K-algebra A. Let $\{A^{\text{op}}, U, \langle | \rangle\}$ be a dual pair of Hopf algebras. The double $A \bowtie U$ is defined as follows, [10, 3.3]. Let I be the ideal of the tensor algebra $T(A \otimes U)$ generated by elements of type

$$1 - 1_A, \qquad 1 - 1_U \tag{a}$$

$$xx' - x \otimes x', \quad x, x' \in A, \quad yy' - y \otimes y', \quad y, y' \in U$$
 (b)

$$x_{(1)} \otimes y_{(1)} \langle x_{(2)} | y_{(2)} \rangle - \langle x_{(1)} | y_{(1)} \rangle y_{(2)} \otimes x_{(2)}, \qquad x \in A, y \in U \quad (c)$$

Then the algebra $A \bowtie U := T(A \otimes U)/I$ is called the *Drinfeld double of* $\{A, U\}$. It is a Hopf algebra in a natural way:

$$\begin{split} & \varDelta(a \otimes u) = (a_{(1)} \otimes u_{(1)}) \otimes (a_{(2)} \otimes u_{(2)}), \\ & \varepsilon(a \otimes u) = \varepsilon(a) \, \varepsilon(u), \qquad S(a \otimes u) = (S(a) \otimes 1)(1 \otimes S(u)). \end{split}$$

Notice for further use that $A \bowtie U$ can equally be defined by relations of type (a), (b), ($c_{x,y}$) or (a), (b), ($c_{y,x}$), where we set

$$x \otimes y = \langle x_{(1)} | y_{(1)} \rangle \langle x_{(3)} | S(y_{(3)}) \rangle y_{(2)} \otimes x_{(2)}, \qquad x \in A, y \in U \qquad (c_{x, y})$$

$$y \otimes x = \langle x_{(1)} | S(y_{(1)}) \rangle \langle x_{(3)} | y_{(3)} \rangle x_{(2)} \otimes y_{(2)}, \qquad x \in A, y \in U \qquad (c_{y, x})$$

QUANTUM GROUPS

THEOREM 2.6. Let $\{A^{op}, U\}$ be an L-bigraded dual pair, p be an antisymmetric bicharacter on L and \check{p} be the induced bicharacter on Q. Then $A \bowtie U$ inherits an L-bigrading and there is a natural isomorphism of L-bigraded Hopf algebras:

$$(A \bowtie U)_p \cong A_p \bowtie U_{\breve{p}}.$$

Proof. Recall that as a K-vector space $A \bowtie U$ identifies with $A \otimes U$. Define an L-bigrading on $A \bowtie U$ by

$$\forall \alpha, \beta \in \mathbf{L}, \qquad (A \bowtie U)_{\alpha, \beta} = \sum_{\lambda - \check{\gamma} = \alpha, \, \mu - \check{\delta} = \beta} A_{\lambda, \, \mu} \otimes U_{\gamma, \, \delta}$$

To verify that this yields a structure of graded algebra on $A \bowtie U$ it suffices to check that the defining relations of $A \bowtie U$ are homogeneous. This is clear for relations of type (a) or (b). Let $x_{\lambda,\mu} \in A_{\lambda,\mu}$ and $y_{\gamma,\delta} \in U_{\gamma,\delta}$. Then the corresponding relation of type (c) becomes

$$\sum_{\nu,\xi} x_{\lambda,\nu} y_{\gamma,\xi} \langle x_{-\nu,\mu} | y_{-\xi,\delta} \rangle - \langle x_{\lambda,\mu} | y_{\gamma,\xi} \rangle y_{-\xi,\delta} x_{-\nu,\mu}.$$
(*)

When a term of this sum is non-zero we obtain $-v + \mu = -\xi + \delta$, $\lambda + v = \gamma + \xi$. Hence $\lambda - \gamma = -v + \xi = -\mu + \delta$, which shows that the relation (*) is homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1 hold. Hence $A \bowtie U$ is an L-bigraded Hopf algebra.

Notice that $(A_p)^{\text{op}} \cong (A^{\text{op}})_{p^{-1}}$, so that Theorem 2.4 defines a suitable pairing between $(A_p)^{\text{op}}$ and $U_{\vec{p}}$. Thus $A_p \bowtie U_{\vec{p}}$ is defined. Let ϕ be the natural surjective homomorphism from $T(A \otimes U)$ onto $A_p \bowtie U_{\vec{p}}$. To check that ϕ induces an isomorphism it again suffices to check that ϕ vanishes on the defining relations of $(A \bowtie U)_p$. Again, this is easy for relations of type (a) and (b). The relation (*) says that

$$p(\lambda, \check{\gamma}) p(-\nu, \xi) \langle x_{-\nu, \mu} | y_{-\xi, \delta} \rangle x_{\lambda, \nu} \cdot y_{\gamma, \xi} -p(\check{\xi}, \nu) p(\check{\delta}, -\mu) \langle x_{\lambda, \mu} | y_{\gamma, \xi} \rangle y_{-\xi, \delta} \cdot x_{-\nu, \mu} = 0$$

in $(A \bowtie U)_p$. Multiply the left hand side of this equation by $p(\lambda, -\check{\gamma}) p(\mu, -\check{\delta})$ and apply ϕ . We obtain the following expression in $A_p \bowtie U_{\check{p}}$:

$$p(-\nu, \delta) p(\mu, -\delta) \langle x_{-\nu, \mu} | y_{-\xi, \delta} \rangle x_{\lambda, \nu} y_{\gamma, \xi}$$
$$-p(\lambda, -\check{\gamma}) p(\nu, -\check{\xi}) \langle x_{\lambda, \mu} | y_{\gamma, \xi} \rangle y_{-\xi, \delta} x_{-\nu, \mu}$$

which is equal to

$$\langle x_{-\nu,\mu} \mid y_{-\xi,\delta} \rangle_p x_{\lambda,\nu} y_{\gamma,\xi} - \langle x_{\lambda,\mu} \mid y_{\gamma,\xi} \rangle_p y_{-\xi,\delta} x_{-\nu,\mu}.$$

But htis is a defining relation of type (c) in $A_p \bowtie U_{\check{p}}$, hence zero.

It remains to see that ϕ induces an isomorphism of Hopf algebras, which is a straightforward consequence of the definitions.

2.4. *Cocycles.* Let L be, in this section, an arbitrary free abelian group with basis $\{\omega_1, ..., \omega_n\}$ and set $\mathfrak{h}^* = \mathbb{C} \otimes_{\mathbb{Z}} \mathbf{L}$. We freely use the terminology of [2]. Recall that $H^2(\mathbf{L}, \mathbb{C}^*)$ is in bijection with the set \mathscr{H} of multiplicatively antisymmetric $n \times n$ -matrices $\gamma = [\gamma_{ij}]$. This bijection maps the class [c] onto the matrix defined by $\gamma_{ij} = c(\omega_i, \omega_j)/c(\omega_j, \omega_i)$. Furthermore it is an isomorphism of groups with respect to component-wise multiplication of matrices.

Remark. The notation is as in 2.1. We recalled that the isomorphism class of the algebra A_p depends only on the cohomology class $[\tilde{p}] \in H^2(\mathbf{L} \times \mathbf{L}, \mathbb{K}^*)$. Let $\gamma \in \mathscr{H}$ be the matrix associated to p and γ^{-1} its inverse in \mathscr{H} . Notice that the multiplicative matrix associated to $[\tilde{p}]$ is then $\tilde{\gamma} = \begin{bmatrix} \gamma & \gamma^{-1} \\ \gamma & \gamma^{-1} \end{bmatrix}$ in the basis given by the $(\omega_i, 0), (0, \omega_i) \in \mathbf{L} \times \mathbf{L}$. Therefore the isomorphism class of the algebra A_p depends only on the cohomology class $[p] \in H^2(\mathbf{L}, \mathbb{K}^*)$.

Let $h \in \mathbb{C}^*$. If $x \in \mathbb{C}$ we set $q^x = \exp(-x\hbar/2)$. In particular $q = \exp(-\hbar/2)$. Let $u: \mathbf{L} \times \mathbf{L} \to \mathbb{C}$ be a complex alternating \mathbb{Z} -bilinear form. Define

$$p: \mathbf{L} \times \mathbf{L} \to \mathbb{C}^*, \qquad p(\lambda, \mu) = \exp\left(-\frac{\hbar}{4}u(\lambda, \mu)\right) = q^{(1/2)u(\lambda, \mu)}.$$
 (2.3)

Then it is clear that p is an antisymmetric bicharacter on L.

Observe that, since $\mathfrak{h}^* = \mathbb{C} \otimes_{\mathbb{Z}} \mathbf{L}$, there is a natural isomorphism of additive groups between $\wedge^2 \mathfrak{h}$ and the group of complex alternating \mathbb{Z} -bilinear forms on \mathbf{L} , where \mathfrak{h} is the \mathbb{C} -dual of \mathfrak{h}^* . Set $\mathscr{Z}_h = \{ u \in \wedge^2 \mathfrak{h} \mid u(\mathbf{L} \times \mathbf{L}) \subset (4i\pi/h)\mathbb{Z} \}$.

THEOREM 2.7. There are isomorphisms of abelian groups:

$$H^2(\mathbf{L}, \mathbb{C}^*) \cong \mathscr{H} \cong \wedge^2 \mathfrak{h}/\mathscr{Z}_h.$$

Proof. The first isomorphism has been described above. Let $\gamma = [\gamma_{ij}] \in \mathscr{H}$ and choose u_{ij} , $1 \leq i < j \leq n$ such that $\gamma_{ij} = \exp(-(h/2) u_{ij})$. We can define $u \in \bigwedge^2 \mathfrak{h}$ by setting $u(\omega_i, \omega_j) = u_{ij}$, $1 \leq i < j \leq n$. It is then easily seen that one can define an injective morphism of abelian groups

$$\varphi: H^2(\mathbf{L}, \mathbb{C}^*) \cong \mathscr{H} \to \bigwedge^2 \mathfrak{h}/\mathscr{Z}_h, \qquad \varphi(\gamma) = [u]$$

where [u] is the class of u. If $u \in \bigwedge^2 \mathfrak{h}$, define a 2-cocycle p by the formula (2.3). Then the multiplicative matrix associated to $[p] \in H^2(\mathbf{L}, \mathbb{C}^*)$ is given by

$$\gamma_{ij} = p(\omega_i, \omega_j) / p(\omega_j, \omega_i) = p(\omega_i, \omega_j)^2 = \exp\left(-\frac{\hbar}{2}u(\omega_i, \omega_j)\right).$$

This shows that $[u] = \varphi([\gamma_{ij}])$; thus φ is an isomorphism.

We list some consequences of Theorem 2.7. We denote by [u] an element of $\bigwedge^2 \mathfrak{h}/\mathscr{Z}_h$ and we set $[p] = \varphi^{-1}([u])$. We have seen that we can define a representative *p* by the formula (2.3).

1. [p] of finite order in $H^2(\mathbf{L}, \mathbb{C}^*) \Leftrightarrow u(\mathbf{L} \times \mathbf{L}) \subset (i\pi/\hbar)\mathbb{Q}$, and q root of unity $\Leftrightarrow h \in i\pi\mathbb{Q}$.

2. Notice that u = 0 is algebraic, whether q is a root of unity or not. Assume that q is a root of unity; then we get from 1 that

[p] of finite order $\Leftrightarrow u$ is algebraic.

3. Assume that q is not a root of unity and that $u \neq 0$. Then [p] of finite order implies $(0) \neq u(\mathbf{L} \times \mathbf{L}) \subset (i\pi/\hbar) \mathbb{Q}$. This shows that

 $0 \neq u$ algebraic $\Rightarrow [p]$ is not of finite order.

DEFINITION. The bicharacter $p: (\lambda, \mu) \mapsto q^{(1/2) u(\lambda, \mu)}$ is called *q*-rational if $u \in \bigwedge^2 \mathfrak{h}$ is algebraic.

3. MULTIPARAMETER QUANTUM GROUPS

3.1. One-Parameter Quantized Enveloping Algebras. The notation is as in Sections 1 and 2. In particular we fix a lattice L such that $\mathbf{Q} \subset \mathbf{L} \subset \mathbf{P}$ and we denote by G the connected semi-simple algebraic group with maximal torus H such that Lie (G) = g and $\mathbf{X}(H) \cong \mathbf{L}$.

Let $q \in \mathbb{C}^*$ and assume that q is not a root of unity. Let $h \in \mathbb{C} \setminus i\pi\mathbb{Q}$ such that $q = \exp(-h/2)$ as in 2.4. We set

$$q_i = q^{d_i}, \qquad \hat{q}_i = (q_i - q_i^{-1})^{-1}, \qquad 1 \leq i \leq n.$$

Denote by U^0 the group algebra of X(H), hence

$$U^0 = \mathbb{C}[k_{\lambda}; \lambda \in \mathbf{L}], \qquad k_0 = 1, \qquad k_{\lambda}k_{\mu} = k_{\lambda+\mu}.$$

Set $k_i = k_{\alpha_i}$, $1 \le i \le n$. The one parameter quantized enveloping algebra associated to this data, cf. [33], is the Hopf algebra

$$U_q(\mathfrak{g}) = U^0[e_i, f_i; 1 \leq i \leq n]$$

with defining relations:

$$k_{\lambda}e_{j}k_{\lambda}^{-1} = q^{(\lambda, \alpha_{j})}e_{j}, \qquad k_{\lambda}f_{j}k_{\lambda}^{-1} = q^{-(\lambda, \alpha_{j})}f_{j}$$

$$e_{i}f_{j}-f_{j}e_{i} = \delta_{ij}\hat{q}_{i}(k_{i}-k_{i}^{-1})$$

$$\sum_{k=0}^{1-a_{ij}}(-1)^{k} \begin{bmatrix} 1-a_{ij}\\k \end{bmatrix}_{q_{i}}e_{i}^{1-a_{ij}-k}e_{j}e_{i}^{k} = 0, \qquad \text{if} \quad i \neq j$$

$$\sum_{k=0}^{1-a_{ij}}(-1)^{k} \begin{bmatrix} 1-a_{ij}\\k \end{bmatrix}_{q_{i}}f_{i}^{1-a_{ij}-k}f_{j}f_{i}^{k} = 0, \qquad \text{if} \quad i \neq j$$

where $[m]_t = (t - t^{-1}) \cdots (t^m - t^{-m})$ and $[m]_k = [m]_t / [k]_t [m - k]_t$. The Hopf algebra structure is given by

$$\begin{split} & \Delta(k_{\lambda}) = k_{\lambda} \otimes k_{\lambda}, \qquad \varepsilon(k_{\lambda}) = 1, \qquad S(k_{\lambda}) = k_{\lambda}^{-1} \\ & \Delta(e_i) = e_i \otimes 1 + k_i \otimes e_i, \qquad \Delta(f_i) = f_i \otimes k_i^{-1} + 1 \otimes f_i \\ & \varepsilon(e_i) = \varepsilon(f_i) = 0, \qquad S(e_i) = -k_i^{-1}e_i, \qquad S(f_i) = -f_i k_i. \end{split}$$

We define subalgebras of $U_q(\mathfrak{g})$ as follows

$$\begin{split} &U_q(\mathfrak{n}^+) = \mathbb{C}[e_i, ; 1 \leq i \leq n], \qquad U_q(\mathfrak{n}^-) = \mathbb{C}[f_i, ; 1 \leq i \leq n] \\ &U_q(\mathfrak{b}^+) = U^0[e_i, ; 1 \leq i \leq n], \qquad U_q(\mathfrak{b}^-) = U^0[f_i, ; 1 \leq i \leq n]. \end{split}$$

For simplicity we shall set $U^{\pm} = U_q(\mathfrak{n}^{\pm})$. Notice that U^0 and $U_q(\mathfrak{b}^{\pm})$ are Hopf subalgebras of $U_q(\mathfrak{g})$. Recall [23] that the multiplication in $U_q(\mathfrak{g})$ induces isomorphisms of vector spaces

$$U_{q}(\mathfrak{g}) \cong U^{-} \otimes U^{0} \otimes U^{+} \cong U^{+} \otimes U^{0} \otimes U^{-}.$$

Set $\mathbf{Q}_{+} = \bigoplus_{i=1}^{n} \mathbb{N}\alpha_{i}$ and

$$\forall \beta \in \mathbf{Q}_+, \qquad U_{\beta}^{\pm} = \left\{ u \in U^{\pm} \mid \forall \lambda \in \mathbf{L}, \, k_{\lambda} u k_{\lambda}^{-1} = q^{(\lambda, \pm \beta)} u \right\}.$$

Then one gets: $U^{\pm} = \bigoplus_{\beta \in \mathbf{Q}_{+}} U^{\pm}_{\pm \beta}$.

3.2. The Rosso-Tanisaki-Killing Form. Recall the following result, [28, 33].

THEOREM 3.1. 1. There exists a unique non degenerate Hopf pairing

 $\langle | \rangle : U_{a}(\mathfrak{b}^{+})^{\mathrm{op}} \otimes U_{a}(\mathfrak{b}^{-}) \to \mathbb{C}$

satisfying the following conditions:

(i)
$$\langle k_{\lambda} | k_{\mu} \rangle = q^{-(\lambda,\mu)};$$

(ii) $\forall \lambda \in \mathbf{L}, \ 1 \leq i \leq n, \ \langle k_{\lambda} | f_i \rangle = \langle e_i | k_{\lambda} \rangle = 0;$
(iii) $\forall 1 \leq i, j \leq n, \ \langle e_i | f_j \rangle = -\delta_{ij} \hat{q}_i.$

2. If $\gamma, \eta \in \mathbf{Q}_+$, $\langle U_{\gamma}^+ | U_{-\eta}^- \rangle \neq 0$ implies $\gamma = \eta$.

The results of Section 2.3 then apply and we may define the associated double:

$$D_q(\mathfrak{g}) = U_q(\mathfrak{b}^+) \bowtie U_q(\mathfrak{b}^-).$$

It is well known, e.g. [10], that

$$D_q(\mathfrak{g}) = \mathbb{C}[s_{\lambda}, t_{\lambda}, e_i, f_i; \lambda \in \mathbf{L}, 1 \leq i \leq n]$$

where $s_{\lambda} = k_{\lambda} \otimes 1$, $t_{\lambda} = 1 \otimes k_{\lambda}$, $e_i = e_i \otimes 1$, $f_i = 1 \otimes f_i$. The defining relations of the double given in Section 2.3 imply that

$$s_{\lambda}t_{\mu} = t_{\mu}s_{\lambda}, \qquad e_{i}f_{j} - f_{j}e_{i} = \delta_{ij}\hat{q}_{i}(s_{\alpha_{i}} - t_{\alpha_{i}}^{-1})$$

$$s_{\lambda}e_{j}s_{\lambda}^{-1} = q^{(\lambda, \alpha_{j})}e_{j}, \qquad t_{\lambda}e_{j}t_{\lambda}^{-1} = q^{(\lambda, \alpha_{j})}e_{j},$$

$$t_{\lambda}f_{j}t_{\lambda}^{-1} = q^{-(\lambda, \alpha)}f_{j}.$$

$$s_{\lambda}f_{j}s_{\lambda}^{-1} = q^{-(\lambda, \alpha_{j})}f_{j},$$

It follows that

 $D_q(\mathfrak{g})/(s_{\lambda}-t_{\lambda};\lambda\in\mathbf{L})\cong U_q(\mathfrak{g}), \qquad e_i\mapsto e_i, \qquad f_i\mapsto f_i, \qquad s_{\lambda}\mapsto k_{\lambda}, \qquad t_{\lambda}\mapsto k_{\lambda}.$

Observe that this yields an isomorphism of Hopf algebras. The next proposition collects some well known elementary facts.

PROPOSITION 3.2. 1. Any finite dimensional simple $U_q(b^{\pm})$ -module is one dimensional and $R(U_q(b^{\pm}))$ identifies with H via

$$\forall h \in H, \quad h(k_{\lambda}) = \langle \lambda, h \rangle, \quad h(e_i) = 0, \quad h(f_i) = 0.$$

2. $R(D_q(g))$ identifies with H via

$$\forall h \in H, \qquad h(s_{\lambda}) = \langle \lambda, h \rangle, \qquad h(t_{\lambda}) = \langle \lambda, h \rangle^{-1}, \qquad h(e_i) = h(f_i) = 0.$$

COROLLARY 3.3. 1. $\{U_q(\mathfrak{b}^+)^{\text{op}}, U_q(\mathfrak{b}^-)\}$ is an L-bigraded dual pair. We have

$$k_{\lambda} \in U_q(\mathfrak{b}^{\pm})_{-\lambda, \lambda}, \qquad e_i \in U_q(\mathfrak{b}^{+})_{-\alpha_i, 0}, \qquad f_i \in U_q(\mathfrak{b}^{-})_{0, -\alpha_i}.$$

2. $D_a(\mathfrak{g})$ is an L-bigraded Hopf algebra where

$$s_{\lambda} \in D_q(\mathfrak{g})_{-\lambda,\lambda}, \qquad t_{\lambda} \in D_q(\mathfrak{g})_{\lambda,-\lambda}, \qquad e_i \in D_q(\mathfrak{g})_{-\alpha_i,0}, \qquad f_i \in D_q(\mathfrak{g})_{0,\alpha_i}.$$

Proof. 1. Observe that for all $h \in H$,

$$l_{h}(k_{\lambda}) = h^{-1}(k_{\lambda}) = \langle -\lambda, h \rangle k_{\lambda}, \qquad r_{h}(k_{\lambda}) = h(k_{\lambda}) = \langle \lambda, h \rangle k_{\lambda},$$
$$l_{h}(e_{i}) = h^{-1}(k_{i})e_{i} = \langle -\alpha_{i}, h \rangle e_{i}, \qquad r_{h}(e_{i}) = e_{i},$$
$$l_{h}(f_{i}) = f_{i}, \qquad r_{h}(f_{i}) = h(k_{i}^{-1}) f_{i} = \langle -\alpha_{i}, h \rangle f_{i}.$$

It is then clear that $U^+_{-\gamma, 0} = U^+_{\gamma}$ and $U^-_{0, -\gamma} = U^-_{-\gamma}$ for all $\gamma \in \mathbf{Q}_+$. The claims then follow from these formulas, Theorem 2.3, Theorem 3.1, and the definitions.

2. The fact that $D_q(\mathfrak{g})$ is an L-bigraded Hopf algebra follows from Theorem 2.3. The assertions about the $\mathbf{L} \times \mathbf{L}$ degree of the generators is proved by direct computation using Proposition 3.2.

Remark. We have shown in Theorem 2.6 that, as a double, $D_q(\mathfrak{g})$ inherits an L-bigrading given by:

$$D_{q}(\mathfrak{g})_{\alpha,\beta} = \sum_{\lambda-\gamma=\alpha,\,\mu-\delta=\beta} U_{q}(\mathfrak{b}^{+})_{\lambda,\,\mu} \otimes U_{q}(\mathfrak{b}^{-})_{\gamma,\,\delta}.$$

It is easily checked that this bigrading coincides with the bigrading obtained in the above corollary by means of Theorem 2.3.

3.3. One-Parameter Quantized Function Algebras. Let M be a left $D_q(\mathfrak{g})$ -module. The dual M^* will be considered in the usual way as a left $D_q(\mathfrak{g})$ -module by the rule: $(uf)(x) = f(S(u)), x \in M, f \in M^*, u \in D_q(\mathfrak{g})$. Assume that M is an $U_q(\mathfrak{g})$ -module. An element $x \in M$ is said to have weight $\mu \in \mathbf{L}$ if $k_{\lambda}x = q^{(\lambda, \mu)}x$ for all $\lambda \in \mathbf{L}$; we denote by M_{μ} the subspace of elements of weight μ .

It is known, [13], that the category of finite dimensional (left) $U_q(\mathfrak{g})$ modules is a completely reducible braided rigid monoidal category. Set $\mathbf{L}^+ = \mathbf{L} \cap \mathbf{P}^+$ and recall that for each $\Lambda \in \mathbf{L}^+$ there exists a finite dimensional simple module of highest weight Λ , denoted by $L(\Lambda)$, cf. [29] for instance. One has $L(\Lambda)^* \cong L(w_0\Lambda)$ where w_0 is the longest element of W.

Let \mathscr{C}_q be the subcategory of finite dimensional $U_q(\mathfrak{g})$ -modules consisting of finite direct sums of $L(\Lambda)$, $\Lambda \in \mathbf{L}^+$. The category \mathscr{C}_q is closed under tensor products and the formation duals. Notice that \mathscr{C}_q can be considered as a braided rigid monoidal category of $D_q(\mathfrak{g})$ -modules where s_{λ} , t_{λ} acts as k_{λ} on an object of \mathscr{C}_q . Let $M \in \operatorname{obj}(\mathscr{C}_q)$, then $M = \bigoplus_{\mu \in \mathbf{L}} M_{\mu}$. For $f \in M^*$, $v \in M$ we define the coordinate function $c_{f,v} \in U_q(\mathfrak{g})^*$ by

$$\forall u \in U_q(\mathfrak{g}), \qquad c_{f,v}(u) = \langle f, uv \rangle$$

where \langle , \rangle is the duality pairing. Using the standard isomorphism $(M \otimes N)^* \cong N^* \otimes M^*$ one has the following formula for multiplication,

$$c_{f,v}c_{f',v'} = c_{f'\otimes f,v\otimes v'}$$

DEFINITION. The quantized function algebra $\mathbb{C}_q[G]$ is the restricted dual of \mathscr{C}_q : that is to say

$$\mathbb{C}_{q}[G] = \mathbb{C}[c_{f,v}; v \in M, f \in M^{*}, M \in \operatorname{obj}(\mathscr{C}_{q})].$$

The algebra $\mathbb{C}_q[G]$ is a Hopf algebra; we denote by Δ , ε , S the comultiplication, counit and antipode on $\mathbb{C}_q[G]$. If $\{v_1, ..., v_s; f_1, ..., f_s\}$ is a dual basis for $M \in obj(\mathscr{C}_q)$ one has

$$\Delta(c_{f,v}) = \sum_{i} c_{f,v_i} \otimes c_{f_i,v}, \qquad \varepsilon(c_{f,v}) = \langle f, v \rangle, \qquad S(c_{f,v}) = c_{v,f}.$$
(3.1)

Notice that we may assume that $v_i \in M_{v_i}$, $f_i \in M^*_{-v_i}$. We set

 $C(M) = \mathbb{C} \langle c_{f,v}; f \in M^*, v \in M \rangle, \qquad C(M)_{\lambda,\mu} = \mathbb{C} \langle c_{f,v}; f \in M^*_{\lambda}, v \in M_{\mu} \rangle.$

Then C(M) is a subcoalgebra of $\mathbb{C}_q[G]$ such that $C(M) = \bigoplus_{(\lambda,\mu) \in \mathbf{L} \times \mathbf{L}} C(M)_{\lambda,\mu}$. When $M = L(\Lambda)$ we abbreviate the notation to $C(M) = C(\Lambda)$. It is then classical that

$$\mathbb{C}_q[G] = \bigoplus_{\Lambda \in \mathbf{L}^+} C(\Lambda).$$

Since $\mathbb{C}_q[G] \subset U_q(\mathfrak{g})^*$ we have a duality pairing

$$\langle , \rangle : \mathbb{C}_q[G] \times D_q(\mathfrak{g}) \to \mathbb{C}.$$

Observe that there is a natural injective morphism of algebraic groups

 $H \to R(\mathbb{C}_q[G]), \quad h(c_{f,v}) = \langle \mu, h \rangle \varepsilon(c_{f,v}) \quad \text{for all} \quad v \in M_\mu, \quad M \in \operatorname{obj}(\mathscr{C}_q).$

The associated automorphisms r_h , $l_h \in Aut(\mathbb{C}_q[G])$ are then described by

$$\forall c_{f,v} \in C(M)_{\lambda,\mu}, \qquad r_h(c_{f,v}) = \langle \mu, h \rangle c_{f,v}, \qquad l_h(c_{f,v}) = \langle \lambda, h \rangle c_{f,v}.$$

$$\begin{aligned} \forall (\lambda, \mu) \in \mathbf{L} \times \mathbf{L}, \\ \mathbb{C}_q[G]_{\lambda, \mu} &= \big\{ a \in \mathbb{C}_q[G] \mid r_h(a) = \langle \mu, h \rangle \ a, \ l_h(a) = \langle \lambda, h \rangle a \big\}. \end{aligned}$$

THEOREM 3.4. The pair of Hopf algebras $\{\mathbb{C}_q[G], D_q(\mathfrak{g})\}$ is an L-bigraded dual pair.

Proof. It follows from (3.1) that $\mathbb{C}_q[G]$ is an L-bigraded Hopf algebra. The axioms (1) to (4) of 2.3 are satisfied by definition of the Hopf algebra $\mathbb{C}_q[G]$. We take $\check{}$ to be the identity map of L. The condition (2.2) is consequence of $D_q(\mathfrak{g})_{\gamma,\delta} M_{\mu} \subset M_{\mu-\gamma-\delta}$ for all $M \in \mathscr{C}_q$. To verify this inclusion, notice that

$$e_j \in D_q(\mathfrak{g})_{-\alpha_j, 0}, \qquad f_j \in D_q(\mathfrak{g})_{0, \alpha_j}, \qquad e_j M_\mu \subset M_{\mu + \alpha_j}, \qquad f_j M_\mu \subset M_{\mu - \alpha_j}.$$

The result then follows easily.

Consider the algebras $D_{q^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q^{-1}}[G]$ and use $\widehat{}$ to distinguish elements, sub-algebras, etc. of $D_{q^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q^{-1}}[G]$. It is easily verified that the map $\sigma: D_q(\mathfrak{g}) \to D_{q^{-1}}(\mathfrak{g})$ given by

 $s_{\lambda} \mapsto \hat{s}_{\lambda}, \qquad t_{\lambda} \mapsto \hat{t}_{\lambda}, \qquad e_i \mapsto q_i^{1/2} \hat{f}_i \hat{t}_{\alpha_i}, \qquad f_i \mapsto q_i^{1/2} \hat{e}_i \hat{s}_{\alpha_i}^{-1}$

is an isomorphism of Hopf algebras.

For each $\Lambda \in \mathbf{L}^+$, σ gives a bijection $\sigma: L(-w_0\Lambda) \to \hat{L}(\Lambda)$ which sends $v \in L(-w_0\Lambda)_{\mu}$ onto $\hat{v} \in \hat{L}(\Lambda)_{-\mu}$. Therefore we obtain an isomorphism $\sigma: \mathbb{C}_{q^{-1}}[G] \to \mathbb{C}_q[G]$ such that

$$\forall f \in L(-w_0 \Lambda)^*_{-\lambda}, \qquad v \in L(-w_0 \Lambda)_{\mu}, \qquad \sigma(\hat{c}_{\hat{f},\,\hat{v}}) = c_{f,\,v}. \tag{3.2}$$

Notice that

$$\sigma(D_q(\mathfrak{g})_{\gamma,\delta}) = D_{q^{-1}}(\mathfrak{g})_{-\gamma,-\delta} \quad \text{and} \quad \sigma(\mathbb{C}_{q^{-1}}[G]_{\lambda,\mu}) = \mathbb{C}_q[G]_{-\lambda,-\mu}.$$
(3.3)

3.4. Deformation of One-Parameter Quantum Groups. We continue with the same notation. Let $[p] \in H^2(\mathbf{L}, \mathbb{C}^*)$. As seen in Section 2.4 we can, and we do, choose p to be an antisymmetric bicharacter such that

$$\forall \lambda, \mu \in \mathbf{L}, \qquad p(\lambda, \mu) = q^{(1/2) u(\lambda, \mu)}$$

for some $u \in \bigwedge^2 \mathfrak{h}$. Recall that $\tilde{p} \in Z^2(\mathbf{L} \times \mathbf{L}, \mathbb{C}^*)$, cf. 2.1.

We now apply the results of Section 2.1 to $D_q(\mathfrak{g})$ and $\mathbb{C}_q[G]$. Using Theorem 2.1 we can twist $D_q(\mathfrak{g})$ by \tilde{p}^{-1} and $\mathbb{C}_q[G]$ by \tilde{p} . The resulting L-bigraded Hopf algebras will be denoted by $D_{q,p^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q,p}[G]$. The algebra $\mathbb{C}_{q,p}[G]$ will be referred to as the *multi-parameter quantized function algebra*. Versions of $D_{q,p^{-1}}(\mathfrak{g})$ are referred to by some authors as the *multi-parameter quantized enveloping algebra*. Alternatively, this name can be applied to the quotient of $D_{q,p^{-1}}(\mathfrak{g})$ by the radical of the pairing with $\mathbb{C}_{q,p}[G]$.

THEOREM 3.5. Let $U_{q,p^{-1}}(\mathfrak{b}^+)$ and $U_{q,p^{-1}}(\mathfrak{b}^-)$ be the deformations by p^{-1} of $U_q(\mathfrak{b}^+)$ and $U_q(\mathfrak{b}^-)$ respectively. Then the deformed pairing

$$\langle | \rangle_{p^{-1}} : U_{q, p^{-1}}(\mathfrak{b}^+)^{\mathrm{op}} \otimes U_{q, p^{-1}}(\mathfrak{b}^-) \to \mathbb{C}$$

is a non-degenerate Hopf pairing satisfying:

$$\forall x \in U^+, \quad y \in U^-, \quad \lambda, \mu \in \mathbf{L}, \quad \langle x \cdot k_\lambda \mid y \cdot k_\mu \rangle_{p^{-1}} = q^{(\varPhi - \lambda, \mu)} \langle x \mid y \rangle.$$
(3.4)

Moreover,

$$U_{q,p^{-1}}(\mathfrak{b}^+) \bowtie U_{q,p^{-1}}(\mathfrak{b}^-) \cong (U_q(\mathfrak{b}^+) \bowtie U_q(\mathfrak{b}^-))_{p^{-1}} = D_{q,p^{-1}}(\mathfrak{g}).$$

Proof. By Theorem 2.4 the deformed pairing is given by

$$\langle a_{\lambda,\mu} | u_{\gamma,\delta} \rangle_{p^{-1}} = p(\lambda,\gamma) p(\mu,\delta) \langle a_{\lambda,\mu} | u_{\gamma,\delta} \rangle.$$

To prove (3.4) we can assume that $x \in U^+_{-\gamma,0}$, $y \in U^-_{0,-\gamma}$. Then we obtain

$$\langle x \cdot k_{\lambda} | y \cdot k_{\mu} \rangle_{p^{-1}} = p(\lambda + \gamma, \mu) p(\lambda, \mu - \nu) \langle x \cdot k_{\lambda} | y \cdot k_{\mu} \rangle$$
$$= p(\lambda, 2\mu) p(\lambda - \mu, \gamma - \nu) q^{-(\lambda, \mu)} \langle x | y \rangle$$

by the definition of the product \cdot and [33, 2.1.3]. But $\langle x | y \rangle = 0$ unless $\gamma = \nu$, hence the result. Observe in particular that $\langle x | y \rangle_{p^{-1}} = \langle x | y \rangle$. Therefore [33, 2.1.4] shows that $\langle | \rangle_{p^{-1}}$ is non-degenerate on $U_{\gamma}^+ \times U_{-\gamma}^-$. It is then not difficult to deduce from (3.4) that $\langle | \rangle_{p^{-1}}$ is non-degenerate. The remaining isomorphism follows from 2.6.

Many authors have defined multi-parameter quantized enveloping algebras. In [14, 25] a definition is given using explicit generators and relations, and in [1] the construction is made by twisting the comultiplication, following [26]. It can be easily verified that these algebras and the algebras $D_{q,p^{-1}}(g)$ coincide. The construction of a multi-parameter quantized function algebra by twisting the multiplication was first performed in the GL(n)-case in [2].

The fact that $D_{q,p^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q,p}[G]$ form a Hopf dual pair has already been observed in particular cases, see e.g. [14]. We will now deduce from the previous results that this phenomenon holds for an arbitrary semisimple group.

THEOREM 3.6. $\{\mathbb{C}_{q,p}[G], D_{q,p^{-1}}(\mathfrak{g})\}$ is an L-bigraded dual pair. The associated pairing is given by

$$\forall a \in \mathbb{C}_{q,p}[G]_{\lambda,\mu}, \qquad \forall u \in D_{q,p^{-1}}(\mathfrak{g})_{\gamma,\delta}, \qquad \langle a,u \rangle_p = p(\lambda,\gamma) p(\mu,\delta) \langle a,u \rangle.$$

Proof. This follows from Theorem 2.4 applied to the pair $\{A, U\} = \{\mathbb{C}_q[G], D_q(g)\}$ and the bicharacter p^{-1} (recall that the map is the identity).

Let $M \in \operatorname{obj}(\mathscr{C}_q)$. The left $D_q(\mathfrak{g})$ -module structure on M yields a right $\mathbb{C}_q[G]$ -comodule structure in the usual way. Let $\{v_1, ..., v_s; f_1, ..., f_s\}$ be a dual basis for M. The structure map $\rho: M \to M \otimes \mathbb{C}_q[G]$, is given by $\rho(x) = \sum_j v_j \otimes c_{f_j, x}$ for $x \in M$. Using this comodule structure on M, one can check that

$$M_{\mu} = \{ x \in M \mid \forall h \in H, r_h(x) = \langle \mu, h \rangle x \}.$$

PROPOSITION 3.7. Let $M \in obj(\mathscr{C}_q)$. Then M has a natural structure of left $D_{q, p^{-1}}(\mathfrak{g})$ module. Denote by M this module and by $(u, x) \mapsto u \cdot x$ the action of $D_{q, p^{-1}}(\mathfrak{g})$. Then

$$\forall u \in D_q(\mathfrak{g})_{\gamma,\delta}, \qquad \forall x \in M_\lambda, \qquad u \cdot x = p(\lambda, \delta - \gamma) p(\delta, \gamma) ux.$$

Proof. The proposition is a translation in this particular setting of Corollary 2.5. \blacksquare

Denote by $\mathscr{C}_{q,p}$ the subcategory of finite dimensional left $D_{q,p^{-1}}(\mathfrak{g})$ -modules whose objects are the M, $M \in \operatorname{obj}(\mathscr{C}_q)$. It follows from Proposition 3.7 that if $M \in \operatorname{obj}(\mathscr{C}_q)$, then $M = \bigoplus_{\mu \in \mathbf{L}} M_{\mu}$, where

$$M_{\mu} = \{ x \in M \mid \forall \alpha \in \mathbf{L}, s_{\alpha} \cdot x = p(\mu, 2\alpha) \ q^{(\mu, \alpha)} x, t_{\alpha} \cdot x = p(\mu, -2\alpha) \ q^{(\mu, \alpha)} x \}.$$

Notice that $p(\mu, \pm 2\alpha) q^{(\mu, \alpha)} = q^{\pm(\Phi_{\pm}\mu, \alpha)}$.

THEOREM 3.8. 1. The functor $M \to M$ from \mathcal{C}_q to $\mathcal{C}_{q,p}$ is an equivalence of rigid monoidal categories.

2. The Hopf pairing \langle , \rangle_p identifies the Hopf algebra $\mathbb{C}_{q,p}[G]$ with the restricted dual of $\mathscr{C}_{q,p}$, i.e. the Hopf algebra of coordinate functions on the objects of $\mathscr{C}_{q,p}$.

Proof. 1. One needs in particular to prove that, for $M, N \in \operatorname{obj}(\mathscr{C}_q)$, there are natural isomorphisms of $D_{q, p^{-1}}(\mathfrak{g})$ -modules: $\varphi_{M, N}: (M \otimes N) \to M \otimes N$. These isomorphisms are given by $x \otimes y \mapsto p(\lambda, \mu) x \otimes y$ for all $x \in M_{\lambda}, y \in N_{\mu}$. The other verifications are elementary.

2. We have to show that if $M \in \operatorname{obj}(\mathscr{C}_q)$, $f \in M^*$, $v \in M$ and $u \in D_{q, p^{-1}}(\mathfrak{g})$, then $\langle c_{f, v}, u \rangle_p = \langle f, u \cdot v \rangle$. It suffices to prove the result in the case where $f \in M^*_{\lambda}$, $v \in M_{\mu}$ and $u \in D_{q, p^{-1}}(\mathfrak{g})_{\gamma, \delta}$. Then

$$\langle f, u \cdot v \rangle = p(\mu, \delta - \gamma) p(\delta, \gamma) \langle f, uv \rangle$$

= $\delta_{-\lambda + \gamma + \delta, \mu} p(-\lambda + \gamma + \delta, \delta - \gamma) p(\delta, \gamma) \langle f, uv \rangle$
= $p(\lambda, \gamma) p(\mu, \delta) \langle f, uv \rangle$
= $\langle c_{f, v}, u \rangle_p$

by Theorem 3.6.

Recall that we introduced in Section 3.3 isomorphisms $\sigma: D_q(\mathfrak{g}) \to D_{q^{-1}}(\mathfrak{g})$ and $\sigma: \mathbb{C}_q[G] \to \mathbb{C}_{q^{-1}}[G]$. From (3.3) it follows that, after twisting by \tilde{p}^{-1} or \tilde{p} , σ induces isomorphisms

$$D_{q,p^{-1}}(\mathfrak{g}) \cong D_{q^{-1},p^{-1}}(\mathfrak{g}), \qquad \mathbb{C}_{q^{-1},p}[G] \cong \mathbb{C}_{q,p}[G]$$

which satisfy (3.2).

3.5. Braiding Isomorphisms. We remarked above that the categories $\mathscr{C}_{q,p}$ are braided. In the one parameter case this braiding is well-known. Let M and N be objects of \mathscr{C}_{q} . Let $E: M \otimes N \to M \otimes N$ be the operator given by

$$E(m \otimes n) = q^{(\lambda, \mu)} m \otimes n$$

for $m \in M_{\lambda}$ and $n \in N_{\mu}$. Let $\tau: M \otimes N \to N \otimes M$ be the usual twist operator. Finally let C be the operator given by left multiplication by

$$C = \sum_{\beta \in \mathbf{Q}_+} C_{\beta}$$

where C_{β} is the canonical element of $D_q(\mathfrak{g})$ associated to the non-degenerate pairing $U_{\beta}^+ \otimes U_{-\beta}^- \to \mathbb{C}$ described above. Then one deduces from [33, 4.3] that the operators

$$\theta_{M,N} = \tau \circ C \circ E^{-1} \colon M \otimes N \to N \otimes M$$

define the braiding on \mathscr{C}_q .

As mentioned above, the category $\mathscr{C}_{a, p}$ inherits a braiding given by

$$\psi_{M,N} = \varphi_{N,M} \circ \theta_{M,N} \circ \varphi_{M,N}^{-1}$$

where $\varphi_{M,N}$ is the isomorphism $(M \otimes N)^{\tilde{}} \cong M^{\tilde{}} \otimes N^{\tilde{}}$ introduced in the proof of Theorem 3.8 (the same formula can be found in [1, Section 10] and in a more general situation in [24]). We now note that these general operators are of the same form as those in the one parameter case. Let M and N be objects of $\mathscr{C}_{q,p}$ and let $E: M \otimes N \to M \otimes N$ be the operator given by

$$E(m \otimes n) = q^{(\Phi_+\lambda,\mu)} m \otimes n$$

for $m \in M_{\lambda}$ and $n \in N_{\mu}$. Denote by C_{β} the canonical element of $D_{q,p^{-1}}(\mathfrak{g})$ associated to the nondegenerate pairing $U_{q,p^{-1}}(\mathfrak{b}^+)_{-\beta,0} \otimes U_{q,p^{-1}}(\mathfrak{b}^-)_{0,-\beta}$ $\rightarrow \mathbb{C}$ and let $C: M \otimes N \rightarrow M \otimes N$ be the operator given by left multiplication by

$$C = \sum_{\beta \in \mathbf{Q}_+} C_{\beta}.$$

THEOREM 3.9. The braiding operators $\psi_{M,N}$ are given by

$$\psi_{M,N} = \tau \circ C \circ E^{-1}.$$

Moreover $(\psi_{M,N})^* = \psi_{M^*,N^*}$.

Proof. The assertions follows easily from the analogous assertions for $\theta_{M,N}$.

The following commutation relations are well known [31], [21, 4.2.2]. We include a proof for completeness.

COROLLARY 3.10. Let Λ , $\Lambda' \in \mathbf{L}^+$, let $g \in L(\Lambda')_{-\eta}^*$ and $f \in L(\Lambda)_{-\mu}^*$ and let $v_A \in L(\Lambda)_A$. Then for any $v \in L(\Lambda')_{\gamma}$,

$$c_{g,v} \cdot c_{f,v_A} = q^{(\varPhi + A, \gamma) - (\varPhi + \mu, \eta)} c_{f,v_A} \cdot c_{g,v}$$
$$+ q^{(\varPhi + A, \gamma) - (\varPhi + \mu, \eta)} \sum_{v \in \mathbf{Q}_+} c_{f_v,v_A} \cdot c_{g_v,v_A}$$

where $f_{v} \in (U_{q,p^{-1}}(\mathfrak{b}^{+})f)_{-\mu+v}$ and $g_{v} \in (U_{q,p^{-1}}(\mathfrak{b}^{-})g)_{-\eta-v}$ are such that $\sum f_{v} \otimes g_{v} = \sum_{\beta \in \mathbf{Q}^{+} \setminus \{0\}} C_{\beta}(f \otimes g).$

Proof. Let $\psi = \psi_{L(A), L(A')}$. Notice that

$$c_{f\otimes g,\,\psi(v_A\otimes v)}=c_{\psi^*(f\otimes g),\,v_A\otimes v}.$$

Using the theorem above we obtain

$$\psi^*(f \otimes g) = q^{-(\varPhi_+\mu,\eta)} \left(g \otimes f + \sum g_\nu \otimes f_\nu \right)$$

and

$$\psi(v_A \otimes v) = q^{-(\Phi_A, \gamma)}(v \otimes v_A). \tag{3.5}$$

Combining these formulae yields the required relations.

4. PRIME AND PRIMITIVE SPECTRUM OF $\mathbb{C}_{q,p}[G]$

In this section we prove our main result on the primitive spectrum of $\mathbb{C}_{q,p}[G]$; namely that the *H* orbits inside $\operatorname{Prim}_w \mathbb{C}_{q,p}[G]$ are parametrized by the double Weyl group. For completeness we have attempted to make the proof more or less self-contained. The overall structure of the proof is similar to that used in [16] except that the proof of the key 4.12 (and the lemmas leading up to it) form a modified and abbreviated version of Joseph's proof of this result in the one-parameter case [18]. One of the main differences with the approach of [18] is the use of the Rosso-Tanisaki form introduced in 3.2 which simplifies the analysis of the adjoint action of $\mathbb{C}_{q,p}[G]$. The ideas behind the first few results of this section go back to Soibelman's work in the one-parameter case by Levendorskii [20].

4.1. Parameterization of the Prime Spectrum. Let q, p be as in Section 3.4. For simplicity we set

$$A = \mathbb{C}_{q,p}[G]$$

and the product $a \cdot b$ as defined in (2.1) will be denoted by ab.

For each $\Lambda \in \mathbf{L}^+$ choose weight vectors

$$v_A \in L(A)_A, \quad v_{w_0A} \in L(A)_{w_0A}, \quad f_{-A} \in L(A)^*_{-A}, \quad f_{-w_0A} \in L(A)^*_{-w_0A}$$

such that $\langle f_{-\Lambda}, v_{\Lambda} \rangle = \langle f_{-w_0\Lambda}, v_{w_0\Lambda} \rangle = 1$. Set

$$A^{+} = \sum_{\mu \in \mathbf{L}^{+}} \sum_{f \in L(\mu)^{*}} \mathbb{C}c_{f, v_{\mu}}, \qquad A^{-} = \sum_{\mu \in \mathbf{L}^{+}} \sum_{f \in L(\mu)^{*}} \mathbb{C}c_{f, v_{w_{0}\mu}}.$$

Recall the following result.

THEOREM 4.1. The multiplication map $A^+ \otimes A^- \rightarrow A$ is surjective.

Proof. Clearly it is enough to prove the theorem in the one-parameter case. When L = P the result is proved in [31, 3.1] and [18, Theorem 3.7].

The general case can be deduced from the simply-connected case as follows. One first observes that $\mathbb{C}_q[G] \subset \mathbb{C}_q[\tilde{G}] = \bigoplus_{A \in \mathbf{P}^+} C(A)$. Therefore any $a \in \mathbb{C}_q[G]$ can be written in the form $a = \sum_{A', A'' \in \mathbf{P}^+} c_{f, v_{A'}} c_{g, v_{-A''}}$ where $A' - A'' \in \mathbf{L}$. Let $A \in \mathbf{P}$ and $\{v_i; f_i\}_i$ be a dual basis of L(A). Then we have

$$1 = \varepsilon(c_{v_A, f_{-A}}) = \sum_i c_{f_i, v_A} c_{v_i, f_{-A}}$$

Let Λ' be as above and choose Λ such that $\Lambda + \Lambda' \in \mathbf{L}^+$. Then, for all i, $c_{f, v_A} c_{f_i, v_A} \in C(\Lambda + \Lambda') \cap \Lambda^+$ and $c_{v_i, f_{-A}} c_{g, v_{-A''}} \in C(-w_0(\Lambda + \Lambda'')) \cap \Lambda^-$. The result then follows by inserting 1 between the terms $c_{f, v_{A'}}$ and $c_{g, v_{-A''}}$.

Remark. The algebra A is a Noetherian domain (this result will not be used in the sequel). The fact that A is a domain follows from the same result in [18, Lemma 3.1]. The fact that A is Noetherian is a consequence of [18, Proposition 4.1] and [6, Theorem 3.7].

For each $y \in W$ define the following ideals of A

$$\begin{split} I_{y}^{+} &= \langle c_{f, v_{A}} | f \in (U_{q, p^{-1}}(\mathfrak{b}^{+}) L(\Lambda)_{yA})^{\perp}, \Lambda \in \mathbf{L}^{+} \rangle, \\ I_{y}^{-} &= \langle c_{f, v_{w_{0}A}} | f \in (U_{q, p^{-1}}(\mathfrak{b}^{-}) L(\Lambda)_{yw_{0}A})^{\perp}, \Lambda \in \mathbf{L}^{+} \rangle \end{split}$$

where ()^{\perp} denotes the orthogonal in $L(\Lambda)^*$. Notice that $I_y^- = \sigma(I_y^+)$, σ as in Section 3.4, and that I_y^{\pm} is an $\mathbf{L} \times \mathbf{L}$ homogeneous ideal of A.

Notation. For $w = (w_+, w_-) \in W \times W$ set $I_w = I_{w_+}^+ + I_{w_-}^-$. For $\Lambda \in L^+$ set $c_{wA} = c_{f_{-w_+A}, v_A} \in C(\Lambda)_{-w_+A, \Lambda}$ and $\tilde{c}_{wA} = c_{v_{w_-A}, f_{-A}} \in C(-w_0\Lambda)_{w_-A, -A}$.

LEMMA 4.2. Let $\Lambda \in \mathbf{L}^+$ and $a \in A_{-\eta, \gamma}$. Then

$$c_{wA} a \equiv q^{(\varPhi + w + \Lambda, \eta) - (\varPhi + \Lambda, \gamma)} a c_{wA} \mod I^+_{w_+}$$
$$\tilde{c}_{wA} a \equiv q^{(\varPhi - \Lambda, \gamma) - (\varPhi - w - \Lambda, \eta)} a \tilde{c}_{wA} \mod I^-_{w_-}.$$

Proof. The first identity follows from Corollary 3.10 and the definition of $I_{w_+}^+$. The second identity can be deduced from the first one by applying σ .

We continue to denote by c_{wA} and \tilde{c}_{wA} the images of these elements in A/I_w . It follows from Lemma 4.2 that the sets

$$\mathscr{E}_{w_{+}} = \{ \alpha c_{wA} \mid \alpha \in \mathbb{C}^{*}, A \in \mathbf{L}^{+} \}, \qquad \mathscr{E}_{w_{-}} = \{ \alpha \tilde{c}_{wA} \mid \alpha \in \mathbb{C}^{*}, A \in \mathbf{L}^{+} \},$$
$$\mathscr{E}_{w} = \mathscr{E}_{w_{+}} \mathscr{E}_{w_{-}}$$

are multiplicatively closed sets of normal elements in A/I_w . Thus \mathscr{E}_w is an Ore set in A/I_w . Define

$$A_w = (A/I_w)_{\mathscr{E}_w}.$$

Notice that σ extends to an isomorphism $\sigma: \hat{A}_{\hat{w}} \to A_w$, where $\hat{w} = (w_-, w_+)$.

PROPOSITION 4.3. For all $w \in W \times W$, $A_w \neq (0)$.

Proof. Notice first that since the generators of A_w and the elements of \mathscr{E}_w are $\mathbf{L} \times \mathbf{L}$ homogeneous, it suffices to work in the one-parameter case. The proof is then similar to that of [15, Theorem 2.2.3] (written in the SL(n)-case). For completeness we recall the steps of this proof. The technical details are straightforward generalizations to the general case of [15, loc. cit.].

For $1 \leq i \leq n$ denote by $U_q(\mathfrak{sl}_i(2))$ the Hopf subalgebra of $U_q(\mathfrak{g})$ generated by $e_i, f_i, h_i^{\pm 1}$. The associated quantized function algebra $A_i \cong \mathbb{C}_q[SL(2)]$ is naturally a quotient of A. Let σ_i be the reflection associated to the root α_i . It is easily seen that there exist M_i^+ and M_i^- , non-zero $(A_i)_{(\sigma_i, e)}$ and $(A_i)_{(e, \sigma_i)}$ modules respectively. These modules can then be viewed as non-zero A-modules.

Let $w_{\pm} = \sigma_{i_1} \cdots \sigma_{i_k}$ and $w_{\pm} = \sigma_{j_1} \cdots \sigma_{j_m}$ be reduced expressions for w_{\pm} . Then

$$M_{i_1}^+ \otimes \cdots \otimes M_{i_k}^+ \otimes M_{i_1}^- \otimes \cdots \otimes M_{i_m}^-$$

is a non-zero A_w -module.

In the one-parameter case the proof of the following result was found independently by the authors in [16, 1.2] and Joseph in [18, 6.2].

THEOREM 4.4. Let $P \in \text{Spec } \mathbb{C}_{q,p}[G]$. There exists a unique $w \in W \times W$ such that $P \supset I_w$ and $(P/I_w) \cap \mathscr{E}_w = \emptyset$.

Proof. Fix a dominant weight Λ . Define an ordering on the weight vectors of $L(\Lambda)^*$ by $f \leq f'$ if $f' \in U_{q, p^{-1}}(\mathfrak{b}^+) f$. This is a preordering which induces a partial ordering on the set of one dimensional weight spaces. Consider the set:

$$\mathscr{F}(\Lambda) = \{ f \in L(\Lambda)^*_{\mu} \mid c_{f, v_A} \notin P \}.$$

Let f be an element of $\mathscr{F}(\Lambda)$ which is maximal for the above ordering. Suppose that f' has the same property and that f and f' have weights μ and μ' respectively. By Corollary 3.10 the two elements c_{f,v_A} and c_{f',v_A} are normal modulo *P*. Therefore we have, modulo *P*,

$$c_{f, v_{A}}c_{f', v_{A}} = q^{(\varPhi + A, A) - (\varPhi + \mu, \mu')}c_{f', v_{A}}c_{f, v_{A}}$$
$$= q^{2(\varPhi + A, A) - (\varPhi + \mu, \mu') - (\varPhi + \mu', \mu)}c_{f, v_{A}}c_{f, v_{A}}.$$

But, since *u* is alternating, $2(\Phi_+\Lambda, \Lambda) - (\Phi_+\mu, \mu') - (\Phi_+\mu', \mu) = 2(\Lambda, \Lambda) - 2(\mu, \mu')$. Since *P* is prime and *q* is not a root of unity we can deduce that $(\Lambda, \Lambda) = (\mu, \mu')$. This forces $\mu = \mu' \in W(-\Lambda)$. In conclusion, we have shown that for all dominant Λ there exists a unique (up to scalar multiplication) maximal element $g_A \in \mathscr{F}(\Lambda)$ with weight $-w_A\Lambda$, $w_A \in W$. Applying the argument above to a pair of such elements, c_{g_A, v_A} and $c_{g_A, v_A'}$, yields that $(x_A\Lambda, w_{A'}\Lambda') = (\Lambda, \Lambda')$ for all $\Lambda, \Lambda' \in \mathbf{L}^+$. Then it is not difficult to show that this furnishes a unique $w_+ \in W$ such that $w_+\Lambda = w_A\Lambda$ for all $\Lambda \in \mathbf{L}^+$. Thus for each $\Lambda \in \mathbf{L}^+$,

$$c_{g,v_A} \in P \Leftrightarrow g \not\leqslant f_{-w_+A}.$$

Hence $P \supset I_{w_+}^+$ and $P \cap \mathscr{E}_{w_+} = \emptyset$. It is easily checked that such a w_+ must be unique. Using σ one deduces the existence and uniqueness of w_- .

DEFINITION. A prime ideal P such that $P \supset I_w$ and $P \cap \mathscr{E}_w = \emptyset$ will be called a prime idal of type w. We denote by $\operatorname{Spec}_w \mathbb{C}_{q,p}[G]$, resp. $\operatorname{Prim}_w \mathbb{C}_{q,p}[G]$, the subset of $\operatorname{Spec} \mathbb{C}_{q,p}[G]$ consisting of prime, resp. primitive, ideals of type w.

Clearly Spec_w $\mathbb{C}_{q,p}[G] \cong$ Spec A_w and $\sigma(\operatorname{Spec}_{\hat{w}} \mathbb{C}_{q^{-1},p}[G]) =$ Spec_w $\mathbb{C}_{q,p}[G]$. The following corollary is therefore clear.

COROLLARY 4.5. One has

Spec
$$\mathbb{C}_{q,p}[G] = \bigsqcup_{w \in W \times W}$$
 Spec_w $\mathbb{C}_{q,p}[G]$,
Prim $\mathbb{C}_{q,p}[G] = \bigsqcup_{w \in W \times W}$ Prim_w $\mathbb{C}_{q,p}[G]$.

We end this section by a result which is the key idea in [18] for analyzing the adjoint action of A on A_w . It says that in the one parameter case the quantized function algebra $\mathbb{C}_q[B^-]$ identifies with $U_q(\mathfrak{b}^+)$ through the Rosso-Tanisaki-Killing form [10, 17, 18]. Evidently this continues to hold in the multi-parameter case. For completeness we include a proof of that result.

Set $\mathbb{C}_{q,p}[B^-] = A/I_{(w_0,e)}$. The embedding $U_{q,p^{-1}}(\mathfrak{b}^-) \to D_{q,p^{-1}}(\mathfrak{g})$ induces a Hopf algebra map $\phi: A \to U_{q,p^{-1}}(\mathfrak{b}^-)^\circ$, where $U_{q,p^{-1}}(\mathfrak{b}^-)^\circ$ denotes the cofinite dual. On the other hand the non degenerate Hopf algebra pairing $\langle | \rangle_{p^{-1}}$ furnishes an injective morphism θ : $U_{q,p^{-1}}(\mathfrak{b}^+)^{\mathrm{op}} \to U_{q,p^{-1}}(\mathfrak{b}^-)^*$.

PROPOSITION 4.6. 1. $\mathbb{C}_{a,v}[B^-]$ is an L-bigraded Hopf algebra.

2. The map $\gamma = \theta^{-1}\phi$: $\mathbb{C}_{q,p}[B^-] \to U_{q,p^{-1}}(\mathfrak{b}^+)^{op}$ is an isomorphism of Hopf algebras.

Proof. 1. It is easy to check that $I_{(w_0, e)}$ is an $\mathbf{L} \times \mathbf{L}$ graded bi-ideal of the bialgebra A. Let $\mu \in \mathbf{L}^+$ and fix a dual basis $\{v_{\nu}; f_{-\nu}\}_{\nu}$ of $L(\mu)$ (with the usual abuse of notation). Then

$$\sum_{v} c_{v_{v}, f_{-\eta}} c_{f_{-v}, v_{\gamma}} = \sum_{v} S(c_{f_{-\eta}, v_{v}}) c_{f_{-v}, v_{\gamma}} = \varepsilon(c_{f_{-\eta}, v_{\gamma}}).$$

Taking $\gamma = \eta = \mu$ yields $\tilde{c}_{\mu}c_{\mu} = 1$ modulo $I_{(w_0, e)}$. If $\gamma = w_0\mu$ and $\eta \neq w_0\mu$, the above relation shows that $S(c_{f_{-\eta}, v_{w_0\mu}})\tilde{c}_{-w_0\mu} \in I_{(w_0, e)}$. Thus $I_{(w_0, e)}$ is a Hopf ideal.

2. We first show that

$$\forall A \in \mathbf{L}^+, \qquad c_{f, v_A} \in C(A)_{-\lambda, A}, \qquad \exists ! \ x_{\lambda} \in U_{A-\lambda}^+, \qquad \phi(c_{f, v_A}) = \theta(x_{\lambda} \cdot k_{-A}).$$

$$(4.1)$$

Set $c = c_{f, v_A}$. Then $c(U_{-\eta}^-) = 0$ unless $\eta = \Lambda - \lambda$; denote by \bar{c} the restriction of c to U^- . By the non-degeneracy of the pairing on $U_{\Lambda-\lambda}^+ \times U_{\lambda-\Lambda}^-$ we know that there exists a unique $x_{\lambda} \in U_{\Lambda-\lambda}^+$ such that $\bar{c} = \theta(x_{\lambda})$. Then, for all $y \in U_{\lambda-\Lambda}^-$, we have

$$c(y \cdot k_{\mu}) = \langle f, y \cdot k_{\mu} \cdot v_{A} \rangle = q^{-(\varPhi - A, \mu)} \bar{c}(y) = q^{-(\varPhi - A, \mu)} \langle x_{\lambda}, y \rangle$$
$$= \langle x_{\lambda} \cdot k_{-A} \mid y \cdot k_{\mu} \rangle_{p^{-1}}$$

by (3.4). This proves (4.1).

We now show that ϕ is injective on A^+ . Suppose that $c = c_{f, v_A} \in C(\Lambda)_{-\lambda, \Lambda} \cap \text{Ker } \phi$, hence c = 0 on $U_{q, p^{-1}}(\mathfrak{b}^-)$. Since $L(\Lambda) = U_{q, p^{-1}}(\mathfrak{b}^-) v_A = D_{q, p^{-1}}(\mathfrak{g}) v_A$ it follows that c = 0. An easy weight argument using (4.1) shows then that ϕ is injective on A^+ .

It is clear that Ker $\phi \supset I_{(w_0, e)}$, and that $A^+A^- = A$ implies $\phi(A) = \phi(A^+[\tilde{c}_{\mu}; \mu \in \mathbf{L}^+])$. Since $\tilde{c}_{\mu} = c_{\mu}^{-1}$ modulo $I_{(w_0, e)}$ by part 1, if $a \in A$ there exists $v \in \mathbf{L}^+$ such that $\phi(c_v) \phi(a) \in \phi(A^+)$. The inclusion $I_{(w_0, e)} \subset \text{Ker } \phi$ follows easily. Therefore γ is a well defined Hopf algebra morphism.

If $\alpha_j \in \mathbf{B}$, there exists $\Lambda \in \mathbf{L}^+$ such that $L(\Lambda)_{\Lambda - \alpha_j} \neq (0)$. Pick $0 \neq f \in L(\Lambda)^*_{-\Lambda + \alpha_j}$. Then (4.1) shows that, up to some scalar, $\phi(c_{f,v_A}) = \theta(e_j \cdot k_{-\Lambda})$. If $\lambda \in \mathbf{L}$, there exists $\Lambda \in W\lambda \cap \mathbf{L}^+$; in particular $L(\Lambda)_{\lambda} \neq (0)$.

Let $v \in L(\Lambda)_{\lambda}$ and $f \in L(\Lambda)^*_{-\lambda}$ such that $\langle f, v \rangle = 1$. Then it is easily verified that $\phi(c_{f,v}) = \theta(k_{-\lambda})$. This proves that γ is surjective, and the proposition.

4.2. The adjoint action. Recall that if M is an arbitrary A-bimodule one defines the adjoint of A on M by

$$\forall a \in A, \qquad x \in M, \qquad \operatorname{ad}(a) \cdot x = \sum a_{(1)} x S(a_{(2)}).$$

Then it is well known that the subspace of ad-invariant elements $M^{ad} = \{x \in M \mid \forall a \in A, ad(a) \cdot x = \varepsilon(a)x\}$ is equal to $\{x \in M \mid \forall a \in A, ax = xa\}$.

Henceforth we fix $w \in W \times W$ and work inside A_w . For $\Lambda \in L^+$, $f \in L(\Lambda)^*$ and $v \in L(\Lambda)$ we set

$$z_f^+ = c_{wA}^{-1} c_{f,vA}, \qquad z_v^- = \tilde{c}_{wA}^{-1} c_{v,fA}$$

Let $\{\omega_1, ..., \omega_n\}$ be a basis of **L** such that $\omega_i \in \mathbf{L}^+$ for all *i*. Observe that $c_{wA}c_{wA'}$ and $c_{wA'}c_{wA}$ differ by a non-zero scalar (similarly for $\tilde{c}_{wA}\tilde{c}_{wA'}$). For each $\lambda = \sum_i l_i \omega_i \in \mathbf{L}$ we define normal elements of A_w by

$$c_{w\lambda} = \prod_{i=1}^{n} c_{w\omega_i}^{l_i}, \qquad \tilde{c}_{w\lambda} = \prod_{i=1}^{n} \tilde{c}_{w\omega_i}^{l_i}, \qquad d_{\lambda} = (\tilde{c}_{w\lambda} c_{\omega\lambda})^{-1}.$$

Notice then that, for $A \in \mathbf{L}^+$, the "new" c_{wA} belongs to $\mathbb{C}^* c_{f_{-w_+A}, v_A}$ (similarly for \tilde{c}_{wA}). Define subalgebras of A_w by

$$C_w = \mathbb{C}[z_f^+, z_v^-, c_{w\lambda}; f \in L(\Lambda)^*, v \in L(\Lambda), \Lambda \in \mathbf{L}^+, \lambda \in \mathbf{L}]$$

$$C_w^+ = \mathbb{C}[z_f^+; f \in L(\Lambda)^*, \Lambda \in \mathbf{L}^+], \qquad C_w^- = \mathbb{C}[z_v^-; v \in L(\Lambda), \Lambda \in \mathbf{L}^+].$$

Recall that the torus *H* acts on $A_{\lambda,\mu}$ by $r_h(a) = \mu(h)a$, where $\mu(h) = \langle \mu, h \rangle$. Since the generators of I_w and the elements of \mathscr{E}_w are eigenvectors for *H*, the action of *H* extends to an action on A_w . The algebras C_w and C_w^{\pm} are obviously *H*-stable.

THEOREM 4.7. 1. $C_w^H = \mathbb{C}[z_f^+, z_v^-; f \in L(\Lambda)^*, v \in L(\Lambda), \Lambda \in L^+].$

2. The set $\mathcal{D} = \{ d_{\lambda}; \Lambda \in \mathbf{L}^+ \}$ is an Ore subset of C_w^H . Furthermore $A_w = (C_w)_{\mathcal{D}}$ and $A_w^H = (C_w^H)_{\mathcal{D}}$.

3. For each $\lambda \in \mathbf{L}$, let $(A_w)_{\lambda} = \{a \in A_w \mid r_h(a) = \lambda(h)a\}$. Then $A_w = \bigoplus_{\lambda \in \mathbf{L}} (A_w)_{\lambda}$ and $(A_w)_{\lambda} = A_w^H c_{w\lambda}$. Moreover each $(A_w)_{\lambda}$ is an ad-invariant subspace.

Proof. Assertion 1 follows from

$$\forall h \in H, \qquad r_h(z_f^{\pm}) = z_f, \qquad r_h(c_{w\lambda}) = \lambda(h) c_{w\lambda}, \qquad r_h(\tilde{c}_{w\lambda}) = \lambda(h)^{-1} \tilde{c}_{w\lambda}.$$

Let $\{v_i; f_i\}_i$ be a dual basis for $L(\Lambda)$. Then

$$1 = \varepsilon(c_{f_{-A}, v_A}) = \sum_{i} S(c_{f_{-A}, v_i}) c_{f_i, v_A} = \sum_{i} c_{v_i, f_{-A}} c_{f_i, c_A}.$$

Multiplying both sides of the equation by d_A and using the normality of c_{wA} and \tilde{c}_{wA} yields $d_A = \sum_i a_i z_{v_i}^- z_{f_i}^+$ for some $a_i \in \mathbb{C}$. Thus $\mathscr{D} \subset C_w^H$. Now by Theorem 4.1 any element of A_w can be written in the form $c_{f_1, v_1} c_{f_2, v_2} d_A^{-1}$ where $v_1 = v_{A_1}$, $v_2 = v_{-A_2}$ and $A_1, A_2, A \in \mathbf{L}^+$. This element lies in $(A_w)_{\lambda}$ if and only if $A_1 - A_2 = \lambda$. In this case $c_{f_1, v_1} c_{f_2, v_2} d_A^{-1}$ is equal, up to a scalar, to the element $z_{f_1}^+ z_{f_2}^- d_{A+A_2}^{-1} c_{w\lambda} \in (C_w^H)_{\varnothing} c_{w\lambda}$. Since the adjoint action commutes with the right action of H, $(A_w)_{\lambda}$ is an ad-invariant subspace. The remaining assertions then follow.

We now study the adjoint action of $\mathbb{C}_{q,p}[G]$ on A_w . The key result is Theorem 4.12.

LEMMA 4.8. Let
$$T_A = \{z_f^+ \mid f \in L(A)^*\}$$
. Then $C_w^+ = \bigcup_{A \in \mathbf{L}} T_A$.

Proof. It suffices to prove that if Λ , $\Lambda' \in \mathbf{L}^+$ and $f \in L(\Lambda)^*$, then there exists a $g \in L(\Lambda + \Lambda')^*$ such that $z_f^+ = z_g^+$. Clearly we may assume that f is a weight vector. Let $\iota: L(\Lambda + \Lambda') \to L(\Lambda) \otimes L(\Lambda')$ be the canonical map. Then

$$c_{f, v_{A}}c_{f_{-w_{+}A'}, v_{A'}} = c_{f_{-w_{+}A'}\otimes f, v_{A}\otimes v_{A'}} = c_{g, v_{A+A'}}$$

where $g = \iota^*(f_{-w_+A'} \otimes f)$. Multiplying the images of these elements in A_w by the inverse of $c_{w(A+A')} \in \mathbb{C}^* c_{wA} c_{wA'}$ yields the desired result.

PROPOSITION 4.9. Let *E* be an object of $\mathscr{C}_{q,p}$ and let $\Lambda \in \mathbf{L}^+$. Let $\sigma: L(\Lambda) \to E \otimes L(\Lambda) \otimes E^*$ be the map $(1 \otimes \psi^{-1})(\iota \otimes 1)$ where $\iota: \mathbb{C} \to E \otimes E^*$ is the canonical embedding and $\psi^{-1}: E^* \otimes L(\Lambda) \to L(\Lambda) \otimes E^*$ is the inverse of the braiding map described in Section 3.5. Then for any $c = c_{g,v} \in C(E)_{-\eta,v}$ and $f \in L(\Lambda)^*$

$$\mathrm{ad}(c) \cdot z_f^+ = q^{(\varPhi_+ w + \Lambda, \eta)} z_{\sigma^*(v \otimes f \otimes g)}^+.$$

In particular C_w^+ is a locally finite $\mathbb{C}_{q,p}[G]$ -module for the adjoint action.

Proof. Let $\{v_i; g_i\}_i$ be a dual basis of E where $v_i \in E_{v_i}, g_i \in E^*_{-v_i}$. Then $\iota(1) = \sum v_i \otimes g_i$. By (3.5) we have

$$\psi^{-1}(g_i \otimes v_A) = a_i(v_A \otimes g_i)$$

where $a_i = q^{-(\Phi_+A, v_i)} = q^{(\Phi_-v_i, A)}$. On the other hand the commutation relations given in Corollary 3.10 imply that $c_{g, v_i} c_{wA}^{-1} = b a_i c_{wA}^{-1} c_{g, v_i}$, where $b = q^{(\Phi_+w_+A, \eta)}$. Therefore

$$\operatorname{ad}(c) \cdot z_{f}^{+} = \sum b a_{i} c_{wA}^{-1} c_{g, v_{i}} c_{f, v_{A}} c_{v, g_{i}} = b c_{wA}^{-1} c_{v \otimes f \otimes g, \sum a_{i} v_{i} \otimes v_{A} \otimes g}$$
$$= b c_{wA}^{-1} c_{v \otimes f \otimes g, \sigma(v_{A})}.$$

Since the map σ is a morphism of $D_{q, p^{-1}}(\mathfrak{g})$ -modules it is easy to see that $c_{v \otimes f \otimes g, \sigma(v_A)} = c_{\sigma^*(v \otimes f \otimes g), v_A}$.

LEMMA 4.10. Let $c = c_{g,v} \in \mathbb{C}_{q,p}[G]_{-\eta,\gamma}$, $f \in L(\Lambda)^*$ be as in the previous theorem and $x \in U_{q,p^{-1}}(\mathfrak{b}^+)$ be such that $\gamma(c) = x$. Then

$$c_{S^{-1}(x)\cdot f, v_A} = c_{\sigma^*(v\otimes f\otimes g), v_A}.$$

Proof. Notice that it suffices to show that

$$c_{S^{-1}(x) \cdot f, v_A}(y) = c_{\sigma^*(v \otimes f \otimes g), v_A}(y)$$

for all $y \in U_{q,p^{-1}}(b^{-})$. Denote by $\langle | \rangle$ the Hopf pairing $\langle | \rangle_{p^{-1}}$ between $U_{q,p^{-1}}(b^{+})^{\text{op}}$ and $U_{q,p^{-1}}(b^{-})$ as in Section 3.4. Let χ be the one dimensional representation of $U_{q,p^{-1}}(b^{+})$ associated to v_A and let $\tilde{\chi} = \chi \cdot \gamma$. Notice that $\chi(x) = \langle x | t_{-A} \rangle$; so $\tilde{\chi}(c) = c(t_{-A})$. Recalling that γ is a morphism of coalgebras and using the relation (c_{xy}) of Section 2.3 in the double $U_{q,p^{-1}}(b^{+}) \bowtie U_{q,p^{-1}}(b^{-})$, we obtain

$$\begin{split} c_{S^{-1}(x) \cdot f, v_{A}}(y) &= f(xyv_{A}) \\ &= \sum \langle x_{(1)} \mid y_{(1)} \rangle \langle x_{(3)} \mid S(y_{(3)}) \rangle f(y_{(2)}x_{(2)}v_{A}) \\ &= \sum \langle x_{(1)} \mid y_{(1)} \rangle \langle x_{(3)} \mid S(y_{(3)}) \rangle \chi(x_{(2)}) f(y_{(2)}v_{A}) \\ &= \sum \langle x_{(1)}\chi(x_{(2)}) \mid y_{(1)} \rangle \langle x_{(3)} \mid S(y_{(3)}) \rangle f(y_{(2)}v_{A}) \\ &= \sum (c_{(1)}\tilde{\chi}(c_{(2)}))(y_{(1)}) c_{(3)}(S(y_{(3)})) f(y_{(2)}v_{A}) \\ &= \sum r_{\tilde{\chi}}(c_{(1)})(y_{(1)}) c_{f,v_{A}}(y_{(2)}) S(c_{(2)})(y_{(3)}). \end{split}$$

Since $r_{\tilde{\chi}}(c_{g,v_i}) = q^{(\Phi - v_i, A)} c_{g,v_i}$, one shows as in the proof of Proposition 4.9 that

$$c_{S^{-1}(x) \cdot f, v_{A}}(y) = \sum r_{\tilde{\chi}}(c_{(1)})(y_{(1)}) c_{f, v_{A}}(y_{(2)}) S(c_{(2)})(y_{(3)})$$
$$= \sum q^{(\varPhi - v_{i}, A)}(c_{g, v_{i}}c_{f, v_{A}}c_{v, g_{i}})(y)$$
$$= c_{\sigma^{*}(v \otimes f \otimes g), v_{A}}(y),$$

as required.

THEOREM 4.11. Consider C_w^+ as a $\mathbb{C}_{q,p}[G]$ -module via the adjoint action. Then

- (1) Soc $C_w^+ = \mathbb{C}$.
- (2) Ann $C_w^+ \supset I_{(w_0, e)}$.
- (3) The elements $c_{f_{-u}, v_u}, \mu \in \mathbf{L}^+$, act diagonalizably on C_w^+ .
- (4) Soc $C_w^+ = \{z \in C_w^+ \mid \operatorname{Ann} z \supset I_{(e, e)}\}.$

Proof. For $\Lambda \in \mathbf{L}^+$, define a $U_{q,p^{-1}}(\mathfrak{b}^+)$ -module by

$$S_{\Lambda} = (U_{q, p^{-1}}(\mathfrak{b}^{+}) v_{w+\Lambda})^{*} = L(\Lambda)^{*}/(U_{q, -1}(\mathfrak{b}^{+}) v_{w+\Lambda})^{\perp}.$$

It is easily checked that Soc $S_A = \mathbb{C}f_{-w+A}$ (see [18, 7.3]). Let $\delta: S_A \to T_A$ be the linear map given by $\overline{f} \mapsto z_f^+$. Denote by ζ the one-dimensional representation of $\mathbb{C}_{q,p}[G]$ given by $\zeta(c) = c(t_{-w+A})$. Let $c = v_{g,v} \in C(E)_{-\eta,\gamma}$. Then $l_{\zeta}(c) = q^{(\varPhi_{-\eta},w+A)}c = q^{-(\varPhi_{+w+A},\eta)}c$. Then, using Proposition 4.9 and Lemma 4.10 we obtain,

$$\mathrm{ad}(l_{\zeta}(c)) \cdot \delta(\bar{f}) = q^{-(\varPhi_{+}w_{+}A,\,\eta)} \mathrm{ad}(c) \cdot z_{f}^{+} = z_{S^{-1}\gamma(c)\cdot f}^{+} = \delta(S^{-1}(\gamma(c))\,\bar{f}).$$

Hence, $\operatorname{ad}(l_{\zeta}(c)) \cdot \delta(\overline{f}) = \delta(S^{-1}(\gamma(c)) \overline{f})$ for all $c \in A$. This immediately implies part (2) since $\operatorname{Ker} \gamma \supset I_{(w_0, e)}$ and $l_{\zeta}(I_{(w_0, e)}) = I_{(w_0, e)}$. If S_A is given the structure of an A-module via $S^{-1}\gamma$, then δ is a homomorphism from S_A to the module T_A twisted by the automorphism l_{ζ} . Since $\delta(f_{-w_+A}) = 1$ it follows that δ is bijective and that $\operatorname{Soc} T_A = \delta(\operatorname{Soc} S_A) = \mathbb{C}$. Part (1) then follows from Lemma 4.8. Part (3) follows from the above formula and the fact that $\gamma(c_{f_{-\mu}, v_{\mu}}) = s_{-\mu}$. Since $A/I_{(e, e)}$ is generated by the images of the elements $c_{f_{-\mu}, v_{\mu}}$, (4) is a consequence of the definitions.

THEOREM 4.12. Consider C_w^H as a $\mathbb{C}_{q,p}[G]$ -module via the adjoint action. Then

Soc
$$C_w^H = \mathbb{C}$$
.

Proof. By Theorem 4.11 we have that Soc $C_w^+ = \mathbb{C}$. Using the map σ , one obtains analogous results for C_w^- . The map $C_w^+ \otimes C_w^- \to C_w^H$ is a module map for the adjoint action which is surjective by Theorem 4.1. So it suffices to show that Soc $C_w^+ \otimes C_w^- = \mathbb{C}$. The following argument is taken from [18].

By the analog of Theorem 4.11 for C_w^- we have that the elements c_{f_{-A},v_A} act as commuting diagonalizable operators on C_w^- . Therefore an element of $C_w^+ \otimes C_w^-$ may be written as $\sum a_i \otimes b_i$ where the b_i are linearly independent weight vectors. Let c_{f,v_A} be a generator of I_e^+ . Suppose that $\sum a_i \otimes b_i \in \operatorname{Soc}(C_w^+ \otimes C_w^-)$. Then

$$0 = \operatorname{ad}(c_{f, v_A}) \cdot \left(\sum_{i} a_i \otimes b_i\right) = \sum_{i, j} \operatorname{ad}(c_{f, v_j}) \cdot a_i \otimes \operatorname{ad}(c_{f_j, v_A}) \cdot b_i$$
$$= \sum_{i} \operatorname{ad}(c_{f, v_A}) \cdot a_i \otimes \operatorname{ad}(c_{f_{-A}, v_A}) \cdot b_i$$
$$= \sum_{i} \operatorname{ad}(c_{f, v_A}) \cdot a_i \otimes \alpha_i b_i$$

for some $\alpha_i \in \mathbb{C}^*$. Thus $\operatorname{ad}(c_{f,v_A}) \cdot a_i = 0$ for all *i*. Thus the a_i are annihilated by the left ideal generated by the c_{f,v_A} . But this left ideal is two-sided modulo $I_{(w_0,e)}$ and Ann $C_w^+ \supset I_{(w_0,e)}$. Thus the a_i are annihilated by $I_{(e,e)}$ and so lie in Soc C_w^+ by Theorem 4.11. Thus $\sum a_i \otimes b_i \in \operatorname{Soc}(\mathbb{C} \otimes C_w^-) = \mathbb{C} \otimes \mathbb{C}$.

COROLLARY 4.13. The algebra A_w^H contains no nontrivial ad-invariant ideals. Furthermore, $(A_w^H)^{ad} = \mathbb{C}$.

Proof. Notice that Theorem 4.12 implies that C_w^H contains no nontrivial ad-invariant ideals. Since A_w^H is a localization of C_w^H the same must be true for A_w^H . Let $a \in (A_w^H)^{ad} \setminus \mathbb{C}$. Then *a* is central and so for any $\alpha \in \mathbb{C}$, $(a - \alpha)$ is a non-zero ad-invariant ideal of A_w^H . This implies that $a - \alpha$ is invertible in A_w^H for any $\alpha \in \mathbb{C}$. This contradicts the fact that A_w^H has countable dimension over \mathbb{C} .

THEOREM 4.14. Let Z_w be the center of A_w . Then

- (1) $Z_w = A_w^{ad};$
- (2) $Z_w = \bigoplus_{\lambda \in \mathbf{L}} Z_\lambda$ where $Z_\lambda = Z_w \cap A_w^H c_{w\lambda}$;
- (3) If $Z_{\lambda} \neq (0)$, then $Z_{\lambda} = \mathbb{C}u_{\lambda}$ for some unit u_{λ} ;
- (4) The group H acts transitively on the maximal ideals of Z_w .

Proof. The proof of (1) is standard. Assertion (2) follows from Theorem 4.7. Let u_{λ} be a non-zero element of Z_{λ} . Then $u_{\lambda} = ac_{w}\lambda$, for some $a \in A_{w}^{H}$. This implies that a is normal and hence a generates an ad-invariant ideal of A_{w}^{H} . Thus a (and hence also u_{λ}) is a unit by Theorem 4.13. Since $Z_{0} = \mathbb{C}$, it follows that $Z_{\lambda} = \mathbb{C}u_{\lambda}$. Since the action of H is given by $r_{h}(u_{\lambda}) = \lambda(h)u_{\lambda}$, it is clear that H acts transitively on the maximal ideals of Z_{w} .

THEOREM 4.15. The ideals of A_w are generated by their intersection with the center Z_w .

Proof. Any element $f \in A_w$ may be written uniquely in the form $f = \sum a_{\lambda} c_{w\lambda}$ where $a_{\lambda} \in A_w^H$. Define $\pi: A_w \to A_w^H$ to be the projection given by $\pi(\sum a_{\lambda} c_{w\lambda}) = a_0$ and notice that π is a module map for the adjoint action. Define the support of f to be $\text{Supp}(f) = \{\lambda \in L \mid a_{\lambda} \neq 0\}$. Let I be an ideal of A_w . For any set $Y \subseteq L$ such that $0 \in Y$ define

$$I_Y = \{ b \in A_w^H \mid b = \pi(f) \text{ for some } f \in I \text{ such that } Supp(f) \subseteq Y \}$$

If *I* is ad-invariant then I_Y is an ad-invariant ideal of A_w^H and hence is either (0) or A_w^H .

Now let $I' = (I \cap Z_w)A_w$ and suppose that $I \neq I'$. Choose an element $f = \sum a_{\lambda}c_{w\lambda} \in I \setminus I'$ whose support S has the smallest cardinality. We may assume without loss of generality that $0 \in S$. Suppose that there exists $g \in I'$ with $Supp(g) \subset S$. Then there exists a $g' \in I'$ with $Supp(g') \subset S$ and $\pi(g') = 1$. But then $f - a_0g'$ is an element of I' with smaller support than F. Thus there can be no elements in I' whose support is contained in S. So we may assume that $\pi(f) = a_0 = 1$. For any $c \in \mathbb{C}_{q,p}[G]$, set $f_c = \mathrm{ad}(c) \cdot f - \varepsilon(c)f$. Since $\pi(f_c) = 0$ it follows that $|Supp(f_c)| < |Supp(f)|$ and hence that $f_c = 0$. Thus $f \in I \cap A_w^{\mathrm{ad}} = I \cap Z_w$, a contradiction.

Putting these results together yields the main theorem of this section, which completes Corollary 4.5 by describing the set of primitive ideals of type w.

THEOREM 4.16. For $w \in W \times W$ the subsets $\operatorname{Prim}_{w} \mathbb{C}_{q,p}[G]$ are precisely the H-orbits inside $\operatorname{Prim}_{q,p}[G]$.

Finally we calculate the size of these orbits in the algebraic case. Set $\mathbf{L}_w = \{\lambda \in \mathbf{L} \mid Z_\lambda \neq (0)\}$. Recall the definition of s(w) from (1.3) and that p is called *q*-rational if u is algebraic. In this case we know by Theorem 1.7 that there exists $m \in \mathbb{N}^*$ such that $\Phi(m\mathbf{L}) \subset \mathbf{L}$.

PROPOSITION 4.17. Suppose that p is q-rational. Let $\lambda \in \mathbf{L}$ and $y_{\lambda} = c_{w\Phi_{-m\lambda}} \tilde{c}_{w\Phi_{+m\lambda}}$. Then

(1) y_{λ} is ad-semi-invariant. In fact, for any $c \in A_{-n, \nu}$,

 $\operatorname{ad}(c) \cdot y_{\lambda} = q^{(m\sigma(w)\lambda, \eta)} \varepsilon(c) y_{\lambda}.$

where $\sigma(w) = \Phi_{-}w_{-}\Phi_{+} - \Phi_{+}w_{+}\Phi_{-}$

- (2) $\mathbf{L}_{w} \cap 2m\mathbf{L} = 2 \operatorname{Ker} \sigma(w) \cap mL$
- (3) dim $Z_w = n s(w)$

Proof. Using Lemma 4.2, we have that for $c \in A_{-\eta, \gamma}$

$$cy_{\lambda} = q^{(\Phi_{+w}+\Phi_{-}m\lambda, -\eta)} q^{(\Phi_{+}\Phi_{-}m\lambda, \gamma)} q^{(\Phi_{-w}-\Phi_{+}m\lambda, \eta)} q^{(\Phi_{-}\Phi_{+}m\lambda, -\gamma)} y_{\lambda} c$$
$$= q^{(m\sigma(w)\lambda, \eta)} y_{\lambda} c.$$

From this it follows easily that

$$\operatorname{ad}(c) \cdot y_{\lambda} = q^{(m\sigma(w)\lambda,\eta)} \varepsilon(c) y_{\lambda}.$$

Since (up to some scalar) $y_{\lambda} = d_{\phi m \lambda}^{-1} d_{m \lambda}^{-1} c_{w m \lambda}^{-2}$ it follows from Theorem 4.7 that $y_{\lambda} \in (A_w)_{-2m\lambda}$. However, as a $\mathbb{C}_{q,p}[G]$ -module via the adjoint action, $A_w^H y_{\lambda} \cong A_w^H \otimes \mathbb{C} y_{\lambda}$ and hence Soc $A_w^H y_{\lambda} = \mathbb{C} y_{\lambda}$. Thus $Z_{-2m\lambda} \neq (0)$ if and only if y_{λ} is ad-invariant; that is, if and only if $m\sigma(w)\lambda = 0$. Hence

$$\dim Z_w = \operatorname{rk} \mathbf{L}_w = \operatorname{rk}(\mathbf{L}_w \cap 2m\mathbf{L}) = \operatorname{rk} \operatorname{Ker}_{m\mathbf{L}} \sigma(w)$$
$$= \dim \operatorname{Ker}_{\mathfrak{h}^*} \sigma(w) = n - s(w)$$

as required.

Finally, we may deduce that in the algebraic case the size of the *H*-orbits Symp_w *G* and Prim_w $\mathbb{C}_{q,p}[G]$ are the same, cf. Theorem 1.8.

THEOREM 4.18. Suppose that p is q-rational and let $w \in W \times W$. Then

$$\forall P \in \operatorname{Prim}_{w} \mathbb{C}_{q, p}[G], \quad \dim(H/\operatorname{Stab}_{H} P) = n - s(w).$$

Proof. This follows easily from Theorems 4.15, 4.16 and Proposition 4.17. ■

REFERENCES

- N. Andruskiewitsch and B. Enriquez, Examples of compact matrix pseudogroups arising from the twisting operation, *Comm. Math. Phys.* 149 (1992), 195–207.
- M. Artin, W. Schelter, and J. Tate, Quantum deformations of GL_n, Comm. Pure Appl. Math. 44 (1991), 879–895.
- A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie algebras, *in* "Mathematical Physics Reviews" (S. P. Novikov, Ed.), Harwoord, New York, 1984, pp. 93–166.

- 4. A. Borel, "Linear Algebraic Groups," W. A. Benjamin, New York, 1969.
- W. Chin and I. Musson, Multi-parameter quantum enveloping algebras, J. Pure Appl. Algebra 107 (1996), 3485–3883.
- 6. W. Chin and D. Quinn, Rings graded by polycyclic-by-finite groups, *Proc. Amer. Math. Soc.* **102** (1988), 235–241.
- 7. M. Constantini and M. Varagnolo, Quantum double and multi-parameter quantum group, *Comm. Algebra* 22 (1994), 6305–6321.
- M. Constantini and M. Varagnolo, Multi-parameter quantum function algebra at roots of 1, *Math. Ann.* 306 (1996), 759–780.
- 9. P. Cotta-Ramusino and M. Rinaldi, Multi-parameter quantum groups related to link diagrams, *Comm. Math. Phys.* **142** (1991), 589–604.
- C. De Concini and V. Lyubashenko, Quantum function algebra at roots of 1, *Adv. Math.* 108 (1994), 205–262.
- C. De Concini and C. Procesi, Quantum groups, *in "D*-modules, Representation Theory and Quantum Groups," Lecture Notes in Mathematics, Vol. 1565, pp. 31–140, Springer, 1994.
- 12. J. Dixmier, "Algèbres Enveloppantes," Gauthier-Villars, Paris, 1974.
- V. G. Drinfeld, Quantum groups, in "Proceedings ICM," Berkeley, Amer. Math. Soc., 1987, pp. 798–820.
- 14. T. Hayashi, Quantum groups and quantum determinants, J. Algebra 152 (1992), 146-165.
- 15. T. J. Hodges and T. Levasseur, Primitive ideals of $\mathbb{C}_q[SL(3)]$, Comm. Math. Phys. 156 (1993), 581–605.
- 16. T. J. Hodges and T. Levasseur, Primitive ideals of $\mathbb{C}_q[SL(n)]$, J. Algebra 168 (1994), 455–468.
- 17. T. J. Hodges and T. Levasseur, Primitive ideals of $\mathbb{C}_q[G]$, University of Cincinnati, 1993 (unpublished).
- 18. A. Joseph, On the prime and primitive spectrum of the algebra of functions on a quantum group, J. Algebra 169 (1994), 441–511.
- A. Joseph, Idéaux premiers et primitifs de l'algèbre des fonctions sur un groupe quantique, C. R. Acad. Sci. Paris 316 I (1993), 1139–1142.
- 20. S. Z. Levendorskii, Twisted function algebras on a compact quantum group and their representations, St. Petersburg Math J. 3 (1992), 405–423.
- 21. S. Z. Levendorskii and Y. S. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, *Comm. Math. Phys.* **139** (1991), 141–170.
- 22. J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geometry 31 (1990), 501–526.
- G. Lustzig, Quantum deformations of certain simple modules over enveloping algebras, Advances in Math. 70 (1988), 237–249.
- V. Lychagin, Braided differential operators and quantizations in ABC-categories, C.R. Acad. Sci. Paris 318 I (1994), 857–862.
- M. Okado and H. Yamane, *R*-matrices with gauge parameters and multi-parameter quantized enveloping algebras, *in* "Special Functions (Okayama 1990), ICM-90 Satell. Conf. Proc.," Springer, 1991, pp. 289–293.
- 26. N. Y. Reshetikhin, Multi-parameter quantum groups and twisted quasi-triangular Hopf algebras, *Lett. Math. Phys.* 20 (1990), 331-335.
- 27. M. Rieffel, Compact quantum groups associated with toral subgroups, *in* "Representation Theory of Groups and Algebras," *Contemporary Math.* **145** (1993), 465–491.
- M. Rosso, Analogues de la forme de Killing et du théorème de Harish-Chandra pour les groups quantiques, Ann. Sci. Ec. Norm. Sup. 23 (1990), 445–467.
- M. Rosso, Représentations des groupes quantiques, in "Séminaire Bourbaki, Exposé 744," Soc. Math. France, 1991, pp. 443–483.

- M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, *Publ. RIMS, Kyoto Univ.* 21 (1985), 1237–1260.
- 31. Ya. S. Soibelman, The algebra of functions on a compact quantum group, and its representations, *Leningrad Math. J.* 2 (1991), 161–178.
- 32. A. Sudberry, Consistent multi-parameter quantization of GL(n), J. Phys. A 23 (1990), L697–L704.
- T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal *R*-Matrices for Quantum Algebras, *in* "Infinite Analysis, Proceedings of the RIMS research project 1991, Part B," World Scientific, 1992, pp. 941–961.