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1. INTRODUCTION

Let G be a connected semi-simple complex Lie group. We define and
study the multi-parameter quantum group Cq, p[G] in the case where q is
a complex parameter that is not a root of unity. Using a method of twisting
bigraded Hopf algebras by a cocycle, [2], we develop a unified approach
to the construction of Cq, p [G] and of the multi-parameter Drinfeld
double Dq, p . Using a general method of deforming bigraded pairs of Hopf
algebras, we construct a Hopf pairing between these algebras from which
we deduce a Peter�Weyl-type theorem for Cq, p[G]. We then describe the
prime and primitive spectra of Cq, p[G], generalizing a result of Joseph. In
the one-parameter case this description was conjectured, and established in
the SL(n)-case, by the first and second authors in [15, 16]. It was proved
in the general case by Joseph in [18, 19]. In particular the orbits in
Prim Cq, p[G] under the natural action of the maximal torus H are
indexed, as in the one-parameter case by the elements of the double Weyl
group W_W. Unlike the one-parameter case there is not in general a
bijection between Symp G and Prim Cq, p[G]. However in the case when
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the symplectic leaves are algebraic such a bijection does exist since the
orbits corresponding to a given w # W_W have the same dimension.

In the first section we discuss the Poisson structures on G defined by
classical r-matrices of the form r=a&u where a=�: # R+

e: 7e&: # �2 g
and u # �2 h. Given such an r one constructs a Manin triple of Lie groups
(G_G, G, Gr). Unlike the one-parameter case (where u=0), the dual
group Gr will generally not be an algebraic subgroup of G_G. In fact this
happens if and only if u # �2 hQ . Since the quantized universal enveloping
algebra Uq(g) is a deformation of the algebra of functions on the algebraic
group Gr [11], this explains the difficulty in constructing multi-parameter
versions of Uq(g). From [22, 30], one has that the symplectic leaves are the
connected components of G & GrxGr where x # G. Since r is H-invariant,
the symplectic leaves are permuted by H with the orbits being contained in
Bruhat cells in G_G indexed by W_W. In the case where Gr is algebraic,
the symplectic leaves are also algebraic and an explicit formula is given for
their dimension.

The philosophy of [15, 16] was that, as in the case of enveloping
algebras of algebraic solvable Lie algebras, the primitive ideals of Cq[G]
should be in bijection with the symplectic leaves of G (in the case u=0).
Indeed, since the Lie bracket on gr=Lie(Gr) is the linearization of the
Poisson structure on G, Prim Cq, p[G] should resemble Prim U(gr). The
study of the muli-parameter versions Cq, p[G] is similar to the case of
enveloping algebras of general solvable Lie algebras. In the general case
Prim U(gr) is in bijection with the co-adjoint orbits in gr* under the action
of the ``adjoint algebraic group'' of gr , [12]. It is therefore natural that,
only in the case where the symplectic leaves are algebraic, does one expect
and obtain a bijection between the symplectic leaves and the primitive
ideals.

In Section 2 we define the notion of an L-bigraded Hopf K-algebra,
where L is an abelian group. When A is finitely generated such bigradings
correspond bijectively to morphisms from the algebraic group L6 to the
(algebraic) group R(A) of one-dimensional representations of A. For any
antisymmetric bicharacter p on L, the multiplication in A may be twisted
to give a new Hopf algebra Ap . Moreover, given a pair of L-bigraded Hopf
algebras A and U equipped with an L-compatible Hopf pairing A_U � K,
one can deform the pairing to get a new Hopf pairing between Ap &1

and Up . This deformation commutes with the formation of the Drinfeld
double in the following sense. Suppose that A and U are bigraded Hopf
algebras equipped with a compatible Hopf pairing Aop_U � K. Then the
Drinfeld double A � U inherits a bigrading such that (A � U )p$Ap � Up .

Let Cq[G] denote the usual one-parameter quantum group (or quantum
function algebra) and let Uq(g) be the quantized enveloping algebra
associated to the lattice L of weights of G. Let Uq(b+) and Uq(b&) be the
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usual sub-Hopf algebras of Uq(g) corresponding to the Borel subalgebras
b+ and b& respectively. Let Dq(g)=Uq(b+) � Uq(b&) be the Drinfeld
double. Since the groups of one-dimensional representations of Uq(b+),
Uq(b&), Dq(g) and Cq[G] are all isomorphic to H=L6, these algebras are
all equipped with L-bigradings. Moreover the Rosso�Tanisaki pairing is
compatible with bigradings on Uq(b+), and Uq(b&). For any anti-sym-
metric bicharacter p on L one may therefore twist simultaneously the Hopf
algebras Uq(b+), Uq(b&) and Dq(g) in such a way that Dq, p(g)$
Uq, p(b+) � Uq, p(b&). The algebra Dq, p(g) is the ``multi-parameter quan-
tized universal enveloping algebra'' constructed by Okado and Yamane
[25] and previously in special cases in [9, 32]. The canonical pairing
between Cq[G] and Uq(g) induces a L-compatible pairing between Cq[G]
and Dq(g). Thus there is an induced pairing between the multi-parameter
quantum group Cq, p[G] and the multi-parameter double Dq, p&1 (g). Recall
that the Hopf algebra Cq[G] is defined as the restricted dual of Uq(g) with
respect to a certain category C of modules over Uq(g). There is a natural
deformation functor from this category to a category Cp of modules over
Dq, p&1 (g) and Cq, p[G] turns out to be the restricted dual of Dq, p &1 (g) with
respect to this category. This Peter�Weyl theorem for Cq, p[G] was also
found by Andruskiewitsch and Enriquez in [1] using a different construc-
tion of the quantized universal enveloping algebra and in special cases in
[5, 14].

The main theorem describing the primitive spectrum of Cq, p[G] is
proved in the final section. Since Cq, p[G] inherits an L-bigrading, there is
a natural action of H as automorphisms of Cq, p[G]. For each w # W_W,
we construct an algebra Aw=(Cq, p[G]�Iw)Ew which is a localization of a
quotient of Cq, p[G]. For each prime P # Spec Cq, p[G] there is a unique
w # W_W such that P#Iw and PAw is proper. Thus Spec Cq, p[G]$
�w # W_W Specw Cq, p[G] where Specw Cq, p[G]$Spec Aw is the set of
primes of type w. The key results are then Theorems 4.14 and 4.15 which
state that an ideal of Aw is generated by its intersection with the center and
that H acts transitively on the maximal ideals of the center. From this it
follows that the primitive ideals of Cq, p[G] of type w form an orbit under
the action of H.

An earlier version of our approach to the proof of Joseph's theorem is
contained in the unpublished article [17]. The approach presented here is
a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [20, 21] on
the irreducible representations of multi-parameter function algebras and
compact quantum groups. The bijection between symplectic leaves of the
compact Poisson group and irreducible V-representations of the compact
quantum group found by Soibelman in the one-parameter-case, breaks
down in the multi-parameter case.
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After this work was completed, the authors became aware of the work
of Constantini and Varagnolo [7, 8] which has some overlap with the
results in this paper.

1. POISSON LIE GROUPS

1.1. Notation. Let g be a complex semi-simple Lie algebra associated to
a Cartan matrix [aij ]1�i, j�n . Let [di]1�i�n be relatively prime positive
integers such that [diaij ]1�i, j�n is symmetric positive definite.

Let h be a Cartan subalgebra of g, R the associated root system,
B=[:1 , ..., :n] a basis of R, R+ the set of positive roots and W the Weyl
group. We denote by P and Q the lattices of weights and roots respectively.
The fundamental weights are denoted by |1 , ..., |n and the set of dominant
integral weights by P+=�n

i=1 N|i . Let (&, &) be a non-degenerate
g-invariant symmetric bilinear form on g; it will identify g, resp. h, with
its dual g*, resp. h*. The form (&, &) can be chosen in order to induce
a perfect pairing P_Q � Z such that

(|i , :j )=$ijdi , (:i , :j )=diaij .

Hence di=(:i , :i )�2 and (:, :) # 2Z for all : # R. For each :j we denote by
hj # h the corresponding coroot: |i (hj )=$ij . We also set

n\= �
: # R+

g\: , b\=h�n\, d=g_g, t=h_h, u\=n\_n�.

Let G be a connected complex semi-simple algebraic group such that
Lie(G)=g and set D=G_G. We identify G (and its subgroups) with the
diagonal copy inside D. We denote by exp the exponential map from d to
D. We shall in general denote a Lie subalgebra of d by a gothic symbol and
the corresponding connected analytic subgroup of D by a capital letter.

1.2. Poisson Lie Group Structure on G. Let a=�: # R+
e: 7e&: # �2 g

where the e: are root vectors such that (e: , e;)=$:, &; . Let u # �2 h and
set r=a&u. Then it is well known that r satisfies the modified Yang�
Baxter equation [3, 20] and that therefore the tensor ?(g)=(lg)

*
r&(rg)

*
r

furnishes G with the structure of a Poisson Lie group, see [13, 22, 30] ((lg)
*

and (rg)
*

are the differentials of the left and right translation by g # G).
We may write u=�1�i, j�n uijhi�hj for a skew-symmetric n_n matrix

[uij]. The element u can be considered either as an alternating form on h*
or a linear map u # End h by the formula

\x # h, u(x)=:
i, j

ui, j (x, hi )hj .
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The Manin triple associated to the Poisson Lie structure on G given by r
is described as follows. Set u\=u\I # End h and define

�: h � t, �(x)=&(u&(x), u+(x)), a=�(h), gr=a�u+.

Following [30] one sees easily that the associated Manin triple is (d, g, gr)
where g is identified with the diagonal copy inside d. Then the corre-
sponding triple of Lie groups is (D, G, Gr), where A=exp(a) is an analytic
torus and Gr=AU+. Notice that gr is a solvable, but not in general
algebraic, Lie subalgebra of d.

The following is an easy consequence of the definition of a and the
identities u++u&=2u, u+&u&=2I :

a=[(x, y ) # t | x+y=u( y&x)]=[(x, y ) # t | u+(x)=u&( y )]. (1.1)

Recall that exp: h � H is surjective; let LH be its kernel. We shall denote
by X(K ) the group of characters of an algebraic torus K. Any / # X(H ) is
given by /(exp x)=exp d/(x), x # h, where d/ # h* is the differential of /.
Then

X(H )$L=LH% :=[! # h* | !(LH )/2i?Z].

One can show that L has a basis of dominant weights.
Recall that if G� is a connected simply connected algebraic group with Lie

algebra g and maximal torus H� , we have

LH� =P%=�
n

j=1

2i?Zhj , X(H� )$P, Q�L�P, ?1(G)=LH�P%$P�L.

Notice that LH�P% is a finite group and exp u(LH ) is a subgroup of H. We
set

10=[(a, a) # T | a2=1], 2=[(a, a) # T | a2 # exp u(LH )],

1=A & H=[(a, a) # T | a=exp x=exp y, x+y=u( y&x)].

It is easily seen that 1=G & Gr .

Proposition 1.1. We have 2=1 } 10 .

Proof. We obviously have 10/2. Let (exp h, exp h) # 1, h # h. By
definition there exist (x, y ) # a, l1 , l2 # LH such that

x=h+l1 , y=h+l2 , y+x=u( y&x).

Hence y+x=2h+l1+l2=u(l2&l1) and (exp h)2=exp 2h=exp u(l2&l1).
This shows (exp h, exp h) # 2. Thus 1 } 10�2.
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Let (a, a) # 2, a=exp h, h # h. From a2 # exp u(LH) we get l, l$ # LH

such that 2h=u(l$)+l. Set x=h&l�2&l$�2, y=h+l$�2&l�2. Then
y+x=u( y&x) and we have exp(&l�2&l$�2)=exp(l$�2&l�2), since
l$ # LH . If b=exp(&l$�2+l�2) we obtain exp x=exp y=ab&1, hence
(a, a)=(exp x, exp y ) } (b, b) # 1 } 10 . Therefore 1 } 10=2. K

Remark. When u is ``generic'' 10 is not contained in 1. For example,
take G to be SL(3, C) and u=:(h1�h2&h2�h1) with : � Q.

Considered as a Poisson variety, G decomposes as a disjoint union of
symplectic leaves. Denote by Symp G the set of these symplectic leaves.
Since r is H-invariant, translation by an element of H is a Poisson
morphism and hence there is an induced action of H on Symp G. The key
to classifying the symplectic leaves is the following result, cf. [22, 30].

Theorem 1.2. The symplectic leaves of G are exactly the connected com-
ponents of G & GrxGr for x # G.

Remark that A, 1 and Gr are in general not closed subgroups of D. This
has for consequence that the analysis of Symp G made in [15, Appendix A]
in the case u=0 does not apply in the general case.

Set Q=HGr=TU +. Then Q is a Borel subgroup of D and, recalling that
the Weyl group associated to the pair (G, T ) is W_W, the corresponding
Bruhat decomposition yields D=�w # W_W QwQ=�w # W_W QwGr . There-
fore any symplectic leaf is contained in a Bruhat cell QwQ for some
w # W_W.

Definition. A leaf A is said to be of type w if A/QwQ. The set of
leaves of type w is denoted by Sympw G.

For each w # W_W set w=(w+ , w&), w\ # W, and fix a representative
w* in the normaliser of T. One shows as in [15, Appendix A] that
G & Qw* Gr{<, for all w # W_W ; hence Sympw G{< and G & Grw* Gr

{<, since QwQ=�h # H hGrw* Gr .
The adjoint action of D on itself is denoted by Ad. Set

U &
w =Ad w(U ) & U+, A$w=[a # A | aw* Gr=w* Gr],

T$w=[t # T | tGr|* Gr=Gr w* Gr], H$w=H & T$w .

Recall that U &
w is isomorphic to C l(w) where l(w)=l(w+)+l(w&) is the

length of w. We set s(w)=dim H$w .

Lemma 1.3. (i) A$w=Ad w(A) & A and T$w=A } Ad w(A)=AH$w .

(ii) We have Lie(A$w)=a$w=[�(x) | x # Ker(u&w&1
& u+&u+w&1

+ u&)]
and dim a$w=n&s(w).
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Proof. (i) The first equality is obvious and the second is an easy con-
sequence of the bijection, induced by multiplication, between U &

w _T_U+

and QwQ=QwGr .

(ii) By definition we have a$w=[�(x) | x # h, w&1(�(x)) # a]. From
(1.1) we deduce that �(x) # a$w if and only if u+w&1

+ (&u&(x))=
u& w&1

& (&u+(x)).
It follows from (i) that dim T$w=n+dim H$w=2n&dim A$w , hence

dim a$w=n&s(w). K

Recall that u # End h is an alternating bilinear form on h*. It is easily
seen that \*, + # h*, u(*, +)=&( tu(*), +), where tu # End h* is the trans-
pose of u.

Notation. Set tu=&8, 8\=8\I, _(w)=8&w&8+&8+w+8& ,
where w\ # W is considered as an element of End h*.

Observe that tu\=&8� and that

u(*, +)=(8*, +), for all *, + # h*. (1.2)

Furthermore, since the transpose of w\ # End h* is w&1
\ # End h, we have

t_(w)=u& w&1
& u+&u+w&1

+ u& . Hence by Lemma 1.3

s(w)=codim Kerh* _(w), dim A$w=dim Kerh* _(w). (1.3)

1.3. The Algebraic Case. As explained in 1.1 the Lie algebra gr is in
general not algebraic. We now describe its algebraic closure. Recall that a
Lie subalgebra m of d is said to be algebraic if m is the Lie algebra of a
closed (connected) algebraic subgroup of D.

Definition. Let m be a Lie subalgebra of d. The smallest algebraic Lie
subalgebra of d containing m is called the algebraic closure of m and will
be denoted by m~ .

Recall that gr=a�u+. Notice that u+ is an algebraic Lie subalgebra of
d; hence it follows from [4, Corollary II.7.7] that g~ r=a~ �u+. Thus we
only need to describe a~ . Since t is algebraic we have a~ �t and we are
reduced to characterize the algebraic closure of a Lie subalgebra of
t=Lie(T ).

The group T=H_H is an algebraic torus (of rank 2n). The map / [ d/
identifies X(T ) with L_L.

Let k/t be a subalgebra. We set

k==[% # X(T ) | k/Kert %].

The following proposition is well known. It can for instance be deduced
from the results in [4, II.8].
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Proposition 1.4. Let k be a subalgebra of t. Then k� =�% # k = Kert %
and k� is the Lie algebra of the closed connected algebraic subgroup K� =
�% # k = KerT %.

Corollary 1.5. We have

a==[(*, +) # X(T) | 8+*+8& +=0],

a~ = ,
(*, +) # a=

Kert (*, +), A� = ,
(*, +) # a=

KerT (*, +).

Proof. From the definition of a=�(h) we obtain

(*, +) # a= � \x # h, *(&u&(x))++(&u+(x))=0.

The first equality then follows from tu\=&8� . The remaining assertions
are consequences of Proposition 1.4. K

Set

hQ=Q�Z P%=�
n

i=1

Qhi , h*Q=Q�Z P=�
n

i=1

Q|i

a=
Q=Q�Z a==[(*, +) # h*Q_h*Q | 8+*+8&+=0].

Observe that dimQ a=
Q=rkZ a= and that, by Corollary 1.5,

dim a~ =2n&dimQ a=
Q . (1.4)

Lemma 1.6. a=
Q$[& # h*Q | 8& # h*Q].

Proof. Define a Q-linear map

[& # h*Q | 8& # h*Q] � a=
Q , & [ (&8&&, 8+ &).

It is easily seen that this provides the desired isomorphism. K

Theorem 1.7. The following assertions are equivalent:

(i) gr is an algebraic Lie subalgebra of d;

(ii) u(P_P)/Q;

(iii) _m # N*, 8(mP)/P;

(iv) 1 is a finite subgroup of T.
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Proof. Recall that gr is algebraic if and only if a=a~ , i.e. n=dim a=
dim a~ . By (1.4) and Lemma 1.6 this is equivalent to 8(P)/h*Q=Q�Z P.
The equivalence of (i) to (iii) then follows from the definitions, (1.2) and
the fact that tu=&8.

To prove the equivalence with (iv) we first observe that, by Proposi-
tion 1.1, 1 is finite if and only if exp u(LH ) is finite. Since LH�P% is finite
this is also equivalent to exp u(P%) being finite. This holds if and only if
u(mP%)/P% for some m # N*. Hence the result. K

When the equivalent assertions of Theorem 1.7 hold, we shall say that
we are in the algebraic case or that u is algebraic. In this case all the sub-
groups previously introduced are closed algebraic subgroups of D and we
may define the algebraic quotient varieties D�Gr and G� =G�1. Let p be the
projection G � G� . Observe that G� is open in D�Gr and that the Poisson
bracket of G passes to G� . We set

Cw* =Gr w* Gr�Gr , Cw=QwGr�Gr= .
h # H

hCw*

Bw* =Cw* & G� , Bw=Cw & G� , Aw=p&1(Bw).

The next theorem summarizes the description of the symplectic leaves in
the algebraic case.

Theorem 1.8. 1. Sympw G { < for all w # W_W, Symp G =
�w # W_W Sympw G.

2. Each symplectic leaf of G� , resp. G, is of the form hBw* , resp. hAw* ,
for some h # H and w # W_W, where Aw* denotes a fixed connected compo-
nent of p&1(Bw* ).

3. Cw* $Aw_U &
w where Aw=A�A$w is a torus of rank s(w). Hence

dim Cw* =dim Bw* =dim Aw* =l(w)+s(w) and H�StabH Aw* is a torus of rank
n&s(w).

Proof. The proofs are similar to those given in [15, Appendix A] for
the case u=0. K

2. DEFORMATIONS OF BIGRADED HOPF ALGEBRAS

2.1. Bigraded Hopf Algebras and Their Deformations. Let L be an
(additive) abelian group. We will say that a Hopf algebra (A, i, m, =, 2, S )
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over a field K is an L-bigraded Hopf algebra if it is equipped with an L_L
grading

A= �
(*, +) # L_L

A*, +

such that

(1) K/A0, 0 , A*, + A*$, +$/A*+*$, +++$ (i.e. A is a graded algebra)

(2) 2(A*, +)/�& # L A*, &�A&&, +

(3) *{&+ implies =(A*, +)=0

(4) S(A*, +)/A+, * .

For sake of simplicity we shall often make the following abuse of notation:
If a # A*, + we will write 2(a)=�& a*, &�a&&, + , a*, & # A*, & , a&&, + # A&&, + .

Let p: L_L � K* be an antisymmetric bicharacter on L in the sense
that p is multiplicative in both entries and that, for all *, + # L,

(1) p(+, +)=1; (2) p(*, +)=p(+, &*).

Then the map p~ : (L_L)_(L_L) � K* given by

p~ ((*, +), (*$, +$))=p(*, *$) p(+, +$)&1

is a 2-cocycle on L_L such that p~ (0, 0)=1.
One may then define a new multiplication, mp , on A by

\a # A*, + , b # A*$, +$ , a } b=p(*, *$) p(+, +$)&1 ab. (2.1)

Theorem 2.1. Ap :=(A, i, mp , =, 2, S ) is an L-bigraded Hopf algebra.

Proof. The proof is a slight generalization of that given in [2]. It is well
known that Ap=(A, i, mp) is an associative algebra. Since 2 and = are
unchanged, (A, 2, =) is still a coalgebra. Thus it remains to check that =, 2
are algebra morphisms and that S is an antipode.

Let x # A*, + and y # A*$, +$ . Then

=(x } y )=p(*, *$) p(+, +$)&1 =(xy )

=p(*, *$) p(+, +$)&1 $*, &+$*$, &+$=(x) =( y )

=p(*, *$) p(&*, &*$)&1 =(x) =( y)

==(x) =( y )
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So = is a homomorphism. Now suppose that 2(x)=� x*, &�x&&, + and
2( y )=� y*$, &$�y&&$, +$ . Then

2(x) } 2( y )=\: x*, &�x&&, ++ } \: y*$, &$ �y&&$, +$+
=: x*, & } y*$, &$�x&&, + } y&&$, +$

=p(*, *$) p(+, +$)&1 : p(&, &$)&1 p(&&, &&$) x*, & y*$, &$

�x&&, + y&&$, +$

=p(*, *$) p(+, +$)&1 2(xy )

=2(x } y )

So 2 is also a homomorphism. Finally notice that

: S(x(1)) } x(2)=: S(x*, &) } x&&, +

=: p(&, &&) p(*, +)&1 S(x*, &)x&&, +

=p(*, +)&1 : S(x*, &) } x&&, +

=p(*, +)&1 =(x)

==(x)

A similar calculation shows that � x(1) } S(x(2))==(x). Hence S is indeed
an antipode. K

Remark. The isomorphism class of the algebra Ap depends only on the
cohomology class [ p~ ] # H 2(L_L, K*), [2, Section 3].

Remark. Theorem 2.1 is a particular case of the following general con-
struction. Let (A, i, m) be a K-algebra. Assume that F # GLK (A�A) is
given such that (with the usual notation)

(1) F(m�1)=(m�1) F23 F13 ; F(1�m)=(1�m) F12F13

(2) F(i�1)=i�1; F(1� i )=1� i
(3) F12F13F23=F23F13F12 , i.e. F satisfies the Quantum Yang�Baxter

Equation.

Set mF=m b F. Then (A, i, mF ) is a K-algebra.

Assume furthermore that (A, i, m, =, 2, S ) is a Hopf algebra and that

(4) F : A�A � A�A is morphism of coalgebras

(5) mF(S�1)2=m(S�1)2; mF(1�S )2=m(1�S )2.
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Then AF :=(A, i, mF , =, 2, S ) is a Hopf algebra. The proofs are
straightforward verifications and are left to the interested reader.

When A is an L-bigraded Hopf algebra and p is an antisymmetric
bicharacter as above, we may define F # GLK(A�A) by

\a # A*, + , \b # A*$, +$ , F(a�b)=p(*, *$) p(+, +$)&1 a�b.

It is easily checked that F satisfies the conditions (1) to (5) and that the
Hopf algebras AF and Ap coincide.

A related construction of the quantization of a monoidal category is
given in [24].

2.2. Diagonalizable Subgroups of R(A). In the case where L is a finitely
generated group and A is a finitely generated algebra (which is the case for
the multiparameter quantum groups considered here), there is a simple
geometric interpretation of L-bigradings. They correspond to algebraic
group maps from the diagonalizable group L6 to the group of one dimen-
sional representations of A.

Assume that K is algebraically closed. Let (A, i, m, =, 2, S ) be a Hopf
K-algebra. Denote by R(A) the multiplicative group of one dimensional
representations of A, i.e. the character group of the algebra A. Notice that
when A is a finitely generated K-algebra, R(A) has the structure of an
affine algebraic group over K, with algebra of regular functions given by
K[R(A)]=A�J where J is the semi-prime ideal �h # R(A) Ker h. Recall that
there are two natural group homomorphisms l, r: R(A) � AutK(A) given
by

lh(x)=: h(S(x(1))) x (2)=: h&1(x(1)) x(2)

rh(x)=: x(1) h(x (2)).

Theorem 2.2. Let A be a finitely generated Hopf algebra and let L be a
finitely generated abelian group. Then there is a natural bijection between:

(1) L-bigradings on A;

(2) Hopf algebra maps A � KL (where KL denotes the group
algebra);

(3) morphisms of algebraic groups L6 � R(A).

Proof. The bijection of the last two sets of maps is well-known. Given
an L-bigrading on A, we may define a map ,: A � KL by ,(a*, +)==(a) u* .
It is easily verified that this is a Hopf algebra map. Conversely, given a
map L6 � R(A) we may construct an L bigrading using the following
result.
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Theorem 2.3. Let (A, i, m, =, 2, S ) be a finitely generated Hopf algebra
over K. Let H be a closed diagonalizable algebraic subgroup of R(A). Denote
by L the (additive) group of characters of H and by ( &, &): L_H � K*
the natural pairing. For (*, +) # L_L set

A*, +=[x # A | \h # H, lh(x)=(*, h) x, rh(x)=( +, h) x].

Then (A, i, m, =, 2, S ) is an L-bigraded Hopf algebra.

Proof. Recall that any element of A is contained in a finite dimensional
subcoalgebra of A. Therefore the actions of H via r and l are locally finite.
Since they commute and H is diagonalizable, A is L_L diagonalizable.
Thus the decomposition A=�(*, +) # L_L A*, + is a grading.

Now let C be a finite dimensional subcoalgebra of A and let [c1 , ..., cn]
be a basis of H_H weight vectors. Suppose that 2(ci )=� tij�cj . Then
since ci=� tij =(cj ), the tij span C and it is easily checked that 2(tij )=
� tik�tkj . Since lh(ci )=� h&1(tij ) cj for all h # H and the ci are weight
vectors, we must have that h(tij )=0 for i{j. This implies that

lh(tij )=h&1(tii ) tij , rh(tij )=h(tjj ) tij

and that the map *i (h)=h(tii ) is a character of H. Thus tij # A&*i , *j and
hence

2(tij )=: tik� tkj # : A&*i , * k �A&*k , *j .

This gives the required condition on 2. If *++{0 then there exists an
h # H such that (&*, h) {( +, h). Let x # A*, + . Then

( +, h) =(x)==(rh(x))=h(x)==(lh &1 (x))=(&*, h) =(x).

Hence =(x)=0. The assertion on S follows similarly. K

Remark. In particular, if G is any algebraic group and H is a
diagonalizable subgroup with character group L, then we may deform the
Hopf algebra K[G] using an antisymmetric bicharacter on L. Such defor-
mations are algebraic analogs of the deformations studied by Rieffel in
[27].

2.3. Deformations of Dual Pairs. Let A and U be a dual pair of Hopf
algebras. That is, there exists a bilinear pairing ( | ): A_U � K such that:

(1) (a | 1)==(a); (1 | u) ==(u)

(2) (a | u1u2) =� (a(1) | u1)(a(2) | u2)
(3) (a1a2 | u) =� (a1 | u(1))(a2 | u(2))
(4) (S(a) | u) =(a | S(u)) .
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Assumed that A is bigraded by L, U is bigraded by an abelian group Q
and that there is a homomorphism 2 : Q � L such that

(A*, + | U#, $ ){0 only if *++=#$ +$2 . (2.2)

In this case we will call the pair [A, U] an L-bigraded dual pair. We shall
be interested in Sections 3 and 4 in the case where Q=L and 2 =Id.

Remark. Suppose that the bigradings above are induced from sub-
groups H and H2 of R(A) and R(U) respectively and that the map Q � L
is induced from a map h [ h2 from H to H2 . Then the condition on the pair-
ing map be restated as the fact that the form is ad-invariant in the sense
that for all a # A, u # U and h # H,

(adh a | u)=(a | adh2 u)
where adh a=rh lh(a).

Theorem 2.4. Let [A, U] be the bigraded dual pair as described above.
Let p be an antisymmetric bicharacter on L and let p$ be the induced
bicharacter on Q. Define a bilinear form ( | ) p : Ap&1_Up$ � K by

(a*, + | u#, $) p=p(*, #$ )&1 p(+, $2 )&1 (a*, + | u#, $ ).

Then ( | ) p is a Hopf pairing and [Ap&1 , Up$ ] is an L-bigraded dual pair.

Proof. Let a # A*, + and let ui # U# i , $ i , i=1, 2. Then

(a | u1u2)p=p(#$ 1 , #$ 2) p($2 1 , $2 2)&1 p(*, #$ 1+#$ 2)&1

_p(+, $2 1+$2 2)&1 (a | u1 u2).

Suppose that 2(a)=�& a*, &�a&&, + . Then by the assumption on the
pairing, the only possible value of & for which (a*, & | u1)(a&&, + | u2) is
non-zero is &=#$ 1+$2 1&*=+&#$ 2&$2 2 . Therefore

(a(1) | u1) p (a(2) | u2) =p(*, #$ 1)&1 p(&, $2 1)&1 p(&&, #$ 2)&1

_p(+, $2 2)&1 (a(1) | u1)(a(2) | u2)

=p(*, #$ 1)&1 p(+&#$ 2&$2 2 , $2 1)&1 p(*&#$ 1&$2 1 , #$ 2)&1

_p(+, $2 2)&1 (a(1) | u1)(a(2) | u2)

=p(#$ 1 , #$ 2) p($2 1 , $2 2)&1 p(*, #$ 1+#$ 2)&1

_p(+, $2 1+$2 2)&1 (a | u1u2)

=(a | u1 u2)p .

This proves the first axiom. The others are verified similarly. K
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Corollary 2.5. Let [A, U, p] be as in Theorem 2.4. Let M be a right
A-comodule with structure map \: M � M�A. Then M is naturally endowed
with U and Up$ left module structures, denoted by (u, x) [ ux and (u, x) [
u } x respectively. Assume that M=�* # L M* for some K-subspaces such
that \(M*)/�& M&&�A&, * . Then we have U#, $M*/M*&#$ &$2 and the two
structures are related by

\u # U#, $ , \x # M* , u } x=p(*, #$ &$2 ) p(#$ , $2 ) ux.

Proof. Notice that the coalgebras A and Ap&1 are the same. Set
\(x)=� x(0)�x(1) for all x # M. Then it is easily checked that the follow-
ing formulas define the desired U and Up$ module structures:

\u # U, ux=: x(0)(x(1) | u) , u } x=: x(0)(x (1) | u) p .

When x # M* and u # U#, $ the additional condition yields

u } x=: x(0) p(&, &#$ ) p(*, &$2 )(x(1) | u).

But (x(1) | u) {0 forces &&=*&#$ &$2 , hence u } x=p(*, #$ &$2 ) p(#$ , $2 )_
� x(0)(x (1) | u) =p(*, #$ &$2 ) p(#$ , $2 )ux. K

Denote by Aop the opposite algebra of the K-algebra A. Let
[Aop, U, ( | )] be a dual pair of Hopf algebras. The double A � U is
defined as follows, [10, 3.3]. Let I be the ideal of the tensor algebra
T(A�U ) generated by elements of type

1&1A , 1&1U (a)

xx$&x�x$, x, x$ # A, yy$&y�y$, y, y$ # U (b)

x(1) �y(1) (x(2) | y(2)) &(x(1) | y(1)) y(2) �x(2) , x # A, y # U (c)

Then the algebra A � U :=T(A�U )�I is called the Drinfeld double of
[A, U]. It is a Hopf algebra in a natural way:

2(a�u)=(a(1)�u(1))� (a(2) �u(2)),

=(a�u)==(a) =(u), S(a�u)=(S(a)�1)(1�S(u)).

Notice for further use that A � U can equally be defined by relations of
type (a), (b), (cx, y ) or (a), (b), (cy, x), where we set

x�y=(x(1) | y(1))(x (3) | S( y (3))) y(2)�x(2) , x # A, y # U (cx, y )

y�x=(x(1) | S( y(1)))(x(3) | y(3)) x (2) �y(2) , x # A, y # U (cy, x)
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Theorem 2.6. Let [Aop, U] be an L-bigraded dual pair, p be an
antisymmetric bicharacter on L and p$ be the induced bicharacter on Q. Then
A � U inherits an L-bigrading and there is a natural isomorphism of
L-bigraded Hopf algebras:

(A � U )p$Ap � Up$ .

Proof. Recall that as a K-vector space A � U identifies with A�U.
Define an L-bigrading on A � U by

\:, ; # L, (A � U ):, ;= :
*&#$ =:, +&$2 =;

A*, +�U#, $ .

To verify that this yields a structure of graded algebra on A � U it suffices
to check that the defining relations of A � U are homogeneous. This is clear
for relations of type (a) or (b). Let x*, + # A*, + and y#, $ # U#, $ . Then the
corresponding relation of type (c) becomes

:
&, !

x*, & y#, ! (x&&, + | y&!, $) &(x*, + | y#, !) y&!, $x&&, + . (V)

When a term of this sum is non-zero we obtain &&++=&!2 +$2 , *+&=
#$ +!2 . Hence *&#$ =&&+!2 =&++$2 , which shows that the relation (V) is
homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1 hold.
Hence A � U is an L-bigraded Hopf algebra.

Notice that (Ap)op$(Aop)p&1 , so that Theorem 2.4 defines a suitable
pairing between (Ap)op and Up$ . Thus Ap � Up$ is defined. Let , be the
natural surjective homomorphism from T(A�U ) onto Ap � Up$ . To check
that , induces an isomorphism it again suffices to check that , vanishes on
the defining relations of (A � U )p . Again, this is easy for relations of type
(a) and (b). The relation (V) says that

p(*, #$ ) p(&&, !2 )(x&&, + | y&!, $) x*, & } y#, !

&p(!2 , &) p($2 , &+)(x*, + | y#, !) y&!, $ } x&&, +=0

in (A � U )p . Multiply the left hand side of this equation by p(*, &#$ ) p(+, &$2 )
and apply ,. We obtain the following expression in Ap � Up$ :

p(&&, $2 ) p(+, &$2 )(x&&, + | y&!, $) x*, & y#, !

&p(*, &#$ ) p(&, &!2 )(x*, + | y#, !) y&!, $x&&, +

which is equal to

(x&&, + | y&!, $ ) p x*, & y#, !&(x*, + | y#, !) p y&!, $x&&, + .

But htis is a defining relation of type (c) in Ap � Up$ , hence zero.
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It remains to see that , induces an isomorphism of Hopf algebras, which
is a straightforward consequence of the definitions. K

2.4. Cocycles. Let L be, in this section, an arbitrary free abelian group
with basis [|1 , ..., |n] and set h*=C�Z L. We freely use the terminology
of [2]. Recall that H2(L, C*) is in bijection with the set H of multi-
plicatively antisymmetric n_n-matrices #=[#ij ]. This bijection maps the
class [c] onto the matrix defined by #ij=c(|i , |j )�c(|j , |i ). Furthermore
it is an isomorphism of groups with respect to component-wise multiplica-
tion of matrices.

Remark. The notation is as in 2.1. We recalled that the isomorphism
class of the algebra Ap depends only on the cohomology class [ p~ ] #
H2(L_L, K*). Let # # H be the matrix associated to p and #&1 its inverse
in H. Notice that the multiplicative matrix associated to [ p~ ] is then
#~ =[ #

1
1

# &1] in the basis given by the (|i , 0), (0, |i ) # L_L. Therefore the
isomorphism class of the algebra Ap depends only on the cohomology class
[ p] # H 2(L, K*).

Let � # C*. If x # C we set qx=exp(&x��2). In particular q=exp(&��2).
Let u: L_L � C be a complex alternating Z-bilinear form. Define

p: L_L � C*, p(*, +)=exp \&
�

4
u(*, +)+=q(1�2) u(*, +). (2.3)

Then it is clear that p is an antisymmetric bicharacter on L.
Observe that, since h*=C�Z L, there is a natural isomorphism of additive

groups between �2 h and the group of complex alternating Z-bilinear forms on
L, where h is the C-dual of h*. Set Z�=[u # �2 h | u(L_L)/(4i?��)Z].

Theorem 2.7. There are isomorphisms of abelian groups:

H2(L, C*)$H$�2 h�Z� .

Proof. The first isomorphism has been described above. Let
#=[#ij] # H and choose uij , 1�i< j �n such that #ij=exp(&(��2) uij ).
We can define u # �2 h by setting u(|i , |j ) = uij , 1 � i< j � n. It is
then easily seen that one can define an injective morphism of abelian
groups

.: H2(L, C*)$H � �2 h�Z� , .(#)=[u]

68 HODGES, LEVASSEUR, AND TORO



File: 607J 161218 . By:CV . Date:21:03:97 . Time:13:34 LOP8M. V8.0. Page 01:01
Codes: 2456 Signs: 1423 . Length: 45 pic 0 pts, 190 mm

where [u] is the class of u. If u # �2 h, define a 2-cocycle p by the formula
(2.3). Then the multiplicative matrix associated to [ p] # H2(L, C*) is given
by

#ij=p(|i , |j )�p(|j , |i )=p(|i , |j )
2=exp \&

�

2
u(|i , |j )+ .

This shows that [u]=.([#ij]); thus . is an isomorphism. K

We list some consequences of Theorem 2.7. We denote by [u] an element
of �2 h�Z� and we set [ p]=.&1([u]). We have seen that we can define a
representative p by the formula (2.3).

1. [ p] of finite order in H2(L, C*) � u(L_L)/(i?��)Q, and q root
of unity � � # i?Q.

2. Notice that u=0 is algebraic, whether q is a root of unity or not.
Assume that q is a root of unity; then we get from 1 that

[ p] of finite order � u is algebraic.

3. Assume that q is not a root of unity and that u{0. Then [ p] of
finite order implies (0){u(L_L)/(i?��)Q. This shows that

0{u algebraic O [ p] is not of finite order.

Definition. The bicharacter p: (*, +) [ q(1�2) u(*, +) is called q-rational if
u # �2 h is algebraic.

3. MULTIPARAMETER QUANTUM GROUPS

3.1. One-Parameter Quantized Enveloping Algebras. The notation is as
in Sections 1 and 2. In particular we fix a lattice L such that Q/L/P and
we denote by G the connected semi-simple algebraic group with maximal
torus H such that Lie (G )=g and X(H )$L.

Let q # C* and assume that q is not a root of unity. Let � # C"i?Q such
that q=exp(&��2) as in 2.4. We set

qi=qdi , q̂i=(qi&q&1
i )&1, 1�i�n.

Denote by U0 the group algebra of X(H ), hence

U0=C[k* ; * # L], k0=1, k*k+=k*++ .
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Set ki=k:i , 1�i�n. The one parameter quantized enveloping algebra
associated to this data, cf. [33], is the Hopf algebra

Uq(g)=U 0[ei , fi ; 1�i�n]

with defining relations:

k*ejk&1
* =q(*, :j )ej , k* fj k&1

* =q&(*, :j ) fj

ei fj&fjei=$ij q̂i (ki&k&1
i )

:
1&a ij

k=0

(&1)k _1&aij

k &qi

e1&a ij&k
i ejek

i =0, if i{j

:
1&aij

k=0

(&1)k _1&aij

k &qi

f 1&a ij&k
i fj f k

i =0, if i{j

where [m]t=(t&t&1) } } } (tm&t&m) and [ m
k ]t=[m] t�[k] t [m&k]t . The

Hopf algebra structure is given by

2(k*)=k* �k* , =(k*)=1, S(k*)=k&1
*

2(ei )=ei �1+ki�ei , 2( fi )=fi�k&1
i +1� fi

=(ei )==( fi )=0, S(ei )=&k&1
i ei , S( fi )=&fi ki .

We define subalgebras of Uq(g) as follows

Uq(n+)=C[ei , ; 1�i�n], Uq(n&)=C[ fi , ; 1�i�n]

Uq(b+)=U0[ei , ; 1�i�n], Uq(b&)=U0[ fi , ; 1�i�n].

For simplicity we shall set U\=Uq(n\). Notice that U 0 and Uq(b\) are
Hopf subalgebras of Uq(g). Recall [23] that the multiplication in Uq(g)
induces isomorphisms of vector spaces

Uq(g)$U &�U0 �U+$U +�U0�U &.

Set Q+=�n
i=1 N:i and

\; # Q+, U \
; =[u # U\ | \* # L, k*uk&1

* =q(*, \;)u].

Then one gets: U\=�; # Q+
U \

\; .

3.2. The Rosso�Tanisaki�Killing Form. Recall the following result, [28, 33].

Theorem 3.1. 1. There exists a unique non degenerate Hopf pairing

( | ): Uq(b+)op�Uq(b&) � C
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satisfying the following conditions:

(i) (k* | k+)=q&(*, +) ;

(ii) \* # L, 1�i�n, (k* | fi ) =(ei | k*) =0;

(iii) \1�i, j�n, (ei | fj )=&$ij q̂i .

2. If #, ' # Q+ , (U +
# | U &

&'){0 implies #='.

The results of Section 2.3 then apply and we may define the associated
double:

Dq(g)=Uq(b+) � Uq(b&).

It is well known, e.g. [10], that

Dq(g)=C[s* , t* , ei , fi ; * # L, 1�i�n]

where s*=k*�1, t*=1�k* , ei=ei�1, fi=1� fi . The defining relations
of the double given in Section 2.3 imply that

s*t+=t+s* , ei fj&fjei=$ij q̂i(s:i&t&1
:i

)

s* ejs&1
* =q(*, : j )ej , t* ej t&1

* =q(*, :j ) ej ,

t* fj t&1
* =q&(*, :)fj .

s* fj s&1
* =q&(*, : j ) fj ,

It follows that

Dq(g)�(s*&t* ; * # L)[Uq(g), ei [ ei , fi [ fi , s* [ k* , t* [ k* .

Observe that this yields an isomorphism of Hopf algebras. The next
proposition collects some well known elementary facts.

Proposition 3.2. 1. Any finite dimensional simple Uq(b\)-module is
one dimensional and R(Uq(b\)) identifies with H via

\h # H, h(k*)=(*, h) , h(ei )=0, h( fi )=0.

2. R(Dq(g)) identifies with H via

\h # H, h(s*)=(*, h) , h(t*)=(*, h)&1, h(ei )=h( fi )=0.

Corollary 3.3. 1. [Uq(b
+)op, Uq(b&)] is an L-bigraded dual pair.

We have

k* # Uq(b\)&*, * , ei # Uq(b+)&:i , 0 , fi # Uq(b&)0, &: i .
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2. Dq(g) is an L-bigraded Hopf algebra where

s* # Dq(g)&*, * , t* # Dq(g)*, &* , ei # Dq(g)&:i , 0 , fi # Dq(g)0, :i .

Proof. 1. Observe that for all h # H,

lh(k*)=h&1(k*)=(&*, h) k* , rh(k*)=h(k*)=(*, h) k* ,

lh(ei )=h&1(ki )ei=(&:i , h) ei , rh(ei )=ei ,

lh( fi )=fi , rh( fi )=h(k&1
i ) fi=(&:i , h) fi .

It is then clear that U +
&#, 0=U +

# and U &
0, &#=U &

&# for all # # Q+. The
claims then follow from these formulas, Theorem 2.3, Theorem 3.1, and the
definitions.

2. The fact that Dq(g) is an L-bigraded Hopf algebra follows from
Theorem 2.3. The assertions about the L_L degree of the generators is
proved by direct computation using Proposition 3.2. K

Remark. We have shown in Theorem 2.6 that, as a double, Dq(g)
inherits an L-bigrading given by:

Dq(g):, ;= :
*&#=:, +&$=;

Uq(b+)*, + �Uq(b&)#, $ .

It is easily checked that this bigrading coincides with the bigrading
obtained in the above corollary by means of Theorem 2.3.

3.3. One-Parameter Quantized Function Algebras. Let M be a left
Dq(g)-module. The dual M* will be considered in the usual way as a left
Dq(g)-module by the rule: (uf )(x)=f (S(u) ), x # M, f # M*, u # Dq(g).
Assume that M is an Uq(g)-module. An element x # M is said to have
weight + # L if k*x=q(*, +) x for all * # L; we denote by M+ the subspace of
elements of weight +.

It is known, [13], that the category of finite dimensional (left) Uq(g)-
modules is a completely reducible braided rigid monoidal category. Set
L+=L & P+ and recall that for each 4 # L+ there exists a finite dimen-
sional simple module of highest weight 4, denoted by L(4), cf. [29] for
instance. One has L(4)*$L(w04) where w0 is the longest element of W.

Let Cq be the subcategory of finite dimensional Uq(g)-modules consisting
of finite direct sums of L(4), 4 # L+. The category Cq is closed under ten-
sor products and the formation duals. Notice that Cq can be considered as
a braided rigid monoidal category of Dq(g)-modules where s* , t* acts as k*

on an object of Cq .
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Let M # obj(Cq), then M=�+ # L M+ . For f # M*, v # M we define the
coordinate function cf, v # Uq(g)* by

\u # Uq(g), cf, v(u)=( f, uv)

where ( , ) is the duality pairing. Using the standard isomorphism
(M�N )*$N*�M* one has the following formula for multiplication,

cf, vcf $, v$=cf $� f, v�v$ .

Definition. The quantized function algebra Cq[G] is the restricted
dual of Cq : that is to say

Cq[G]=C[cf, v ; v # M, f # M*, M # obj(Cq)].

The algebra Cq[G] is a Hopf algebra; we denote by 2, =, S the comulti-
plication, counit and antipode on Cq[G]. If [v1 , ..., vs ; f1 , ..., fs] is a dual
basis for M # obj(Cq) one has

2(cf, v)=:
i

cf, vi �cfi , v , =(cf, v)=( f, v) , S(cf, v)=cv, f . (3.1)

Notice that we may assume that vj # M&j , fj # M*&& j . We set

C(M)=C(cf, v ; f # M*, v # M) , C(M)*, +=C(cf, v ; f # M**, v # M+).

Then C(M ) is a subcoalgebra of Cq[G] such that C(M) =
�(*, +) # L_L C(M)*, + . When M=L(4) we abbreviate the notation to
C(M)=C(4). It is then classical that

Cq[G]= �
4 # L+

C(4).

Since Cq[G]/Uq(g)* we have a duality pairing

( , ): Cq[G]_Dq(g) � C.

Observe that there is a natural injective morphism of algebraic groups

H � R(Cq[G]), h(cf, v)=( +, h) =(cf, v) for all v # M+ , M # obj(Cq).

The associated automorphisms rh , lh # Aut(Cq[G]) are then described by

\cf, v # C(M )*, + , rh(cf, v)=( +, h) cf, v , lh(cf, v)=(*, h) cf, v .
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Define

\(*, +) # L_L,

Cq[G]*, +=[a # Cq[G] | rh(a)=( +, h) a, lh(a)=(*, h) a].

Theorem 3.4. The pair of Hopf algebras [Cq[G], Dq(g)] is an L-bigraded
dual pair.

Proof. It follows from (3.1) that Cq[G] is an L-bigraded Hopf algebra.
The axioms (1) to (4) of 2.3 are satisfied by definition of the Hopf algebra
Cq[G]. We take 2 to be the identity map of L. The condition (2.2) is con-
sequence of Dq(g)#, $ M+/M+&#&$ for all M # Cq . To verify this inclusion,
notice that

ej # Dq(g)&:j , 0 , fj # Dq(g)0, :j , ejM+/M++:j , fj M+/M+&: j .

The result then follows easily. K

Consider the algebras Dq &1 (g) and Cq &1 [G] and use � to distinguish
elements, sub-algebras, etc. of Dq &1 (g) and Cq &1 [G]. It is easily verified
that the map _: Dq(g) � Dq &1 (g) given by

s* [ ŝ* , t* [ t̂* , ei [ q1�2
i f� i t̂: i , fi [ q1�2

i êi ŝ&1
:i

is an isomorphism of Hopf algebras.
For each 4 # L+, _ gives a bijection _: L(&w04) � L� (4) which sends

v # L(&w0 4)+ onto v̂ # L� (4)&+ . Therefore we obtain an isomorphism
_: Cq &1 [G] � Cq [G] such that

\ f # L(&w04)*&* , v # L(&w0 4)+ , _(ĉf� , v̂)=cf, v . (3.2)

Notice that

_(Dq(g)#, $)=Dq&1 (g)&#, &$ and _(Cq&1 [G]*, +)=Cq[G]&*, &+ .

(3.3)

3.4. Deformation of One-Parameter Quantum Groups. We continue with
the same notation. Let [ p] # H 2(L, C*). As seen in Section 2.4 we can, and
we do, choose p to be an antisymmetric bicharacter such that

\*, + # L, p(*, +)=q(1�2) u(*, +)

for some u # �2 h. Recall that p~ # Z2(L_L, C*), cf. 2.1.
We now apply the results of Section 2.1 to Dq(g) and Cq[G]. Using

Theorem 2.1 we can twist Dq(g) by p~ &1 and Cq[G] by p~ . The resulting
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L-bigraded Hopf algebras will be denoted by Dq, p&1 (g) and Cq, p[G]. The
algebra Cq, p[G] will be referred to as the multi-parameter quantized func-
tion algebra. Versions of Dq, p&1 (g) are referred to by some authors as the
multi-parameter quantized enveloping algebra. Alternatively, this name can
be applied to the quotient of Dq, p&1 (g) by the radical of the pairing with
Cq, p[G].

Theorem 3.5. Let Uq, p&1 (b+) and Uq, p&1 (b&) be the deformations by
p&1 of Uq(b+) and Uq(b&) respectively. Then the deformed pairing

( | ) p &1: Uq, p&1 (b+)op �Uq, p&1 (b&) � C

is a non-degenerate Hopf pairing satisfying:

\x # U+, y # U&, *, + # L, (x } k* | y } k+)p &1=q(8&*, +)(x | y).

(3.4)

Moreover,

Uq, p&1 (b+) � Uq, p&1 (b&)$(Uq(b+) � Uq(b&))p&1=Dq, p &1 (g).

Proof. By Theorem 2.4 the deformed pairing is given by

(a*, + | u#, $) p&1=p(*, #) p(+, $)(a*, + | u#, $).

To prove (3.4) we can assume that x # U +
&#, 0 , y # U &

0, && . Then we obtain

(x } k* | y } k+)p
&1=p(*+#, +) p(*, +&&)(x } k* | y } k+)

=p(*, 2+) p(*&+, #&&) q&(*, +) (x | y)

by the definition of the product } and [33, 2.1.3]. But (x | y)=0 unless
#=&, hence the result. Observe in particular that (x | y) p&1=(x | y).
Therefore [33, 2.1.4] shows that ( | ) p &1 is non-degenerate on U +

# _U &
&# .

It is then not difficult to deduce from (3.4) that ( | ) p&1 is non-degenerate.
The remaining isomorphism follows from 2.6. K

Many authors have defined multi-parameter quantized enveloping
algebras. In [14, 25] a definition is given using explicit generators and rela-
tions, and in [1] the construction is made by twisting the comultiplication,
following [26]. It can be easily verified that these algebras and the algebras
Dq, p&1 (g) coincide. The construction of a multi-parameter quantized func-
tion algebra by twisting the multiplication was first performed in the
GL(n)-case in [2].
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The fact that Dq, p&1 (g) and Cq, p[G] form a Hopf dual pair has already
been observed in particular cases, see e.g. [14]. We will now deduce from
the previous results that this phenomenon holds for an arbitrary semi-
simple group.

Theorem 3.6. [Cq, p[G], Dq, p&1 (g)] is an L-bigraded dual pair. The
associated pairing is given by

\a # Cq, p[G]*, + , \u # Dq, p&1 (g)#, $ , (a, u) p=p(*, #) p(+, $)(a, u).

Proof. This follows from Theorem 2.4 applied to the pair [A, U]=
[Cq[G], Dq(g)] and the bicharacter p&1 (recall that the map 2 is the
identity). K

Let M # obj(Cq). The left Dq(g)-module structure on M yields a right
Cq[G]-comodule structure in the usual way. Let [v1 , ..., vs ; f1 , ..., fs] be a
dual basis for M. The structure map \: M � M�Cq[G], is given by
\(x)=� j vj�cf j , x for x # M. Using this comodule structure on M, one can
check that

M+=[x # M | \h # H, rh(x)=( +, h) x].

Proposition 3.7. Let M # obj(Cq). Then M has a natural structure of
left Dq, p &1 (g) module. Denote by M 2 this module and by (u, x) [ u } x the
action of Dq, p &1 (g). Then

\u # Dq(g)#, $ , \x # M* , u } x=p(*, $&#) p($, #) ux.

Proof. The proposition is a translation in this particular setting of
Corollary 2.5. K

Denote by Cq, p the subcategory of finite dimensional left Dq, p &1 (g)-
modules whose objects are the M 2 , M # obj(Cq). It follows from Proposi-
tion 3.7 that if M # obj(Cq), then M 2 =�+ # L M 2+ , where

M 2+=[x # M | \: # L, s: } x=p(+, 2:) q(+, :)x, t: } x=p(+, &2:) q( +, :)x].

Notice that p( +, \2:) q( +, :)=q\(8\+, :).

Theorem 3.8. 1. The functor M � M 2 from Cq to Cq, p is an equiv-
alence of rigid monoidal categories.

2. The Hopf pairing ( , ) p identifies the Hopf algebra Cq, p [G] with
the restricted dual of Cq, p , i.e. the Hopf algebra of coordinate functions on
the objects of Cq, p .
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Proof. 1. One needs in particular to prove that, for M, N # obj(Cq),
there are natural isomorphisms of Dq, p &1 (g)-modules: .M, N : (M�N) 2 �
M 2 �N 2. These isomorphisms are given by x�y [ p(*, +)x�y for all
x # M* , y # N+ . The other verifications are elementary.

2. We have to show that if M # obj(Cq), f # M*, v # M and u #
Dq, p&1 (g), then (cf, v , u) p=( f, u } v). It suffices to prove the result in the
case where f # M**, v # M+ and u # Dq, p &1 (g)#, $ . Then

( f, u } v)=p(+, $&#) p($, #)( f, uv)

=$&*+#+$, + p(&*+#+$, $&#) p($, #)( f, uv)

=p(*, #) p(+, $)( f, uv)

=(cf, v , u)p

by Theorem 3.6. K

Recall that we introduced in Section 3.3 isomorphisms _: Dq(g) �
Dq &1 (g) and _: Cq[G] � Cq&1 [G]. From (3.3) it follows that, after
twisting by p~ &1 or p~ , _ induces isomorphisms

Dq, p&1 (g)[Dq&1, p &1 (g), Cq&1, p [G][Cq, p[G]

which satisfy (3.2).

3.5. Braiding Isomorphisms. We remarked above that the categories
Cq, p are braided. In the one parameter case this braiding is well-known. Let
M and N be objects of Cq . Let E : M�N � M�N be the operator given
by

E(m�n)=q(*, +)m�n

for m # M* and n # N+ . Let {: M�N � N�M be the usual twist operator.
Finally let C be the operator given by left multiplication by

C= :
; # Q +

C;

where C; is the canonical element of Dq(g) associated to the non-degenerate
pairing U +

; �U &
&; � C described above. Then one deduces from [33, 4.3]

that the operators

%M, N={ b C b E&1: M�N � N�M

define the braiding on Cq .
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As mentioned above, the category Cq, p inherits a braiding given by

�M, N=.N, M b %M, N b .&1
M, N

where .M, N is the isomorphism (M�N) 2 [M 2 �N 2 introduced in the
proof of Theorem 3.8 (the same formula can be found in [1, Section 10]
and in a more general situation in [24]). We now note that these general
operators are of the same form as those in the one parameter case. Let M
and N be objects of Cq, p and let E : M�N � M�N be the operator given
by

E(m�n)=q(8+*, +) m�n

for m # M* and n # N+ . Denote by C; the canonical element of Dq, p&1 (g)
associated to the nondegenerate pairing Uq, p &1 (b+)&;, 0�Uq, p&1 (b&)0, &;

�C and let C : M�N � M�N be the operator given by left multiplica-
tion by

C= :
; # Q +

C; .

Theorem 3.9. The braiding operators �M, N are given by

�M, N={ b C b E &1.

Moreover (�M, N )*=�M*, N* .

Proof. The assertions follows easily from the analogous assertions for
%M, N . K

The following commutation relations are well known [31], [21, 4.2.2].
We include a proof for completeness.

Corollary 3.10. Let 4, 4$ # L+, let g # L(4$)*&' and f # L(4)*&+ and let
v4 # L(4)4 . Then for any v # L(4$)# ,

cg, v } cf, v 4=q(8+4, #)&(8 ++, ')cf, v 4 } cg, v

+q(8+4, #)&(8 + +, ') :
& # Q+

cf & , v 4 } cg& , v

where f& # (Uq, p &1 (b+) f )&++& and g& # (Uq, p &1 (b&)g)&'&& are such that
� f&�g&=� ; # Q + "[0] C;( f�g).

Proof. Let �=�L(4), L(4$) . Notice that

cf�g, �(v 4�v)=c�*( f�g), v 4�v .
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Using the theorem above we obtain

�*( f�g)=q&(8++, ') \g� f+: g&� f&+
and

�(v4 �v)=q&(8 +4, #)(v�v4). (3.5)

Combining these formulae yields the required relations. K

4. PRIME AND PRIMITIVE SPECTRUM OF Cq, p[G]

In this section we prove our main result on the primitive spectrum of
Cq, p[G]; namely that the H orbits inside Primw Cq, p[G] are parametrized
by the double Weyl group. For completeness we have attempted to make
the proof more or less self-contained. The overall structure of the proof is
similar to that used in [16] except that the proof of the key 4.12 (and the
lemmas leading up to it) form a modified and abbreviated version of
Joseph's proof of this result in the one-parameter case [18]. One of the
main differences with the approach of [18] is the use of the Rosso�
Tanisaki form introduced in 3.2 which simplifies the analysis of the adjoint
action of Cq, p[G]. The ideas behind the first few results of this section go
back to Soibelman's work in the one-parameter `compact' case [31]. These
ideas were adapted to the multi-parameter case by Levendorskii [20].

4.1. Parameterization of the Prime Spectrum. Let q, p be as in Section
3.4. For simplicity we set

A=Cq, p[G]

and the product a } b as defined in (2.1) will be denoted by ab.
For each 4 # L+ choose weight vectors

v4 # L(4)4 , vw 04 # L(4)w 04 , f&4 # L(4)*&4 , f&w 04 # L(4)*&w 04

such that ( f&4 , v4) =( f&w 04 , vw04 )=1. Set

A+= :
+ # L +

:
f # L(+)*

Ccf, v + , A&= :
+ # L +

:
f # L(+)*

Ccf, v w 0 + .

Recall the following result.

Theorem 4.1. The multiplication map A+ �A& � A is surjective.
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Proof. Clearly it is enough to prove the theorem in the one-parameter
case. When L=P the result is proved in [31, 3.1] and [18, Theorem 3.7].

The general case can be deduced from the simply-connected case as
follows. One first observes that Cq[G]/Cq[G� ]=�4 # P + C(4). Therefore
any a # Cq[G] can be written in the form a=�4$, 4" # P + cf, v 4$

cg, v &4"
where

4$&4" # L. Let 4 # P and [vi ; fi]i be a dual basis of L(4). Then we have

1==(cv 4 , f &4 )=:
i

cf i , v 4cv i , f &4 .

Let 4$ be as above and choose 4 such that 4+4$ # L+. Then, for all i,
cf, v 4$

cfi , v 4 # C(4+4$) & A+ and cvi , f&4 cg, v&4"
# C(&w0(4+4")) & A&.

The result then follows by inserting 1 between the terms cf, v 4$
and cg, v &4"

. K

Remark. The algebra A is a Noetherian domain (this result will not be
used in the sequel). The fact that A is a domain follows from the same
result in [18, Lemma 3.1]. The fact that A is Noetherian is a consequence
of [18, Proposition 4.1] and [6, Theorem 3.7].

For each y # W define the following ideals of A

I +
y =(cf, v 4 | f # (Uq, p &1 (b+) L(4) y4)=, 4 # L+) ,

I &
y =(cf, v w 0 4 | f # (Uq, p&1 (b&) L(4)yw 04)=, 4 # L+)

where ( )= denotes the orthogonal in L(4)*. Notice that I &
y =_(I +

y ), _ as
in Section 3.4, and that I \

y is an L_L homogeneous ideal of A.

Notation. For w=(w+ , w&) # W_W set Iw=I +
w +

+I &
w &

. For 4 # L+

set cw4=cf &w + 4 , v4 # C(4)&w+4, 4 and c~ w4=cv w & 4 , f&4 # C(&w0 4)w &4, &4 .

Lemma 4.2. Let 4 # L+ and a # A&', # . Then

cw4a#q(8 +w+4, ')&(8 +4, #)acw4 mod I +
w +

c~ w4a#q(8 &4, #)&(8&w &4, ')ac~ w4 mod I &
w &

.

Proof. The first identity follows from Corollary 3.10 and the defini-
tion of I +

w+
. The second identity can be deduced from the first one by

applying _. K

We continue to denote by cw4 and c~ w4 the images of these elements in
A�Iw . It follows from Lemma 4.2 that the sets

Ew +
=[:cw4 | : # C*, 4 # L+], Ew &

=[:c~ w4 | : # C*, 4 # L+],

Ew=Ew +
Ew &
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are multiplicatively closed sets of normal elements in A�Iw . Thus Ew is an
Ore set in A�Iw . Define

Aw=(A�Iw)Ew .

Notice that _ extends to an isomorphism _: A� ŵ � Aw , where ŵ=(w& , w+).

Proposition 4.3. For all w # W_W, Aw{(0).

Proof. Notice first that since the generators of Aw and the elements of
Ew are L_L homogeneous, it suffices to work in the one-parameter case.
The proof is then similar to that of [15, Theorem 2.2.3] (written in the
SL(n)-case). For completeness we recall the steps of this proof. The tech-
nical details are straightforward generalizations to the general case of [15,
loc. cit.].

For 1�i�n denote by Uq(sli (2)) the Hopf subalgebra of Uq(g)
generated by ei , fi , h\1

i . The associated quantized function algebra Ai$
Cq[SL(2)] is naturally a quotient of A. Let _i be the reflection associated
to the root :i . It is easily seen that there exist M+

i and M&
i , non-zero

(Ai )(_i , e) and (Ai )(e, _ i ) modules respectively. These modules can then be
viewed as non-zero A-modules.

Let w+=_i 1
} } } _ik and w&=_j1

} } } _jm be reduced expressions for w\ .
Then

M+
i 1

� } } } �M+
i k

�M&
j1

� } } } �M&
jm

is a non-zero Aw-module. K

In the one-parameter case the proof of the following result was found
independently by the authors in [16, 1.2] and Joseph in [18, 6.2].

Theorem 4.4. Let P # Spec Cq, p[G]. There exists a unique w # W_W
such that P#Iw and (P�Iw) & Ew=<.

Proof. Fix a dominant weight 4. Define an ordering on the weight
vectors of L(4)* by f�f $ if f $ # Uq, p&1 (b+) f. This is a preordering which
induces a partial ordering on the set of one dimensional weight spaces.
Consider the set:

F(4)=[ f # L(4)+* | cf, v4 � P].

Let f be an element of F(4) which is maximal for the above ordering.
Suppose that f $ has the same property and that f and f $ have weights + and
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+$ respectively. By Corollary 3.10 the two elements cf, v 4 and cf $, v4 are
normal modulo P. Therefore we have, modulo P,

cf, v 4cf $, v4=q(8+4, 4)&(8++, +$)cf $, v4cf, v 4

=q2(8+4, 4)&(8++, +$)&(8++$, +)cf, v 4 cf $, v 4 .

But, since u is alternating, 2(8+4, 4)&(8++, +$)&(8++$, +)=2(4, 4)&
2( +, +$). Since P is prime and q is not a root of unity we can deduce that
(4, 4)=( +, +$). This forces +=+$ # W(&4). In conclusion, we have shown
that for all dominant 4 there exists a unique (up to scalar multiplication)
maximal element g4 # F (4) with weight &w44, w4 # W. Applying the
argument above to a pair of such elements, cg 4 , v 4 and cg4 , v4$

, yields that
(x4 4, w4$ 4$)=(4, 4$) for all 4, 4$ # L+. Then it is not difficult to show
that this furnishes a unique w+ # W such that w+ 4=w44 for all 4 # L+.
Thus for each 4 # L+,

cg, v4 # P � g�3 f&w +4 .

Hence P#I +
w +

and P & Ew +
=<. It is easily checked that such a w+ must

be unique. Using _ one deduces the existence and uniqueness of w&. K

Definition. A prime ideal P such that P#Iw and P & Ew=< will be
called a prime idal of type w. We denote by Specw Cq, p[G], resp.
Primw Cq, p[G], the subset of Spec Cq, p[G] consisting of prime, resp.
primitive, ideals of type w.

Clearly Specw Cq, p[G] $ Spec Aw and _(Specŵ Cq&1 , p [G]) =
Specw Cq, p[G]. The following corollary is therefore clear.

Corollary 4.5. One has

Spec Cq, p[G]= '
w # W_W

Specw Cq, p[G],

Prim Cq, p[G]= '
w # W_W

Primw Cq, p[G].

We end this section by a result which is the key idea in [18] for
analyzing the adjoint action of A on Aw . It says that in the one parameter
case the quantized function algebra Cq[B&] identifies with Uq(b+)
through the Rosso�Tanisaki�Killing form [10, 17, 18]. Evidently this con-
tinues to hold in the multi-parameter case. For completeness we include a
proof of that result.

Set Cq, p[B&] = A�I(w 0 , e) . The embedding Uq, p &1 (b&) � Dq, p&1 (g)
induces a Hopf algebra map ,: A � Uq, p&1 (b&)%, where Uq, p&1 (b&)%
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denotes the cofinite dual. On the other hand the non degenerate Hopf
algebra pairing ( | ) p &1 furnishes an injective morphism %: Uq, p &1 (b+)op �
Uq, p&1 (b&)*.

Proposition 4.6. 1. Cq, p[B&] is an L-bigraded Hopf algebra.

2. The map #=%&1,: Cq, p[B&] � Uq, p &1 (b+)op is an isomorphism of
Hopf algebras.

Proof. 1. It is easy to check that I(w0 , e) is an L_L graded bi-ideal of
the bialgebra A. Let + # L+ and fix a dual basis [v& ; f&&]& of L(+) (with
the usual abuse of notation). Then

:
&

cv& , f &' cf && , v #=:
&

S(cf &' , v& ) cf && , v #==(cf &' , v# ).

Taking #='=+ yields c~ +c+=1 modulo I(w 0 , e) . If #=w0+ and '{w0+, the
above relation shows that S(cf &' , v w 0 + )c~ &w 0+ # I(w 0 , e) . Thus I(w 0 , e) is a Hopf
ideal.

2. We first show that

\4 # L+, cf, v 4 # C(4)&*, 4 , _! x* # U +
4&* , ,(cf, v 4 )=%(x* } k&4 ).

(4.1)

Set c=cf, v 4 . Then c(U &
&')=0 unless '=4&*; denote by c� the restriction

of c to U&. By the non-degeneracy of the pairing on U +
4&*_U &

*&4 we
know that there exists a unique x* # U +

4&* such that c� =%(x*). Then, for all
y # U &

*&4 , we have

c( y } k+)=( f, y } k+ } v4)=q&(8&4, +) c� ( y)=q&(8 &4, +) (x* , y)

=(x* } k&4 | y } k+) p&1

by (3.4). This proves (4.1).
We now show that , is injective on A+. Suppose that c=

cf, v 4 # C(4)&*, 4 & Ker ,, hence c=0 on Uq, p&1 (b&). Since L(4)=
Uq, p&1 (b&) v4=Dq, p&1 (g)v4 it follows that c=0. An easy weight argument
using (4.1) shows then that , is injective on A+.

It is clear that Ker ,#I(w 0 , e) , and that A+A&=A implies ,(A)=
,(A+[c~ + ; + # L+]). Since c~ +=c&1

+ modulo I(w0 , e) by part 1, if a # A there
exists & # L+ such that ,(c&) ,(a) # ,(A+). The inclusion I(w0 , e)/Ker ,
follows easily. Therefore # is a well defined Hopf algebra morphism.

If :j # B, there exists 4 # L+ such that L(4)4&: j{(0). Pick
0{f # L(4)*&4+:j . Then (4.1) shows that, up to some scalar, ,(cf, v 4 )=
%(ej } k&4). If * # L , there exists 4 # W* & L+; in particular L(4)*{(0).
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Let v # L(4)* and f # L(4)*&* such that ( f, v) =1. Then it is easily
verified that ,(cf, v)=%(k&*). This proves that # is surjective, and the
proposition. K

4.2. The adjoint action. Recall that if M is an arbitrary A-bimodule one
defines the adjoint of A on M by

\a # A, x # M, ad(a) } x=� a(1)xS(a(2)).

Then it is well known that the subspace of ad-invariant elements
Mad=[x # M | \a # A, ad(a) } x==(a)x] is equal to [x # M | \a # A,
ax=xa].

Henceforth we fix w # W_W and work inside Aw . For 4 # L+, f # L(4)*
and v # L(4) we set

z+
f =c&1

w4 cf, v 4 , z&
v =c~ &1

w4 cv, f &4 .

Let [|1 , ..., |n] be a basis of L such that |i # L+ for all i. Observe that
cw4 cw4$ and cw4$cw4 differ by a non-zero scalar (similarly for c~ w4c~ w4$). For
each *=�i li |i # L we define normal elements of Aw by

cw*= `
n

i=1

cl i
w|i

, c~ w*= `
n

i=1

c~ l i
w|i

, d*=(c~ w*c|*)&1.

Notice then that, for 4 # L+, the ``new'' cw4 belongs to C*cf&w+ 4 , v 4

(similarly for c~ w4). Define subalgebras of Aw by

Cw=C[z+
f , z&

v , cw* ; f # L(4)*, v # L(4), 4 # L+, * # L]

C +
w =C[z+

f ; f # L(4)*, 4 # L+], C &
w =C[z&

v ; v # L(4), 4 # L+].

Recall that the torus H acts on A*, + by rh(a)=+(h)a, where +(h)=( +, h).
Since the generators of Iw and the elements of Ew are eigenvectors for H,
the action of H extends to an action on Aw . The algebras Cw and C \

w are
obviously H-stable.

Theorem 4.7. 1. C H
w =C[z+

f , z&
v ; f # L(4)*, v # L(4), 4 # L+].

2. The set D=[d* ; 4 # L+] is an Ore subset of C H
w . Furthermore

Aw=(Cw)D and AH
w =(C H

w )D .

3. For each * # L, let (Aw)*=[a # Aw | rh(a)=*(h)a]. Then Aw=
�* # L (Aw)* and (Aw)*=AH

w cw* . Moreover each (Aw)* is an ad-invariant
subspace.
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Proof. Assertion 1 follows from

\h # H, rh(z\
f )=zf , rh(cw*)=*(h)cw* , rh(c~ w*)=*(h)&1 c~ w* .

Let [vi ; fi ]i be a dual basis for L(4). Then

1==(cf&4 , v4 )=:
i

S(cf&4 , vi ) cf i , v 4=:
i

cvi , f &4 cf i , c 4 .

Multiplying both sides of the equation by d4 and using the normality of
cw4 and c~ w4 yields d4=�i aiz&

v i
z+

f i
for some ai # C. Thus D/C H

w . Now by
Theorem 4.1 any element of Aw can be written in the form cf 1 , v 1

cf 2 , v 2
d &1

4

where v1=v4 1
, v2=v&4 2

and 41 , 42 , 4 # L+. This element lies in (Aw)* if
and only if 41&42=*. In this case cf1 , v1

cf2 , v 2
d &1

4 is equal, up to a scalar,
to the element z+

f1
z&

f2
d &1

4+4 2
cw* # (C H

w )D cw* . Since the adjoint action com-
mutes with the right action of H, (Aw)* is an ad-invariant subspace. The
remaining assertions then follow. K

We now study the adjoint action of Cq, p[G] on Aw . The key result is
Theorem 4.12.

Lemma 4.8. Let T4=[z+
f | f # L(4)*]. Then C +

w =�4 # L T4 .

Proof. It suffices to prove that if 4, 4$ # L+ and f # L(4)*, then there
exists a g # L(4+4$)* such that z+

f =z+
g . Clearly we may assume that f is

a weight vector. Let @: L(4+4$) � L(4)�L(4$) be the canonical map.
Then

cf, v 4 cf &w + 4$ , v 4$
=cf&w + 4$ �f, v 4�v 4$

=cg, v4+4$

where g=@*( f&w+ 4$� f ). Multiplying the images of these elements in Aw

by the inverse of cw(4+4$) # C*cw4cw4$ yields the desired result. K

Proposition 4.9. Let E be an object of Cq, p and let 4 # L+. Let
_: L(4) � E�L(4)�E* be the map (1��&1)(@�1) where @: C � E�E*
is the canonical embedding and �&1: E*�L(4) � L(4)�E* is the inverse
of the braiding map described in Section 3.5. Then for any c=
cg, v # C(E )&', # and f # L(4)*

ad(c) } z+
f =q(8+w +4, ')z+

_*(v� f�g) .

In particular C +
w is a locally finite Cq, p[G]-module for the adjoint action.
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Proof. Let [vi ; gi]i be a dual basis of E where vi # E& i , gi # E*&& i . Then
@(1)=� vi�gi . By (3.5) we have

�&1( gi�v4)=ai (v4 �gi )

where ai=q&(8+4, & i )=q(8 && i , 4). On the other hand the commutation
relations given in Corollary 3.10 imply that cg, v i c

&1
w4 =baic&1

w4 cg, v i , where
b=q(8+ w+4, '). Therefore

ad(c) } z+
f =: baic&1

w4 cg, v i cf, v4 cv, gi=bc&1
w4 cv�f�g , � a i v i �v4�g i

=bc&1
w4 cv� f�g, _(v4) .

Since the map _ is a morphism of Dq, p&1 (g)-modules it is easy to see that
cv� f�g, _(v4 )=c_*(v� f�g), v4 . K

Lemma 4.10. Let c=cg, v # Cq, p[G]&', # , f # L(4)* be as in the previous
theorem and x # Uq, p &1 (b+) be such that #(c)=x. Then

cS &1(x) } f, v4=c_*(v� f�g), v 4 .

Proof. Notice that it suffices to show that

cS&1(x) } f, v4 ( y )=c_*(v� f�g), v4 ( y)

for all y # Uq, p&1 (b&). Denote by ( | ) the Hopf pairing ( | ) p&1 between
Uq, p&1 (b+)op and Uq, p&1 (b&) as in Section 3.4. Let / be the one dimen-
sional representation of Uq, p&1 (b+) associated to v4 and let /~ =/ } #. Notice
that /(x)=(x | t&4); so /~ (c)=c(t&4). Recalling that # is a morphism of
coalgebras and using the relation (cxy) of Section 2.3 in the double
Uq, p&1 (b+) � Uq, p&1 (b&), we obtain

cS &1 (x) } f, v 4 ( y )=f (xyv4)

=: (x(1) | y(1))(x (3) | S( y(3))) f ( y(2) x(2)v4)

=: (x(1) | y(1))(x (3) | S( y(3))) /(x(2)) f ( y(2) v4)

=: (x(1) /(x(2)) | y(1))(x (3) | S( y(3)) f ( y(2)v4)

=: (c(1)/~ (c(2)))( y(1)) c(3)(S( y(3))) f ( y(2) v4)

=: r/~ (c(1))( y(1)) cf, v4 ( y(2)) S(c (2))( y(3)).
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Since r/~ (cg, v i )=q(8&v i , 4)cg, vi , one shows as in the proof of Proposition 4.9
that

cS&1(x) } f, v4( y )=: r/~ (c (1))( y(1)) cf, v 4 ( y(2)) S(c(2))( y(3))

=: q(8 && i , 4)(cg, & i cf, v 4 cv, gi )( y )

=c_*(v� f�g), v4 ( y ),

as required. K

Theorem 4.11. Consider C +
w as a Cq, p [G]-module via the adjoint action.

Then

(1) Soc C +
w =C.

(2) Ann C +
w #I(w0 , e) .

(3) The elements cf&+ , v+ , + # L+, act diagonalizably on C +
w .

(4) Soc C +
w =[z # C +

w | Ann z#I(e, e)].

Proof. For 4 # L+ , define a Uq, p &1 (b+)-module by

S4=(Uq, p&1 (b+) vw +4)*=L(4)*�(Uq, &1 (b+) vw +4)=.

It is easily checked that Soc S4=C f&w +4 (see [18, 7.3]). Let $: S4 � T4

be the linear map given by f� [ z+
f . Denote by ` the one-dimensional

representation of Cq, p[G] given by `(c)=c(t&w +4). Let c=vg, v #
C(E )&', # . Then l`(c)=q(8&', w +4)c=q&(8+ w+4, '))c. Then, using Proposi-
tion 4.9 and Lemma 4.10 we obtain,

ad(l`(c)) } $( f� )=q&(8+ w+4, ')ad(c) } z+
f =z+

S&1 #(c) } f=$(S&1(#(c)) f� ).

Hence, ad(l`(c)) } $( f� )=$(S&1(#(c)) f� ) for all c # A. This immediately
implies part (2) since Ker ##I(w 0 , e) and l`(I(w0 , e))=I(w 0 , e) . If S4 is given
the structure of an A-module via S&1#, then $ is a homomorphism from S4

to the module T4 twisted by the automorphism l` . Since $( f&w +4)=1 it
follows that $ is bijective and that Soc T4=$(Soc S4)=C. Part (1) then
follows from Lemma 4.8. Part (3) follows from the above formula and the
fact that #(cf &+ , v + )=s&+ . Since A�I(e, e) is generated by the images of the
elements cf &+ , v + , (4) is a consequence of the definitions. K

Theorem 4.12. Consider C H
w as a Cq, p[G]-module via the adjoint action.

Then

Soc C H
w =C.
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Proof. By Theorem 4.11 we have that Soc C +
w =C. Using the map _,

one obtains analogous results for C &
w . The map C +

w �C &
w � C H

w is a
module map for the adjoint action which is surjective by Theorem 4.1. So
it suffices to show that Soc C +

w �C &
w =C. The following argument is taken

from [18].
By the analog of Theorem 4.11 for C &

w we have that the elements cf&4 , v 4

act as commuting diagonalizable operators on C &
w . Therefore an element

of C +
w �C &

w may be written as � ai�bi where the bi are linearly inde-
pendent weight vectors. Let cf, v4 be a generator of I +

e . Suppose that
� ai �bi # Soc(C +

w �C &
w ). Then

0=ad(cf, v 4 ) } \:
i

ai�bi+=:
i, j

ad(cf, v j ) } ai �ad(cfj , v 4 ) } bi

=:
i

ad(cf, v 4 ) } ai �ad(cf&4 , v 4 ) } bi

=:
i

ad(cf, v 4 ) } ai �:ibi

for some :i # C*. Thus ad(cf, v 4 ) } ai=0 for all i. Thus the ai are annihilated
by the left ideal generated by the cf, v 4 . But this left ideal is two-sided
modulo I(w 0 , e) and Ann C +

w #I(w 0 , e) . Thus the ai are annihilated by I(e, e)

and so lie in Soc C +
w by Theorem 4.11. Thus � ai�bi # Soc(C�C &

w )=
C�C. K

Corollary 4.13. The algebra AH
w contains no nontrivial ad-invariant

ideals. Furthermore, (AH
w )ad=C.

Proof. Notice that Theorem 4.12 implies that C H
w contains no nontrivial

ad-invariant ideals. Since AH
w is a localization of C H

w the same must be true
for AH

w . Let a # (AH
w )ad"C. Then a is central and so for any : # C, (a&:)

is a non-zero ad-invariant ideal of AH
w . This implies that a&: is invertible

in AH
w for any : # C. This contradicts the fact that AH

w has countable dimen-
sion over C. K

Theorem 4.14. Let Zw be the center of Aw . Then

(1) Zw=Aad
w ;

(2) Zw=�* # L Z* where Z*=Zw & AH
w cw* ;

(3) If Z*{(0), then Z*=Cu* for some unit u* ;

(4) The group H acts transitively on the maximal ideals of Zw .
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Proof. The proof of (1) is standard. Assertion (2) follows from
Theorem 4.7. Let u* be a non-zero element of Z* . Then u*=acw*, for some
a # AH

w . This implies that a is normal and hence a generates an ad-invariant
ideal of AH

w . Thus a (and hence also u*) is a unit by Theorem 4.13. Since
Z0=C, it follows that Z*=Cu* . Since the action of H is given by rh(u*)=
*(h)u* , it is clear that H acts transitively on the maximal ideals of Zw . K

Theorem 4.15. The ideals of Aw are generated by their intersection with
the center Zw .

Proof. Any element f # Aw may be written uniquely in the form
f=� a* cw* where a* # AH

w . Define ?: Aw � AH
w to be the projection given

by ?(� a*cw*)=a0 and notice that ? is a module map for the adjoint
action. Define the support of f to be Supp( f )=[* # L | a*{0]. Let I be an
ideal of Aw . For any set Y�L such that 0 # Y define

IY=[b # AH
w | b=?( f ) for some f # I such that Supp( f )�Y]

If I is ad-invariant then IY is an ad-invariant ideal of AH
w and hence is either

(0) or AH
w .

Now let I$=(I & Zw)Aw and suppose that I{I$. Choose an element
f=� a* cw* # I"I$ whose support S has the smallest cardinality. We may
assume without loss of generality that 0 # S. Suppose that there exists g # I$
with Supp(g)/S. Then there exists a g$ # I$ with Supp(g$)/S and
?(g$)=1. But then f&a0 g$ is an element of I$ with smaller support
than F. Thus there can be no elements in I$ whose support is contained
in S. So we may assume that ?( f )=a0=1. For any c # Cq, p[G], set
fc=ad(c) } f&=(c) f. Since ?( fc)=0 it follows that |Supp( fc)|<|Supp( f )|
and hence that fc=0. Thus f # I & Aad

w =I & Zw , a contradiction. K

Putting these results together yields the main theorem of this section,
which completes Corollary 4.5 by describing the set of primitive ideals of
type w.

Theorem 4.16. For w # W_W the subsets Primw Cq, p[G] are precisely
the H-orbits inside Prim Cq, p[G].

Finally we calculate the size of these orbits in the algebraic case. Set
Lw=[* # L | Z*{(0)]. Recall the definition of s(w) from (1.3) and that p
is called q-rational if u is algebraic. In this case we know by Theorem 1.7
that there exists m # N* such that 8(mL)/L.

Proposition 4.17. Suppose that p is q-rational. Let * # L and y*=
cw8 &m*c~ w8 +m* . Then
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(1) y* is ad-semi-invariant. In fact, for any c # A&', # ,

ad(c) } y*=q(m_(w)*, ')=(c) y* .

where _(w)=8&w& 8+&8+ w+8&

(2) Lw & 2mL=2 Ker _(w) & mL
(3) dim Zw=n&s(w)

Proof. Using Lemma 4.2, we have that for c # A&', #

cy*=q(8 +w +8& m*, &') q(8+8 &m*, #)q(8&w &8+m*, ')q (8 &8+m*, &#) y* c

=q(m_(w)*, ')y* c.

From this it follows easily that

ad(c) } y*=q(m_(w) *, ')=(c) y* .

Since (up to some scalar) y*=d &1
8m*d &1

m* c&2
wm* it follows from Theorem 4.7

that y* # (Aw)&2m* . However, as a Cq, p[G]-module via the adjoint action,
AH

w y*$AH
w �Cy* and hence Soc AH

w y*=Cy* . Thus Z&2m*{(0) if and
only if y* is ad-invariant; that is, if and only if m_(w)*=0. Hence

dim Zw=rk Lw=rk(Lw & 2mL)=rk KermL _(w)

=dim Kerh* _(w)=n&s(w)

as required. K

Finally, we may deduce that in the algebraic case the size of the H-orbits
Sympw G and Primw Cq, p[G] are the same, cf. Theorem 1.8.

Theorem 4.18. Suppose that p is q-rational and let w # W_W. Then

\P # Primw Cq, p[G], dim(H�StabH P)=n&s(w).

Proof. This follows easily from Theorems 4.15, 4.16 and Proposition
4.17. K
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