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Abstract: An approximate method is presented to solve the problem of steady free-surface flow of an ideal fluid over a 
semi-infinite ramp in the bottom. Schwartz-Christoffel transformation is used to map the region of flow, in the 
complex potential-plane, onto the upper half-plane. The Hilbert transformation as well as the perturbation technique 
are used as a basis for the approximate solution of the problem for large Froude number and small inclination angle of 
the ramp. General equations, in integral form, for any order of approximation are obtained. Solution up to first-order 
approximation is discussed and illustrated. 

Elevation of the free-surface for different ramp heights, different inclination angles of the ramp and different 
Froude numbers are plotted. An approximate formula of maximum elevation of the free-surface in terms of the ramp 
height and its inclination angle is found. 

Keywords: Inviscid flow, free-surface flow problems, Schwartz-Christoffel transformation, Hilbert transformation, 
perturbation technique, nonlinear integral equations. 

1. Introduction 

This paper considers the problem of steady free-surface of a running two-dimensional, 
irrotational, inviscid and incompressible flow in an open channel with a nonuniform bottom in a 
shape of a ramp. This problem has many applications in the fields of coastal engineering and 
hydraulics. That’s why this type of problems has received considerable attention throughout the 
history of fluid mechanics, during the past 30 years, and the literature on the topic is rich. 

One will find an attractive discussion of the subject in the four papers of Thomson (Lord 
Kelvin) [22] in 1886, Wien [26] in 1900, Lamb [13] in 1945, Wehausen and Laitone [25] in 1960, 
and Kochin et al. [12] in 1964. Analytical methods fail to find out exact solutions for the problem 
of steady flow with a free-surface over irregular bottom, therefore numerical methods entered the 
field intensively to solve this problem within a certain range of accuracy. The first attempts on 
numerical solution of free-surface flows were made by Southwell and Vaisey [21] in 1946, using 
relaxation method. Steady flow over a step was successfully treated using the finite-difference 
method by Bellevaux and Fruman [5] in 1969. More recently the use of the finite-element method 
has been widespread among the field of fluid mechanics, in particular Aitchison [4] in 1979 was 
able to solve the difficult problem of a critical flow over a weir. 
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An alternative to the direct numerical solution of the equations of motion is to map the flow 
region onto an auxiliary plane with a simpler geometry where the solution is known, as given by 
Watters and Street [24] in 1964. In this case the problem reduces to a set of simultaneous 
equations for unknowns in the transformation. Bloor [6] in 1978 and then McIver [16] in 1980 
applied that technique in solving problems of large amplitude surface waves and stationary 
waves in open channels, respectively. Recently, King and Bloor [ll], in 1987, modified the 
transformation applied by Bloor [6] to cope with obstructions to a free-surface flow. In 1981, 
Forbes [9] investigated the flow over a submerged semi-elliptical body, by allowing the velocity 
potential and stream function to be independent variables and then the solution is obtained by a 
boundary integral technique. In 1981, Abd-el-Malek [l] considered the nonlinear problem of a 
flow over a ramp by applying the Hilbert transformation. In 1982, Forbes and Schwartz [lo] 
considered the case of a flow over a semi-circular obstruction. Recently, Boutros, Abd-el-Malek 
and Masoud [7] considered the linear problem of a flow over a trump weir, applying the Fourier 
double integral and in [8] they solved the same problem, but in the nonlinear case using the 
Hilbert transformation. In 1988, Abd-el-Malek and Masoud [2] applied the Fourier double 
integral to solve the linear problem of a flow over a ramp. 

In this paper, the Hilbert method as well as the perturbation technique are used as a basis for 
the approximate solution of a two-dimensional problem. First, as customary, the physical and 
complex potential-planes are mapped onto an auxiliary upper half-plane. Then nonlinear integral 
equations are found giving the solution of a mixed boundary-value problem. Lastly, several 
approximations are done based upon large Froude number and the perturbation technique is 
applied based upon small inclination angles of the ramp. 

2. Formulation of the problem 

The study is concerned with two-dimensional, irrotational motion, i.e., possessing a velocity 
potential $(x, y) satisfying the equation 

a2+ a2cp 
j-p+‘=% 

aY 
(24 

of a nonviscous and incompressible fluid, subject to the action of gravitational force and having 
a free upper-surface. 

Consider a uniform flow with velocity U, in the positive x-direction at depth hi flowing over 
a bottom which consists of a horizontal plane AB, inclined plane BC with an inclination angle (Y 
and length L, and a horizontal plane CD, where the bottom extends from - cc (point A) to + cc 
(point D), as shown in Fig. 1. 

For convenience, we choose point B to be the origin in the z-plane, the x-axis from left to 
right and the y-axis upwards. The complex potential 

W(z) =+(x3 Y) + i $(x3 Y), 

is an analytic function of z within the region of flow, with complex conjugate velocity 

dW(z) 
dz 

= U(X, y) -i u(x, y) = q ePis. P-2) 
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Fig. 1. Physical plane of a flow over a ramp of length L and inclination angle a. 

Let the dimensionless variables z’, q’, and IV’ be 

(2.3) 

where #i = U,h,. 

The condition on the free-surface, where the pressure is uniform, is obtained from Bernoulli’s 
equation. The Bernoulli condition on the free-surface, in dimensionless form, can be written 

q’* + J&f - 1) = 1, (2.4) 

where F is the Froude number defined by 

(2.9 

Denote the dimensionless ramp height by 6, where 

L sin cy 
E= 

hi 
= L’ sin (Y. (2.6) 

In dimensionless form, (2.2) becomes 

(2.7) 

Let 

w = In E = In q’ - i0, 

where w is called the logarithmic hodograph variable. 
Then, from (2.7) and (2.8) we get 

(2.8) 

zf = J epw dW’. (2.9) 

Using the Schwartz-Christoffel transformation, we map the region of flow in the IV’-plane 
onto the upper half of an auxiliary t-plane, so that the following points correspond (see Figs. 2 
and 3): 

B : W’=O, t=o, 

D, 0, : w’+ +w, t=l, (2.10) 

A, A, : W’+ -00, t+ +co. 
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A co B NC D +i 

Fig. 2. Normalized complex potential (or W’-)plane. Fig. 3. The auxiliary upper half (or t-)plane. 

The mapping function is 

IV’(t)= -+ ln(l-t), O<arg(l-t)<a. (2.11) 

For the second half of the problem, to express o as a function of the single variable t, we 
introduce the Hilbert method for a mixed boundary-value problem in the upper half-plane, the 
general solution of which for an analytic function Q(t) in the upper half-plane, is well known 
(see [1,3,14,15,17-191). 

Let Q(t) be an analytic function defined in the upper half-plane, the t-plane, and suppose 
Im( Q( t)) satisfies the Holder condition on the boundary, Im( t) = 0, of the t-plane. 

If Im( Q( t)) is known on the boundary, then Q(t) is given by the Poisson integral formula 

Q(t) = ;p rm;ec;)’ dv + f Ajtj, 
00 j=O 

(2.12) 

where Aj are real constants, and f denotes a singular integral in the sense of Cauchy. 
Now, we try to relate the function w(t) to function Q(t). From (2.12), we find that Q(t) is 

expressed in terms of its imaginary parts along the real axis, the boundary of the t-plane. 
Thus, we have to examine the value of o(t) along the boundary of the t-plane, and we find 

that 

Im(o(t)) = -O(t), t<l, 

Re(w(t)) = i ln(1 - -$q’(t)), t> 1, 
(2.13) 

where 

i 

0, t < 0, 

O(t)= a, O<t<t,, (2.14) 

0, t,<t<l, 

and 

q’(t) =y’(t) - 1. (2.15) 

This means that we know either the real or the imaginary part of w(t) along the boundary of the 
t-plane. Then we must construct an auxiliary function H(t) which makes the imaginary part of 
the quotient Q(t) = w( t)/H( t) known on the boundary of the t-plane. The general form of H(t) 
is 

H(t) =un(t-b,)*;, 
i 

(2.16) 

where bj are real constants, and a = f \/f 1 . 
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Song [20] has shown that the final solution is independent of the particular choice of H(t). We 
choose 

H(t) = -i\lt-1, 0 < arg(t - 1) < 7~. (2.17) 

Using (2.13) and (2.17), we obtain 

1 

WQW> = { 

\ 

w 
fi’ 

t<l, 

In 1 - f?‘(t) 
(2.18) 

2\lt-1 ’ 
t> 1. 

Next, we examine the upstream condition. As we approach point A,, i.e., as t + + co, 

H(t) = - ifi and w(t) = In q’(t) = 0. Therefore, Q(t) = w( t)/( - ifi) = 0, and from (2.12), 
Aj = 0 for j = 0, 1, 2,. . . , n. Thus, (2.12) takes the form 

Using (2.7), we obtain 

Q(t) = g = ln doH;fj-W) = R(t) + is(t). 

An equivalent form of (2.19) is 

R(t) = if_:’ dv, s(t) = - ;f_l$ dV; 

(2.19) 

(2.20) 

(2.21) 

for more details about the Hilbert transformation, see [17,23]. 
Using (2.21) we obtain a set of integral equations, and for our work we need only the 

following equations 

(2.22) O(t)=“i-l~mc lf;:?& dv+k tan-‘( ‘E), t>l, 

hrqi= -TEi”, ‘rr+$& dVI* tanh-‘[Vmj, O<t<t,, (2.23) 
7l V t v 7r t-r 

where 

r=l- l- if,> (2.24) 

and q;(t) is the flow speed over the ramp. 
The coordinates (x’, y’) of a point on the free-surface can be obtained using (2.9) and (2.11) 

as follows: 

z’(t) = (XL + i) + L 
eiWu) 

,Tr ._&)q’(v) dvY t’l. J 
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Separating real and imaginary part, we get 

‘1 t x’(t) = XL + 
cos e(V) 

7r m(l-v)q’(v) dv7 l’l, 
y’(t) = 1 + ;J: (l~v;$;v, dv, t> 1. 

(2.25) 

(2.26) 

From (2.26) we may find the length of the ramp L’, and it has the form (see [1]): 

1 tc 1 

L’=G a (l-v)&(v) J dv, 

where q;(t) is given by (2.23). 

(2.27) 

Hence, the system of equations (2.4), (2.22), (2.23), (2.25), (2.26), and (2.27) describes 
completely our problem. 

3. The approximate equations 

For large Froude number F and for small inclination angle (Y, in which case the change in 0(t) 
will be very small, we can approximate sin 0(t) by 0(t) and cos 0(t) by one. Having done so, we 
proceed to drop the primes and the system of equations takes the form: 

q(t) = 1 - +l(f)’ t’ 1, 

q(t) = - +i,=g(l+ $7(v)) dv, t> 1, 

e(t)= -atrnC _“\;_& dv+% tan-‘(‘E), t>l, 
TF2 V t v 71 

t>l, 

lnqB(f)=~~rc 
V 

_“\;_& dv-% tanhP1(rE), O<t<t,, 
t v 

dv. 

4. Perturbation technique 

Expand q(t), q(t), O(t) and x(t) in terms of the small parameter 01, 

4(t) = 40(t) + %&) + a2q2(t) + -. . 9 

77(f) = 170(t) + w(f) + a2772(t) + . * * > 

e(t) = e,(t) + se,(t) + a2e2(t) + . . . , 

x(t) =x,(t) + ax,(t) + cY2x2(t) + * * * . 

(3-l) 

(3-2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(4.1) 
(4.2) 
P-3) 
(44 
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Upon employing the expansions (4.1)-(4.4) into the equations (3.1)-(3.4) and equating terms 
of similar power of (Y, we get the: 

(i) Zero-order approximation 

40(t) = l- 1, (t), 
F* ’ (4.9 

qO(t) = - iir$$l + -$,(v)) dv, t> 1, (4.6) 

This zero-order approximation corresponds to the case of flow over a flat bottom. Solution of 
the zero-order approximation is 

40(t) = 1, (4.9) 

710(f) = 0, (4.10) 

do(t) = 0, (4.11) 

O” dv 
x0(+x,-‘S - 

71 f l-v’ 

Writing 

1 
x00=- - J 

O” dv 

710 l-v’ 

hence 

x0 = - $ ln(t - 1). 

(ii) First-order approximation 

O” 4(v) vdt) = - il l_v dv, 

e,(t)= -=& _q$‘_l dv+l tan-l( -) 
TlF2 V t v IT t-r ) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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(iii) In general, n th-order approximation 

(4.17) 

where n = 2, 3, 4, . . . . 

5. Solution of the problem 

Solution of the first-order approximation: from (4.15), for very large Froude number F, we 

may neglect the first term with respect to. the second one and one gets 

f3,( t) = a tan-’ 
r&-i 

( 1 t--r ’ 
t> 1. (5.1) 

Upon substituting in (4.14) and carrying out integration, one finds 

P-2) 171(t) = 

Hence ql( t) takes the form, from (4.13) 

t> 1. 

41(t) = - n2&F2 tan-’ 
t> 1, (5.3) 

and 

x1(t) = 
8r 

a3F2m ’ 
For very large Froude number 
second one and we get 

t>l. (5 -4 

F, the first term in (3.5) may be neglected with respect to the 

In qB(t) = - % tanh-’ (5.5) 

from which we can find an approximate expression for the length of the ramp, using (3.6), 

L- -+ ln(l-t,), O<t,<l. (5.6) 
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For small inclination angle (Y, we will consider only an approximate solution to an order of (Y, 
and we have 

q(t) = 1 - (Y 
4r l-r 

T2F2J1-r 
tan-’ 

J- 
t_l +0(a), f’l, 

y(t)=l+a 
l-r 

T2d4k tan-’ t_ 1 + +), t> 1, 
J- 

0(t) = % tan-’ 
YJt--I 

i i t-r 
+0(a), t>1, 

x(t)= -i ln(t-l)+a ” 
T3F2Jt_l 

+0(a), t>l. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

One quantity of physical interest is the drag force on the ramp caused by the fluid flow, which 
is the horizontal component of the force acting on unit width of the ramp. In fact this drag force 
represents the change in momentum flux due to the change in the stream produced by the ramp. 
The drag force D made dimensionless by reference to the quantity pgh:, where p is the fluid 
density, is given by 

(5.11) 

where c is given by (2.6). Equation (5.11) can be integrated most conveniently by using (5.7) and 
(5.8), we get 

D _ 8cr tan (Y -m/2 sin a 713 (enccotfo - I)(1 - e 
). (5.12) 

6. Numerical results and discussion 

Approximate solutions for flows with large Froude number are found throughout a wide range 
of ramp heights. Results showing the free-surface elevation over a range of ramp heights E, 
0.002567 to 0.035513, for fixed (Y = &IT, F2 = 10.0 and over a range of inclination angles (Y, AIT 
to $rr, for fixed 6 = 0.005012, F* = 10.0 are given in Figs. 4 and 5. 

Effect of the Froude number F on the free-surface elevation for fixed (Y = &r and c = 0.005012 
is given in Fig. 6. 

These results demonstrate the monotonic rise in free-surface elevation with increase of the 
ramp height, the inclination angle, and the Froude number. 

From Figs. 4 and 5 we are able to give an approximate formula for maximum elevation in 
terms of the ramp height and the inclination angle, namely 

Y 
max 2.1.0 + 1.045807 e, 

hi 
forF’=lO.O and (Y= z, (6.1) 

and 
Y 
-JS = 1.0 + 0.049636 (Y, 

h* 
for F* = 10.0 and E = 0.005012; (6.2) 

they are plotted in Figs. 7 and 8, respectively. 
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I I I I I 

-6 -L -2 0 2 4 6 5, 
Fig. 4. Effect of the ramp height c on the free-surface 

profile for LX = in and F* = 10.0. 
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-6 -4 -2 0 2 4 6 D% 
Fig. 5. Effect of the inclination angle (Y of the ramp on 
the free-surface profile for c = 0.005012 and F* = 10.0. 

The drag force D, as shown in Fig. 9 and given in Table 1, increases monotonically with ramp 
height for different values of the inclination angle. 

Forbes and Schwartz [lo] considering the case of supercritical flows over a semi-circular 
obstruction with an otherwise flat bottom, concluded that the limiting form of the free-surface 
profile would have a sharp 120”-corner at its peak. A similar conclusion could be made with 
regard to the flow over a ramp. Behaviour of curves, in Fig. 4, for different E, support this idea. 

Fig. 6. Effect of the Froude number on the free-surface profile for (Y = $T and e = 0.005012. 
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I I I 1 I I 

0 5 10 
DEXld 

15 20 25 30 

Fig. 7. Normalized maximum free-surface height against 
the ramp height E for (Y = &r and F2 = 10.0. 

ADxlO’ 

90 - 

72 - 

5‘ - 

36 - 

Fig. 8. Normalized maximum free-surface height against 
the inclination angle (Y of the ramp for e = 0.005012 

and F2 = 10.0. 

0.03 0.0‘ 04x 

Fig. 9. The drag force D on the ramp as a function of the ramp height c for different values of the inclination angle (Y. 

Table 1 
Effect of the ramp height on the drag force D for different inclination angles cx 

E 

0.005 000 
0.025 000 
0.050000 
0.060 000 
0.070 000 
0.080000 
0.090000 
0.100000 

_ 
a:=&? 

0.000017 
0.000415 
0.001652 
0.002 375 
0.003 229 
0.004 213 
0.005 328 
0.006 572 

CY=+ll a=&7 

0.000016 0.000016 
0.000 407 0.000 405 
0.001625 0.001619 
0.002 340 0.002 333 
0.003 185 0.003 177 
0.004 162 0.004 155 
0.005 271 0.005 266 
0.006 513 0.006512 
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