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Abstract

A general approach to transference principles for discrete and continuous operator (semi)groups is de-
scribed. This allows one to recover the classical transference results of Calderón, Coifman and Weiss and
of Berkson, Gillespie and Muhly and the more recent one of the author. The method is applied to derive
a new transference principle for (discrete and continuous) operator semigroups that need not be groups.
As an application, functional calculus estimates for bounded operators with at most polynomially growing
powers are derived, leading to a new proof of classical results by Peller from 1982. The method allows
for a generalization of his results away from Hilbert spaces to Lp-spaces and—involving the concept
of γ -boundedness—to general Banach spaces. Analogous results for strongly-continuous one-parameter
(semi)groups are presented as well. Finally, an application is given to singular integrals for one-parameter
semigroups.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction and summary

The purpose of this article is twofold. The shorter part (Section 2) is devoted to a general-
ization of the classical transference principle of Calderón, Coifman and Weiss. In the major part
(Sections 3–7) we give applications of this new abstract result to discrete and continuous operator
(semi)groups; in particular we shall recover and generalize important results of Peller [26].
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In the classical transference principle(s) the objects under investigation are derived operators
of the form

Tμ :=
∫
G

T (s)μ(ds) (1.1)

where G is a locally compact group and T = (T (s))s∈G : G → L(X) is a bounded strongly
continuous representation of G on a Banach space X. The integral (1.1) has to be understood in
the strong sense, i.e.,

Tμx =
∫
G

T (s)x μ(ds) (x ∈ X),

and μ is a scalar measure that renders the expression meaningful. Since such operators occur in
a variety of situations, the applications of transference principles are manifold, and the literature
on this topic is vast. We therefore restrict ourselves to mentioning only a few ‘landmarks’ which
we regard as most important for the understanding of the present paper.

Originally, Calderón [6] considered representations on Lp induced by a G-flow of measure-
preserving transformations of the underlying measure space. His considerations were motivated
by ergodic theory and his aim was to obtain maximal inequalities. Subsequently, Coifman and
Weiss [7,8] shifted the focus to norm estimates and were able to drop Calderón’s assumption
of an underlying measure-preserving G-flow towards general G-representations on Lp-spaces.
Some years later, Berkson, Gillespie and Muhly [2] were able to generalize the method towards
general Banach spaces X. However, the representations considered in these works were still
(uniformly) bounded. In the continuous one-parameter case (i.e., G = R) Blower [3] showed
that the original proof method could fruitfully be applied also to non-bounded representations.
However, his result was in a sense ‘local’ and did not take into account the growth rate of the
group (T (s))s∈R at infinity. In [14] we re-discovered Blower’s result and in [16] we could refine
it towards a ‘global’ transference result for strongly continuous one-parameter groups, cf. also
Section 3 below.

In the present paper, more precisely in Section 2, we develop a method of generating trans-
ference results and show in Section 3 that the known transference principles (the classical
Berkson–Gillespie–Muhly result and the central results of [16]) are special instances of it. Our
method has three important new features. Firstly, it allows to pass from groups (until now the
standard assumption) to semigroups. More precisely, we consider closed sub-semigroups S of a
locally compact group G together with a strongly continuous representation T : S → L(X) on a
Banach space, and try to estimate the norms of operators of the form

Tμ =
∫
S

T (s)μ(ds) (1.2)

by means of the transference method. The second feature is the role of weights in the transference
procedure, somehow hidden in the classical version. Thirdly, our account brings to light the
formal structure of the transference argument: in a first step one establishes a factorization of
the operator (1.2) over a convolution (i.e., Fourier multiplier) operator on a space of X-valued
functions on G; then, in a second step, one uses this factorization to estimate the norms; and
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finally, one may vary the parameters to optimize the obtained inequalities. So one can briefly
subsume our method under the scheme

factorize—estimate—optimize,

where we use one particular way of constructing the initial factorization. One reason for the
power of the method lies in choosing different weights in the factorization, allowing for the opti-
mization in the last step. The second reason lies in the purely formal nature of the factorization;
this allows to re-interpret the same factorization involving different function spaces.

The second part of the paper (Sections 4–7) is devoted to applications of the transference
method. These applications deal exclusively with the cases S = Z,Z+ and S = R,R+, which we
for short call the discrete and the continuous case, respectively. However, let us point out that the
general transference method of Section 2 works even for sub-semigroups of non-abelian groups.

To clarify what kind of applications we have in mind, let us look at the discrete case first.
Here the semigroup consists of the powers (T n)n∈N0 of one single bounded operator T , and the
derived operators (1.2) take the form ∑

n�0

αnT
n

for some (complex) scalar sequence α = (αn)n�0. In order to avoid convergence questions, we
suppose that α is a finite sequence, hence

α̂(z) :=
∑
n�0

αnz
n

is a complex polynomial. One usually writes

α̂(T ) :=
∑
n�0

αnT
n

and is interested in continuity properties of the functional calculus

C[z] → L(X), f �→ f (T ).

That is, one looks for a function algebra norm ‖ · ‖A on C[z] that allows an estimate of the form

∥∥f (T )
∥∥ � ‖f ‖A

(
f ∈ C[z]). (1.3)

(The symbol � is short for � C· for some unspecified constant C � 0, see also the
“Terminology”-paragraph at the end of this introduction.) A rather trivial instance of (1.3) is
based on the estimate

∥∥f (T )
∥∥ =

∥∥∥∥∑
αnT

n

∥∥∥∥ �
∑

|αn|
∥∥T n

∥∥.
n�0 n�0
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Defining the positive sequence ω = (ωn)n by ωn := ‖T n‖, we hence have∥∥f (T )
∥∥ � ‖f ‖ω :=

∑
n�0

|αn|ωn (1.4)

and by the submultiplicativity ωn+m � ωnωm one sees that ‖·‖ω is a function algebra (semi)norm
on C[z].

The “functional calculus” given by (1.4) is tailored to the operator T and uses no other infor-
mation than the growth of the powers of T . The central question now is: under which conditions
can one obtain better estimates for ‖f (T )‖, i.e., in terms of weaker function norms? The con-
ditions we have in mind may involve T (or better: the semigroup (T n)n�0) or the underlying
Banach space. To recall a famous example: von Neumann’s inequality [25] states that if X = H

is a Hilbert space and ‖T ‖ � 1 (i.e., T is a contraction), then∥∥f (T )
∥∥ � ‖f ‖∞ for every f ∈ C[z], (1.5)

where ‖f ‖∞ is the norm of f in the Banach algebra A = H∞(D) of bounded analytic functions
on the open unit disc D.

Von Neumann’s result is optimal in the trivial sense that the estimate (1.5) of course implies
that T is a contraction, but also in the sense that one cannot improve the estimate without further
conditions: If H = L2(D) and (T h)(z) = zh(z) is multiplication with the complex coordinate,
then ‖f (T )‖ = ‖f ‖∞ for any f ∈ C[z]. A natural question then is to ask which operators satisfy
the slightly weaker estimate ∥∥f (T )

∥∥ � ‖f ‖∞
(
f ∈ C[z])

(called “polynomial boundedness of T ”). On a general Banach space this may fail even for a
contraction: simply take X = �1(Z) and T the shift operator, given by (T x)n = xn+1, n ∈ Z,
x ∈ �1(Z). On the other hand, Lebow [20] has shown that even on a Hilbert space polynomial
boundedness of an operator T may fail if it is only assumed to be power-bounded, i.e., if one has
merely supn∈N ‖T n‖ < ∞ instead of ‖T ‖ � 1. The class of power-bounded operators on Hilbert
spaces is notoriously enigmatic, and it can be considered one of the most important problems in
operator theory to find good functional calculus estimates for this class.

Let us shortly comment on the continuous case. Here one is given a strongly continuous (in
short: C0-)semigroup (T (s))s�0 of operators on a Banach space X, and one considers integrals
of the form ∫

R+

T (s)μ(ds), (1.6)

where we assume for simplicity that the support of the measure μ is bounded. We shall use only
basic results from semigroup theory, and refer to [1,10] for further information. The generator
of the semigroup (T (s))s�0 is a closed and in general unbounded operator −A satisfying

(λ + A)−1 =
∞∫

e−λsT (s)ds (1.7)
0
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for Reλ large enough. The generator is densely defined, i.e., its domain dom(A) is dense in X.
In this paper we exclusively deal with semigroups satisfying a polynomial growth ‖T (s)‖ �
(1 + s)α for some α � 0, and hence (1.7) holds at least for all Reλ > 0. One writes T (s) = e−sA

for s � 0 and, more generally,

(Lμ)(A) :=
∫

R+

T (s)μ(ds)

where

(Lμ)(z) :=
∫

R+

e−zs μ(ds)

is the Laplace transform of μ. So in the continuous case the Laplace transform takes the role
of the Taylor series in the discrete case. Asking for good estimates for operators of the form
(1.6) is as asking for functional calculus estimates for the operator A. The continuous version of
von Neumann’s inequality states that if X = H is a Hilbert space and if ‖T (s)‖ � 1 for all s � 0
(i.e., if T is a contraction semigroup), then

∥∥f (A)
∥∥ � ‖f ‖∞ (f = Lμ)

where ‖f ‖∞ is the norm of f in the Banach algebra H∞(C+) of bounded analytic functions on
the open half-plane C+ := {z ∈ C | Re z > 0}, see [12, Theorem 7.1.7].

There are similarities in the discrete and in the continuous case, but also characteristic differ-
ences. The discrete case is usually a little more general, shows more irregularities, and often it is
possible to transfer results from the discrete to the continuous case. (However, this may become
quite technical, and we prefer direct proofs in the continuous case whenever possible.) In the con-
tinuous case, the role of power-bounded operators is played by bounded semigroups, and similar
to the discrete case, the class of bounded semigroups on Hilbert spaces appears to be rather enig-
matic. In particular, there is a continuous analogue of Lebow’s result due to Le Merdy [21], cf.
also [12, Section 9.1.3]. And there remain some notorious open questions involving the func-
tional calculus, e.g., the power-boundedness of the Cayley transform of the generator, cf. [9] and
the references therein.

The strongest results in the discrete case obtained so far can be found in the remarkable paper
[26] by Peller from 1982. One of Peller’s results is that if T is a power-bounded operator on a
Hilbert space H , then

∥∥f (T )
∥∥ � ‖f ‖B0

∞,1

(
f ∈ C[z])

where B0
∞,1(D) is the so-called analytic Besov algebra on the disc. (See Section 5 below for a

precise definition.)
In 2005, Vitse [27] made a major advance in showing that Peller’s Besov class estimate still

holds true on general Banach spaces if the power-bounded operator T is actually of Tadmor–Ritt
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type, i.e., satisfies the “analyticity condition”

sup
n�0

∥∥n
(
T n+1 − T n

)∥∥ < ∞.

She moreover established in [28] an analogue for strongly continuous bounded analytic semi-
groups. Whereas Peller’s results rest on Grothendieck’s inequality (and hence are particular to
Hilbert spaces) Vitse’s approach is based on repeated summation/integration by parts, possible
because of the analyticity assumption.

In the present paper we shall complement Vitse’s result by devising an entirely new approach,
using our transference methods (Sections 4 and 5). In doing so, we avoid Grothendieck’s in-
equality and reduce the problem to certain Fourier multipliers on vector-valued function spaces.
By Plancherel’s identity, on Hilbert spaces these are convenient to estimate, but one can still
obtain positive results on Lp-spaces or on UMD spaces. Our approach works simultaneously in
the discrete and in the continuous case, and hence we do not only recover Peller’s original result
(Theorem 5.1) but also establish a complete continuous analogue (Theorem 5.3), conjectured
in [28]. Moreover, we establish an analogue of the Besov-type estimates for Lp-spaces and for
UMD spaces (Theorem 5.7). These results, however, are less satisfactory since the algebras of
Fourier multipliers on the spaces L2(R;X) and L2(Z;X) are not thoroughly understood if X is
not a Hilbert space.

In Section 6 we show how our transference methods can also be used to obtain “γ -versions”
of the Hilbert space results. The central notion here is the so-called γ -boundedness of an op-
erator family, a strengthening of operator norm boundedness. It is related to the notion of
R-boundedness and plays a major role in Kalton and Weis’ work [19] on the H∞-calculus. The
‘philosophy’ behind this theory is that to each Hilbert space result based on Plancherel’s theorem
there is a corresponding Banach space version, when operator norm boundedness is replaced by
γ -boundedness.

We give evidence to this philosophy by showing how our transference results enable one to
prove γ -versions of functional calculus estimates on Hilbert spaces. As examples, we recover the
γ -version of a result of Boyadzhiev and deLaubenfels, first proved by Kalton and Weis in [19]
(Theorem 6.5). Then we derive γ -versions of the Besov calculus theorems in both the discrete
and the continuous forms. The simple idea consists of going back to the original factorization
in the transference method, but exchanging the function spaces on which the Fourier multiplier
operators act from an L2-space into a γ -space. This idea is implicit in the original proof from
[19] and has been employed independently of us recently by Le Merdy [22].

Finally, in Section 7 we discuss consequences of our estimates for full functional calculi and
singular integrals for discrete and continuous semigroups. For instance, we prove in Theorem 7.1
that if (T (s))s�0 is any strongly continuous semigroup on a UMD space X, then for any 0 < a < b

the principal value integral

lim
ε↘0

∫
ε<|s−b|<a

T (s)x

s − b

exists for all x ∈ X. For C0-groups this is well known, cf. [14], but for semigroups which are not
groups, this is entirely new.
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Terminology. We use the common symbols N, Z, R, C for the sets of natural, integer, real and
complex numbers. In our understanding 0 is not a natural number, and we write

Z+ := {n ∈ Z | n � 0} = N ∪ {0} and R+ := {t ∈ R | t � 0}.

Moreover, D := {z ∈ C | |z| < 1} is the open unit disc, T := {z ∈ C | |z| = 1} is the torus, and
C+ := {z ∈ C | Re z > 0} is the open right half-plane.

We use X, Y , Z to denote (complex) Banach spaces, and A, B , C to denote closed possibly
unbounded operators on them. By L(X) we denote the Banach algebra of all bounded linear
operators on the Banach space X, endowed with the ordinary operator norm. The domain, kernel
and range of an operator A are denoted by dom(A), ker(A) and ran(A), respectively.

The Bochner space of equivalence classes of p-integrable X-valued functions is denoted by
Lp(R;X). If Ω is a locally compact space, then M(Ω) denotes the space of all bounded regular
Borel measures on Ω . If μ ∈ M(Ω) then suppμ denotes its topological support. If Ω ⊆ C is an
open subset of the complex plane, H∞(Ω) denotes the Banach algebra of bounded holomorphic
functions on Ω , endowed with the supremum norm ‖f ‖H∞(Ω) = sup{|f (z)| | z ∈ Ω}.

We shall need notation and results from Fourier analysis as collected in [12, Appendix E].
In particular, we use the symbol F for the Fourier transform acting on the space of (possibly
vector-valued) tempered distributions on R, where we agree that

F μ(t) :=
∫
R

e−ist μ(ds)

is the Fourier transform of a bounded measure μ ∈ M(R). A function m ∈ L∞(R) is called a
bounded Fourier multiplier on Lp(R;X) if there is a constant c � 0 such that

∥∥F −1(m · F f )
∥∥

p
� c ‖f ‖p (1.8)

holds true for all f ∈ L1(R;X) ∩ F −1(L1(R;X)). The smallest c that can be chosen in (1.8)
is denoted by ‖ · ‖Mp,X

. This turns the space Mp,X(R) of all bounded Fourier multipliers on
Lp(R;X) into a unital Banach algebra.

A Banach space X is a UMD space, if and only if the function t �→ sgn t is a bounded
Fourier multiplier on L2(R;X). Such spaces are the right ones to study singular integrals for
vector-valued functions. In particular, by results of Bourgain, McConnell and Zimmermann,
a vector-valued version of the classical Mikhlin theorem holds, see [12, Appendix E.6] as well
as Burkholder’s article [5] and the literature cited there. Each Hilbert space is UMD, and if X

is UMD, then Lp(Ω,Σ,μ;X) is also UMD whenever 1 < p < ∞ and (Ω,Σ,μ) is a measure
space.

The Fourier transform of μ ∈ �1(Z) is

μ̂(z) =
∑
n∈Z

μ(n)zn (z ∈ T).

Analogously to the continuous case, we form the algebra Mp,X(T) of functions m ∈ L∞(T)

which induce bounded Fourier multiplier operators on �p(Z;X), endowed with its natural norm.
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Finally, given a set A and two real-valued functions f,g : A → R we write

f (a) � g(a) (a ∈ A)

to abbreviate the statement that there is c � 0 such that f (a) � c g(a) for all a ∈ A.

2. Transference identities

We introduce the basic idea of transference. Let G be a locally compact group with left Haar
measure ds. Let S ⊆ G be a closed sub-semigroup of G and let

T : S → L(X)

be a strongly continuous representation of S on a Banach space X. Let μ be a (scalar) Borel
measure on S such that ∫

S

∥∥T (s)
∥∥ |μ|(ds) < ∞,

and let the operator Tμ ∈ L(X) be defined by

Tμx :=
∫
S

T (s)x μ(ds) (x ∈ X). (2.1)

The aim of transference is an estimate of ‖Tμ‖ in terms of a convolution operator involving μ.
The idea to obtain such an estimate is, in a first step, purely formal. To illustrate it we shall need
some preparation.

For a (measurable) function ϕ : S → C we denote by ϕT the pointwise product

(ϕT) : S → L(X), s �→ ϕ(s)T (s)

and by ϕμ the measure

(ϕμ)(ds) = ϕ(s)μ(ds).

In the following we do not distinguish between a function/measure defined on S and its extension
to G by 0 on G \ S. Also, for Banach spaces X, Y , Z and operator-valued functions F : G →
L(Z;Y) and H : G → L(Y ;X) we define the convolution H ∗ F : G → L(Z;X) formally by

(H ∗ F)(t) :=
∫
G

H(s)F
(
s−1t

)
ds (t ∈ G) (2.2)

in the strong sense, as long as this is well defined. (Actually, as we are to argue purely formally,
at this stage we do not bother too much about whether all things are well defined. Instead, we
shall establish formulae first and then explore conditions under which they are meaningful.)

Our first lemma expresses the fact that a semigroup representation induces representations of
convolution algebras on S.
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Lemma 2.1. Let G, S, T, X be as above and let ϕ,ψ : S → C be functions. Then, formally,

(ϕT) ∗ (ψT) = (ϕ ∗ ψ)T.

Proof. Fix t ∈ G. If s ∈ G is such that s /∈ S ∩ tS−1 then ϕ(s) = 0 (in case s /∈ S) or ψ(s−1t) = 0
(in case s /∈ tS−1). On the other hand, if s ∈ S ∩ tS−1 then s, s−1t ∈ S which implies that t ∈ S

and T (s)T (s−1t) = T (t). Hence, formally

(
(ϕT) ∗ (ψT)

)
(t) =

∫
G

(ϕT)(s)(ψT)
(
s−1t

)
ds

=
∫
G

ϕ(s)ψ
(
s−1t

)
T (s)T

(
s−1t

)
ds

=
∫

S∩tS−1

ϕ(s)ψ
(
s−1t

)
T (s)T

(
s−1t

)
ds

=
∫

S∩tS−1

ϕ(s)ψ
(
s−1t

)
ds T (t)

=
∫
G

ϕ(s)ψ
(
s−1t

)
ds T (t) = (

(ϕ ∗ ψ)T
)
(t). �

For a function F : G → X and a measure μ on G let us abbreviate

〈F,μ〉 :=
∫
G

F(s)μ(ds)

defined in whatever weak sense. We shall stretch this notation to apply to all cases where it
is reasonable. For example, μ could be a vector measure with values in X′ or in L(X). The
reflection F∼ of F is defined by

F∼ : G → X, F∼(s) := F
(
s−1).

If H : G → L(X) is an operator-valued function, then the convolution H ∗ F is defined also by
(2.2). Furthermore, we let

(μ ∗ F)(t) :=
∫
G

F
(
s−1t

)
μ(ds) (t ∈ G),

which is in coherence with the definitions above if μ has a density and scalars are identified with
their induced dilation operators.

The next lemma is almost a triviality.
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Lemma 2.2. Let H : G → L(X), F : G → X and let μ be a measure on G. Then

〈H ∗ F,μ〉 = 〈
H,μ ∗ F∼〉

formally.

Proof. Writing out the brackets into integrals, it is just Fubini’s theorem:

〈H ∗ F,μ〉 =
∫
G

∫
G

H(s)F
(
s−1t

)
ds μ(dt) =

∫
G

∫
G

H(s)F
(
s−1t

)
μ(dt)ds

=
∫
G

H(s)

∫
G

F∼(
t−1s

)
μ(dt)ds

=
∫
G

H(s)
(
μ ∗ F∼)

(s)ds = 〈
H,μ ∗ F∼〉

. �

If we combine Lemmas 2.1 and 2.2 we obtain the following.

Proposition 2.3. Let S be a closed sub-semigroup of G and let T : S → L(X) be a strongly
continuous representation. Let ϕ,ψ : S → C and let μ be a measure on S. Then, writing η :=
ϕ ∗ ψ ,

Tημ = 〈
T, (ϕ ∗ ψ)μ

〉 = 〈
ϕT,μ ∗ (ψT)∼

〉
formally.

This result can be interpreted as a factorization of the operator Tημ as

Φ(G;X)
Lμ

Ψ (G;X)

P

X
Tημ

ι

X

(2.3)

i.e., Tημ = P ◦ Lμ ◦ ι, where

• ι maps x ∈ X to the weighted orbit

(ιx)(s) := ψ
(
s−1)T (

s−1)x (s ∈ G);

• Lμ is the convolution operator with μ

Lμ(F) := μ ∗ F ;
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• P maps an X-valued function on G back to an element of X by integrating against ϕT:

PF := 〈ϕT,F 〉 =
∫
G

ϕ(t)T (t)F (t)dt,

• Φ(G;X),Ψ (G;X) are function spaces such that ι : X → Φ(G;X) and P : Ψ (G;X) → X

are meaningful and bounded.

We call a factorization of the form (2.3) a transference identity. It induces a transference estimate

‖Tημ‖L(X) � ‖P ‖‖Lμ‖L(Φ(G;X);Ψ (G;X))‖ι‖. (2.4)

3. Transference principles for groups

In the present section we shall explain that the classical transference principle of Berkson,
Gillespie and Muhly [2] for uniformly bounded groups and the recent one for general C0-groups
[16] are instances of the explained technique.

3.1. Unbounded C0-groups

We take G = S = R and let U = (U(s))s∈R : R → L(X) be a strongly continuous representa-
tion on the Banach space X. Then U is exponentially bounded, i.e., its exponential type

θ(U) := inf
{
ω � 0

∣∣ ∃M � 0:
∥∥U(s)

∥∥ � Meω|s| (s ∈ R)
}

is finite. We choose α > ω > θ(U) and take a measure μ on R such that

μω := cosh(ω ·)μ ∈ M(R)

is a finite measure. Then Uμ = ∫
R

U dμ is well defined. It turns out [16] that one can factorize

η := 1

cosh(ω ·) = ϕ ∗ ψ

where ψ = 1/ cosh(α ·) and cosh(ω ·)ϕ = O(1). We obtain μ = ημω and, writing μω for μ in
Proposition 2.3,

Uμ = Uημω = 〈
ϕU,μω ∗ (ψU)∼

〉 = P ◦ Lμω ◦ ι. (3.1)

If −iA is the generator of U and f = F μ is the Fourier transform of μ, one writes

f (A) := Uμ =
∫
R

U(s)μ(ds),

which is well defined because the Fourier transform is injective. Applying the transference esti-
mate (2.4) with Φ(R;X) = Ψ (R;X) := Lp(R;X) as the function spaces as in [16] leads to the
estimate
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∥∥f (A)
∥∥ � 1

2

(∥∥f (· + iω)
∥∥

Mp,X(R)
+ ∥∥f (· − iω)

∥∥
Mp,X(R)

)
,

where Mp,X(R) denotes the space of all (scalar-valued) bounded Fourier multipliers on
Lp(R;X). In the case that X is a UMD space one can now use the Mikhlin type result for
Fourier multipliers on Lp(R;X) to obtain a generalization of the Hieber–Prüss theorem [17]
to unbounded groups, see [16, Theorem 3.6].

If p = 2 and X = H , this Fourier multiplier norm coincides with the sup-norm by Plancherel’s
theorem, and by the maximum principle one obtains the H∞-estimate∥∥f (A)

∥∥ � ‖f ‖H∞(St(ω)), (3.2)

where

St(ω) := {
z ∈ C

∣∣ |Im z| < ω
}

is the vertical strip of height 2ω, symmetric about the real axis. This result is originally due to
Boyadzhiev and deLaubenfels [4] and is closely related to McIntosh’s theorem on H∞-calculus
for sectorial operators with bounded imaginary powers from [23], see [16, Corollary 3.7] and
[12, Chapter 7].

3.2. Bounded groups: the classical case

The classical transference principle, in the form put forward by Berkson, Gillespie and Muhly
in [2] reads as follows: Let G be a locally compact amenable group, let U = (U(s))s∈G be
a uniformly bounded, strongly continuous representation of G on a Banach space X, and let
p ∈ [1,∞). Then ∥∥∥∥∫

G

U(s)μ(ds)

∥∥∥∥ � M2‖Lμ‖L(Lp(G;X))

for every bounded measure μ ∈ M(G). (Here M := sups∈G ‖U(s)‖.)
We shall review its proof in the special case of G = R (but the general case is analogous using

Følner’s condition, see [7, p. 10]). First, fix n,N > 0 and suppose that supp(μ) ⊆ [−N,N ]. Then

η := ϕ ∗ ψ := 1

2n
1[−n,n] ∗ 1[−N−n,N+n] = 1 on [−N,N ].

So ημ = μ; applying the transference estimate (2.4) with the function space Φ(R;X) =
Ψ (R;X) := Lp(R;X) together with Hölder’s inequality yields

‖Tμ‖ � M2‖ϕ‖p′‖ψ‖p‖Lμ‖L(Lp(R;X))

= M2(2n)
1
p′ −1

(2N + 2n)
1
p ‖Lμ‖L(Lp(R;X))

= M2
(

1 + N

n

)1/p

‖Lμ‖L(Lp(R;X)).

Finally, let n → ∞ and approximate a general μ ∈ M(R) by measures of finite support.
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Remark 3.1. This proof shows a feature to which we pointed already in the introduction, but
which was not present in the case of unbounded groups treated above. Here, an additional op-
timization argument appears which is based on some freedom in the choice of the auxiliary
functions ϕ and ψ . Indeed, ϕ and ψ can vary as long as μ = (ϕ ∗ ψ)μ, which amounts to
ϕ ∗ ψ = 1 on supp(μ).

Remark 3.2. A transference principle for bounded cosine functions instead of groups was for the
first time established and applied in [15].

4. A transference principle for discrete and continuous operator semigroups

In this section we shall apply the transference method from Section 2 to operator semigroups,
i.e., strongly continuous representations of the semigroup R+ (continuous case) or Z+ (discrete
case).

4.1. The continuous case

Let T = (T (s))s�0 be a strongly continuous (i.e. C0-) one-parameter semigroup on a (non-
trivial) Banach space X. By standard semigroup theory [10], T is exponentially bounded, i.e.,
there exist M,ω � 0 such that ‖T (s)‖ � Meωs for all s � 0. We consider complex measures μ

on R+ := [0,∞) such that

∞∫
0

∥∥T (s)
∥∥ |μ|(ds) < ∞.

If μ is Laplace transformable and if f = Lμ is its Laplace(–Stieltjes) transform

Lμ(z) =
∞∫

0

e−zs μ(ds),

then we use (similar to the group case) the abbreviation

f (A) := Tμ =
∞∫

0

T (s)μ(ds)

where −A is the generator of the semigroup T. The mapping f �→ f (A) is well defined since
the Laplace transform is injective, and is called the Hille–Phillips functional calculus for A, see
[12, Section 3.3] and [18, Chapter XV].

Theorem 4.1. Let p ∈ (1,∞). Then there is a constant cp � 0 such that

‖Tμ‖ � cp

(
1 + log(b/a)

)
M(b)2 ‖Lμ‖L(Lp(R;X)) (4.1)

whenever the following hypotheses are satisfied:
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(1) T = (T (s))s�0 is a C0-semigroup on the Banach space X;
(2) 0 < a < b < ∞;
(3) M(b) := sup0�s�b ‖T (s)‖;
(4) μ ∈ M(R+) such that supp(μ) ⊆ [a, b].

Proof. Take ϕ ∈ Lp′
(0, b), ψ ∈ Lp(0, b) such that ϕ ∗ ψ = 1 on [a, b], and let η := ϕ ∗ ψ . Then

ημ = μ and Proposition 2.3 yields

Tμ = Tημ = 〈
ϕT,μ ∗ (ψT)∼

〉
.

Hölder’s inequality leads to a norm estimate

‖Tμ‖ � M(b)2‖ϕ‖p′‖ψ‖p‖Lμ‖L(Lp(R;X)).

Hence, to prove the theorem it suffices to show that

c(a, b) := inf
{‖ϕ‖p′‖ψ‖p: ϕ ∗ ψ = 1 on [a, b]} � cp log

(
1 + (b/a)

)
with cp independent of a and b. This is done in Lemma A.1. �
Remarks 4.2.

(1) The conclusion of the theorem is also true in the case p = 1 or p = ∞, but in this case

‖Lμ‖L(Lp(R;X)) = ‖μ‖M(R+)

is just the total variation norm of μ. And clearly ‖Tμ‖ � M(b)‖μ‖M, which is stronger than
(4.1).

(2) In functional calculus terms, (4.1) takes the form

∥∥f (A)
∥∥ � cp

(
1 + log(b/a)

)
M(b)2‖f ‖AMp,X(C+)

where f = Lμ and

A Mp,X(C+) := {
f ∈ H∞(C+)

∣∣ f (i·) ∈ Mp,X(R)
}

is the (scalar) analytic Lp(R;X)-Fourier multiplier algebra, endowed with the norm

‖f ‖AMp,X(C+) := ∥∥f (i·)∥∥Mp,X(R)
.

Let us now state a corollary for semigroups with polynomial growth type.

Corollary 4.3. Let p ∈ (1,∞). Then there is a constant cp � 0 such that the following is true. If
−A generates a C0-semigroup T = (T (s))s�0 on a Banach space X such that there are M,α � 0
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with ∥∥T (s)
∥∥ � M(1 + s)α (s � 0),

then ∥∥f (A)
∥∥ � cp M2(1 + b)2α

(
1 + log(b/a)

)‖f ‖AMp,X(C+) (4.2)

for 0 < a < b < ∞, f = Lμ and μ ∈ M[a, b].

The case that α = 0, i.e., the case of a bounded semigroup, is particularly important, hence
we state it separately.

Corollary 4.4. Let p ∈ (1,∞). Then there is a constant cp � 0 such that the following is true.
If −A generates a uniformly bounded C0-semigroup T = (T (s))s�0 on a Banach space X then,
with M := sups�0 ‖T (s)‖,∥∥f (A)

∥∥ � cp M2(1 + log(b/a)
)‖f ‖AMp,X(C+) (4.3)

for 0 < a < b < ∞, f = Lμ and μ ∈ M[a, b].

Remark 4.5. If X = H is a Hilbert space and p = 2, by Plancherel’s theorem and the maximum
principle, Eq. (4.3) becomes∥∥f (A)

∥∥ � M2(1 + log(b/a)
)‖f ‖H∞(C+) (4.4)

where f = Lμ is the Laplace–Stieltjes transform of μ. A similar estimate has been established by
Vitse [28, Lemma 1.5] on a general Banach space X, but with the semigroup being holomorphic
and bounded on a sector.

4.2. The discrete case

We now turn to the situation of a discrete operator semigroup, i.e., the powers of a bounded
operator. Let T ∈ L(X) be a bounded operator and T = (T n)n∈Z+ the corresponding semigroup
representation. If μ ∈ �1(Z+) is such that

∑∞
n=0 |μ(n)|‖T n‖ < ∞ then (2.1) takes the form

Tμ =
∞∑

n=0

μ(n)T n.

Denoting μ̂(z) := ∑∞
n=0 μ(n)zn for |z| � 1 we also write μ̂(T ) := Tμ.

Theorem 4.6. Let p ∈ (1,∞). Then there is a constant cp � 0 such that∥∥μ̂(T )
∥∥ � cp

(
1 + log(b/a)

)
M(b)2‖Lμ‖L(�p(Z;X)) (4.5)

whenever the following hypotheses are satisfied:
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(1) T is a bounded operator on a Banach space X;
(2) a, b ∈ Z+ with 1 � a � b;
(3) M(b) := sup0�n�b ‖T n‖;
(4) μ ∈ �1(Z+) such that supp(μ) ⊆ [a, b].

Proof. This is completely analogous to the continuous situation. Take ϕ ∈ �p′
(Z+), ψ ∈ �p(Z+)

such that supp(ϕ), supp(ψ) ⊆ [0, b] and η := ϕ ∗ ψ = 1 on [a, b]. Then ημ = μ and Proposi-
tion 2.3 yields

μ̂(T ) = Tμ = Tημ = 〈
ϕT,μ ∗ (ψT)∼

〉
.

Hölder’s inequality leads to a norm estimate

‖Tμ‖ � M(b)2‖ϕ‖p′‖ψ‖p‖Lμ‖L(�p(Z;X)).

Minimizing with respect to ϕ,ψ yields ‖Tμ‖ � c(a, b)M(b)2‖Lμ‖L(�p(Z;X)), with

c(a, b) := inf
{‖ϕ‖p′‖ψ‖p: ϕ ∈ �p′

(Z+), ψ ∈ �p(Z+), ϕ ∗ ψ = 1 on [a, b]}.
(Note that we may allow infinite support for ϕ,ψ in this definition since the values of ϕ,ψ on
[b + 1,∞) don’t affect the values of ϕ ∗ ψ on [0, b].) Applying Lemma A.2 now concludes the
proof. �
Remarks 4.7.

(1) As in the continuous case, the assertion remains true for p = 1,∞, but is weaker than the
obvious estimate ‖μ̂‖ � M(b)‖μ‖�1 .

(2) If we write f = μ̂, (4.5) takes the form∥∥f (T )
∥∥ � cp

(
1 + log(b/a)

)
M(b)2‖f ‖AMp,X(D).

Here

A Mp,X(D) := {
f ∈ H∞(D)

∣∣ f |T ∈ Mp,X(T)
}

is the (scalar) analytic �p(Z;X)-Fourier multiplier algebra, endowed with the norm

‖f ‖AMp,X(D) = ‖f |T‖Mp,X(T).

Similar to the continuous case we state a consequence for operators with polynomially grow-
ing powers.

Corollary 4.8. Let p ∈ (1,∞). Then there is a constant cp � 0 such that the following is true. If
T is a bounded operator on a Banach space X such that there are M,α � 0 with∥∥T n

∥∥ � M(1 + n)α (n � 0),
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then ∥∥f (T )
∥∥ � cp M2(1 + b)2α

(
1 + log(b/a)

)‖f ‖AMp,X(D) (4.6)

for f = μ̂, μ ∈ �1([a, b] ∩ Z), a, b ∈ Z+ with 1 � a � b.

Remark 4.9. For the applications to Peller’s theorem in the next section the exact asymptotics
of c(a, b) is irrelevant, and one can obtain an effective estimate with much less effort. In the
continuous case, the identity c(a, b) = c(1, b/a) (cf. the proof of Lemma A.1) already shows
that c(a, b) only depends on b/a. For the special choice of functions

ϕ = 1[0,1], ψ = 1[0,b]

one has ‖ϕ‖p′ = 1 and ‖ψ‖p = b1/p . Consequently c(1, b) � b1/p and symmetrizing yields

∥∥f (A)
∥∥ � M(b)2(b/a)1/max(p,p′)‖f ‖AMp,X(C).

In the discrete case take η as in the proof of Lemma A.2 and factorize

η̂ = ϕ̂ · ψ̂ = 1 − za

1 − z
· z

a(1 − z)
.

Then ‖ϕ1[0,b]‖p′
p′ = a and ‖ψ1[0,b]‖p

p = b/ap , hence

c(a, b) � ‖ϕ1[0,b]‖p′‖ψ1[0,b]‖p = a1/p′
b1/pa−1 = (b/a)1/p.

Symmetrizing yields the estimate

∥∥f (T )
∥∥ � M2(b/a)1/max(p,p′)‖f ‖AMp,X(D)

similar to the continuous case.

5. Peller’s theorems

The results can be used to obtain a new proof of some classical results of Peller’s about Besov
class functional calculi for bounded Hilbert space operators with polynomially growing powers
from [26]. In providing the necessary notions we essentially follow Peller, changing the notation
slightly (cf. also [27]).

For an integer n � 1 let

ϕn(k) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, k � 2n−1,

1
2n−1 · (k − 2n−1), 2n−1 � k � 2n,

1
2n · (2n+1 − k), 2n � k � 2n+1,

n+1
0, 2 � k.
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That is, ϕn is supported in [2n−1,2n+1], zero at the endpoints, ϕn(2n) = 1 and linear on each of
the intervals [2n−1,2n] and [2n,2n+1]. Let ϕ0 := (1,1,0, . . .), then

∞∑
n=0

ϕn = 1Z+ ,

the sum being locally finite. For s � 0 the Besov class Bs
∞,1(D) is defined as the class of analytic

functions f on the unit disc D satisfying

‖f ‖Bs
∞,1

:=
∞∑

n=0

2ns‖ϕ̂n ∗ f ‖H∞(D) < ∞.

That is, if f = ∑
k�0 αkz

k , α := (αk)k�0, then

‖f ‖Bs
∞,1

=
∞∑

n=0

2ns‖ϕ̂nα‖H∞(D) < ∞.

Following Peller [26, p. 347], one has

f ∈ Bs
∞,1(D) ⇐⇒

1∫
0

(1 − r)m−s−1
∥∥f (m)

∥∥
L∞(rT)

dr < ∞,

where m is an arbitrary integer such that m > s. Since we only consider s � 0, we have

Bs
∞,1(D) ⊆ H∞(D)

and it is known that Bs
∞,1(D) is a Banach algebra in which the set of polynomials is dense. The

following is essentially [26, p. 354, bottom line]; we give a new proof.

Theorem 5.1 (Peller 1982). There exists a constant c � 0 such that the following holds: Let X

be a Hilbert space, and let T ∈ L(X) such that∥∥T n
∥∥ � M(1 + n)α (n � 0)

with α � 0 and M � 1. Then ∥∥f (T )
∥∥ � c 9αM2‖f ‖B2α∞,1(D)

for every polynomial f .

Proof. Let f = ν̂ = ∑
k�0 νnz

n, and ν has finite support. If n � 1, then ϕnν has support in

[2n−1,2n+1], so we can apply Corollary 4.8 with p = 2 to obtain∥∥ϕ̂nν(T )
∥∥ � c2 M2(1 + 2n+1)2α

(1 + log 4)‖ϕ̂nν‖AM (D).
2,X
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Since X is a Hilbert space, Plancherel’s theorem (and standard Hardy space theory) yields that
A M2,X(D) = H∞(D) with equal norms. Moreover, 1 + 2n+1 � 3 · 2n, and hence we obtain

∥∥ϕ̂nν(T )
∥∥ � c2 9αM2 · 2n(2α)‖ϕ̂nν‖H∞(D).

Summing up, we arrive at

∥∥f (T )
∥∥ �

∑
n�0

∥∥ϕ̂nν(T )
∥∥

� |ν0| + |ν1|M2α + c2 9αM2
∑
n�1

2n(2α)‖ϕ̂nν‖∞

� c 9αM2‖f ‖B2α∞,1(D)

for some constant c � 0. �
Remark 5.2. N. Nikolski has observed that Peller’s Theorem 5.1 is only interesting if α � 1/2.
Indeed, define

Aα(D) :=
{
f =

∑
k�0

akz
k
∣∣∣ ‖f ‖Aα :=

∑
k�0

|ak|(1 + k)α < ∞
}
.

Then Aα(D) is a Banach algebra with respect to the norm ‖ · ‖Aα , and one has the obvious
estimate

∥∥f (T )
∥∥ � M‖f ‖Aα

(
f ∈ Aα(D)

)
if ‖T k‖ � M(1 + k)α , k ∈ N. This is the ‘trivial’ functional calculus for T we mentioned in the
introduction, see (1.4). For f ∈ Bα+1/2

∞,1 (D) we have

‖f ‖Aα = |a0| +
∑
k�0

∑
2k�n<2k+1

|an|(1 + n)α

� |a0| +
∑
k�0

2(k+1)α
∑

2k�n<2k+1

|an|

� |a0| +
∑
k�0

2(k+1)α2k/2
( ∑

2k�n<2k+1

|an|2
)1/2

� |a0| +
∑
k�0

2α2(α+1/2)k
(‖ϕ̂k−1 ∗ f ‖2 + ‖ϕ̂k ∗ f ‖2 + ‖ϕ̂k+1 ∗ f ‖2

)

�
∞∑

2(α+1/2)k‖ϕ̂k ∗ f ‖∞ = ‖f ‖
Bα+1/2

∞,1

k=0
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by the Cauchy–Schwarz inequality, Plancherel’s theorem and the fact that H∞(D) ⊆ H2(D).
This shows that Bα+1/2

∞,1 (D) ⊆ Aα(D). Hence, if α � 1/2, then 2α � α + 1/2, and therefore

B2α
∞,1(D) ⊆ Bα+1/2

∞,1 (D) ⊆ Aα(D), and the Besov calculus is weaker than the trivial Aα-calculus.
On the other hand, for α > 0, the example

f (z) =
∞∑

n=0

2−2αnz2n ∈ Aα(D) \ B2α
∞,1(D)

shows that Aα(D) is not included into B2α
∞,1(D), and so the Besov calculus does not cover the

trivial calculus. (By a straightforward argument one obtains the embedding Aα(D) ⊆ Bα
∞,1(D).)

5.1. An analogue in the continuous case

Peller’s theorem has an analogue for continuous one-parameter semigroups. The role of the
unit disc D is taken by the right half-plane C+, the power series representation of a function on
D is replaced by a Laplace transform representation of a function on C+. However, a subtlety
appears that is not present in the discrete case, namely the possibility (or even necessity) to
consider also dyadic decompositions “at zero”. This leads to so-called “homogeneous” Besov
spaces, but due to the special form of the estimate (4.2) we have to treat the decomposition at 0
different from the decomposition at ∞.

To be more precise, consider the partition of unity

ϕn(s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 � s � 2n−1,

1
2n−1 · (s − 2n−1), 2n−1 � s � 2n,

1
2n · (2n+1 − s), 2n � s � 2n+1,

0, 2n+1 � s

for n ∈ Z. Then
∑

n∈Z
ϕn = 1(0,∞), the sum being locally finite in (0,∞). For s � 0, an analytic

function f : C+ → C is in the (mixed-order homogeneous) Besov space B0,s
∞,1(C+) if f (∞) :=

limt→∞ f (t) exists and

‖f ‖B0,s
∞,1

:= ∣∣f (∞)
∣∣ +

∑
n<0

‖Lϕn ∗ f ‖H∞(C+)

+
∑
n�0

2ns‖Lϕn ∗ f ‖H∞(C+) < ∞.

Here L denotes (as before) the Laplace transform

Lϕ(z) :=
∞∫

0

e−szϕ(s)ds (Re z > 0).

Since we are dealing with s � 0 only, it is obvious that B0,s
∞,1(C+) ⊆ H∞(C+). Clearly, our

definition of B0,s
(C+) is a little sloppy, and to make it rigorous we would need to employ the
∞,1
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theory of Laplace transforms of distributions. However, we shall not need that here, because
we shall use only functions of the form f = Lμ, where μ is a bounded measure with compact
support in [0,∞]. In this case

Lϕn ∗ f = Lϕn ∗ Lμ = L(ϕnμ)

by a simple computation.

Theorem 5.3. There is an absolute constant c � 0 such that the following holds: Let X be a
Hilbert space, and let −A be the generator of a strongly continuous semigroup T = (T (s))s∈R+
on X such that ∥∥T (s)

∥∥ � M(1 + s)α (n � 0)

with α � 0 and M � 1. Then ∥∥f (A)
∥∥ � c 9αM2‖f ‖B0,2α

∞,1 (C+)

for every f = Lμ, μ ∈ M(R+) with compact support.

Proof. The proof is analogous to the proof of Theorem 5.1. One has

μ = f (∞)δ0 +
∑
n<0

ϕnμ +
∑
n�0

ϕnμ

where the first series converges in M[0,1] and the second is actually finite. Hence∥∥f (A)
∥∥ �

∣∣f (∞)
∣∣ +

∑
n∈Z

∥∥[
L(ϕnμ)

]
(A)

∥∥
�

∣∣f (∞)
∣∣ +

∑
n∈Z

M2(1 + 2n+1)2α‖Lϕnμ‖L(L2(R;X))

= ∣∣f (∞)
∣∣ + M2

∑
n∈Z

(
1 + 2n+1)2α‖Lϕn ∗ f ‖H∞(C+)

�
∣∣f (∞)

∣∣ + M2
∑
n<0

22α‖Lϕn ∗ f ‖H∞(C+)

+ M2
∑
n�0

(
3 · 2n

)2α‖Lϕn ∗ f ‖H∞(C+)

� M29α‖f ‖B0,2α
∞,1

,

by Plancherel’s theorem and Corollary 4.3. �
Remark 5.4. The space B0,0

∞,1(C+) has been considered by Vitse in [28] under the name

B0 (C+), and we refer to that paper for more information. In particular, Vitse proves that
∞,1
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f ∈ B0,0
∞,1(C+) if and only if f ∈ H∞(C+) and

∞∫
0

sup
s∈R

∣∣f ′(t + is)
∣∣dt < ∞.

Let us formulate the special case α = 0 as a corollary, with a slight generalization.

Corollary 5.5. There is a constant c � 0 such that the following is true. Whenever −A generates
a strongly continuous semigroup (T (s))s�0 on a Hilbert space such that ‖T (s)‖ � M for all
s � 0, then ∥∥f (A)

∥∥ � cM2‖f ‖B0,0
∞,1(C+)

(5.1)

for all f = Lμ, μ ∈ M(R+).

Proof. It is easy to see that the Laplace transform L : M(R+) → B0,0
∞,1(C+) is bounded. Since

(5.1) is true for measures with compact support and such measures are dense in M(R+), an
approximation argument proves the claim. �
Remarks 5.6.

(1) Vitse [28, Introduction, p. 248] in a short note suggests to prove Corollary 5.5 by a discretiza-
tion argument using Peller’s Theorem 5.1 for α = 0. This is quite plausible, but no details
are given in [28] and it seems that further work is required to make this approach rigorous.

(2) (Cf. Remark 4.9.) To prove Theorems 5.1 and 5.3 we did not make full use of the logarithmic
factor log(1 + b/a) but only of the fact that it is constant in n if [a, b] = [2n−1,2n+1].
However, as Vitse notes in [28, Remark 4.2], the logarithmic factor appears a fortiori; indeed,
if suppμ ⊆ [a, b] then if we write

μ =
∑
n∈Z

ϕnμ

the number N = card{n ∈ Z | ϕnμ �= 0} of non-zero terms in the sum is proportional to
log(1 + b/a). Hence, for the purposes of functional calculus estimates neither Lemma A.1
nor A.2 is necessary.

(3) (Cf. Remark 5.2.) Different to the discrete case, the Besov estimates are not completely
uninteresting in the case α � 1/2, because α affects only the decomposition at ∞.

5.2. Generalizations for UMD spaces

Our proofs of Peller’s theorems use essentially that the underlying space is a Hilbert space.
Indeed, we have applied Plancherel’s theorem in order to estimate the Fourier multiplier norm
of a function by its L∞-norm. Hence we do not expect Peller’s theorem to be valid on other
Banach spaces without modifications. In the next section below we shall show that replacing
ordinary boundedness of an operator family by the so-called γ -boundedness, Peller’s theorems
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carry over to arbitrary Banach spaces. Here we suggest a different path, namely to replace the
algebra H∞(C+) in the construction of the Besov space B0,s

∞,1 by the analytic multiplier algebra
A Mp,X(C+), introduced in Remark 4.2(2). We restrict ourselves to the continuous case, leaving
the discrete version to the reader.

To simplify notation, let us abbreviate Ap := A Mp,X(C+). For s � 0 and f : C+ → C we
say f ∈ B0,s

1 [Ap] if f ∈ H∞(C+), f (∞) := limt→∞ f (t) exists and

‖f ‖B0,s
1 [Ap] := ∣∣f (∞)

∣∣ +
∑
n<0

‖Lϕn ∗ f ‖Ap
+

∑
n�0

2ns‖Lϕn ∗ f ‖Ap
< ∞.

Then the following analogue of Theorem 5.3 holds, with a similar proof.

Theorem 5.7. Let p ∈ (1,∞). Then there is a constant cp � 0 such that the following holds: Let
−A be the generator of a strongly continuous semigroup T = (T (s))s∈R+ on a Banach space X

such that ∥∥T (s)
∥∥ � M(1 + s)α (n � 0)

with α � 0 and M � 1. Then ∥∥f (A)
∥∥ � cp 9αM2‖f ‖B0,2α

1 [Mp]

for every f = Lμ, μ ∈ M(R+) with compact support.

For X = H is a Hilbert space and p = 2 one is back at Theorem 5.3. For special cases of
X—typically if X is an L1- or a C(K)-space—one has B0,0

1 [Mp] = M(R+). But if X is a UMD

space, one has more informative results. To formulate them let

H∞
1 (C+) := {

f ∈ H∞(C+)
∣∣ zf ′(z) ∈ H∞(C+)

}
be the analytic Mikhlin algebra. This is a Banach algebra with respect to the norm

‖f ‖H∞
1

:= sup
z∈C+

∣∣f (z)
∣∣ + sup

z∈C+

∣∣zf ′(z)
∣∣.

If X is a UMD space then the vector-valued version of the Mikhlin theorem [12, Theorem E.6.2]
implies that one has a continuous inclusion

H∞
1 (C+) ⊆ A Mp,X(C+)

where the embedding constant depends on p and (the UMD constant of) X. If one defines
B0,s

1 [H∞
1 ] analogously to B0,s

1 [Mp] above, then we obtain the following.

Corollary 5.8. If X is a UMD space, then Theorem 5.7 is still valid when A Mp,X(C+) is re-
placed by H∞(C+) and the constant cp is allowed to depend on (the UMD-constant of ) X.
1
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Now, fix θ ∈ (π/2,π) and consider the sector

Σθ := {
z ∈ C \ {0} ∣∣ |arg z| < θ

}
.

Then H∞(Σθ) ⊆ H∞
1 (C+), as follows from an application of the Cauchy integral formula, see

[12, Lemma 8.2.6]. Hence, if we define B0,s
∞,1(Σθ ) by replacing the space H∞(C+) in the defini-

tion of B0,s
∞,1(C+) by H∞(Σθ ) we obtain the following UMD-version of Peller’s theorem.

Corollary 5.9. Let θ ∈ (π/2,π), let X be a UMD space, and let p ∈ (1,∞). Then there is a
constant c = c(θ,X,p) such that the following holds. Let −A be the generator of a strongly
continuous semigroup T = (T (s))s∈R+ on X such that∥∥T (s)

∥∥ � M(1 + s)α (s � 0)

with α � 0 and M � 1. Then ∥∥f (A)
∥∥ � c 9αM2‖f ‖B0,2α

∞,1 (Σθ )

for every f = Lμ, μ ∈ M(R+) with compact support.

Note that Theorem 5.3 above simply says that if X is a Hilbert space, one can choose θ = π/2
in Corollary 5.9.

Remark 5.10. It is natural to ask whether B0,s
1 [H∞

1 ] or B0,2α
∞,1 (Σθ ) are actually Banach algebras.

This is probably not true, as the underlying Banach algebras H∞
1 (C+) and H∞(Σθ ) are not

invariant under shifting along the imaginary axis, and hence are not L1(R)-convolution modules.
Consequently, Corollaries 5.8 and 5.9 are highly unsatisfactory from a functional calculus point
of view.

6. Generalizations involving γ -boundedness

At the end of the previous section we discussed one possible generalization of Peller’s theo-
rems, involving still an assumption on the Banach space and a modification of the Besov algebra,
but no additional assumption on the semigroup. Here we follow a different path, strengthen-
ing the requirements on the semigroups under consideration. Vitse has shown in [27,28] that
the Peller-type results remain true without any restriction on the Banach space if the semigroup
is bounded analytic (in the continuous case), or the operator is a Tadmor–Ritt operator (in the
discrete case). (These two situations correspond to each other in a certain sense, see e.g. [12,
Section 9.2.4].)

Our approach here is based on the ground-breaking work of Kalton and Weis, involving the
concept of γ -boundedness. This is a stronger notion of boundedness of a set of operators between
two Banach spaces. The “philosophy” of the Kalton–Weis approach is that every Hilbert space
theorem which rests on Plancherel’s theorem (and no other result specific for Hilbert spaces) can
be transformed into a theorem on general Banach spaces, when operator norm boundedness (of
operator families) is replaced by γ -boundedness.
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The idea is readily sketched. In the proof of Theorem 5.3 we used the transference identity
(2.3) with the function space L2(R;X) and factorized the operator Tμ over the Fourier multi-
plier Lμ. If X is a Hilbert space, the 2-Fourier multiplier norm of Lμ is just ‖Lμ‖∞ and this led
to the Besov class estimate. We now replace the function space L2(R;X) by the space γ (R;X);
in order to make sure that the transference identity (2.3) remains valid, we need that the em-
bedding ι and the projection P from (2.3) are well defined. And this is where the concept of
γ -boundedness comes in. Once we have established the transference identity, we can pass to the
transference estimate; and since L∞(R) is also the Fourier multiplier algebra of γ (R;X), we
recover the infinity norm as in the L2(R;H)-case from above.

We shall now pass to more rigorous mathematics, starting with a (very brief) introduction to
the theory of γ -spaces. For a deeper account we refer to [24].

6.1. γ -summing and γ -radonifying operators

Let H be a Hilbert space and X a Banach space. An operator T : H → X is called γ -summing
if

‖T ‖γ := sup
F

E

(∥∥∥∥∑
e∈F

γe ⊗ T e

∥∥∥∥2

X

)1/2

< ∞,

where the supremum is taken over all finite orthonormal systems F ⊆ H and (γe)e∈F is an inde-
pendent collection of standard Gaussian random variables on some probability space. It can be
shown that in this definition it suffices to consider only finite subsets F of some fixed orthonormal
basis of H . We let

γ∞(H ;X) := {T : H → X | T is γ -summing}

the space of γ -summing operators of H into X. This is a Banach space with respect to the norm
‖ · ‖γ . The closure in γ∞(H ;X) of the space of finite rank operators is denoted by γ (H ;X), and
its elements T ∈ γ (H ;X) are called γ -radonifying. By a theorem of Hoffman–Jørgensen and
Kwapień, if X does not contain c0 then γ (H ;X) = γ∞(H ;X), see [24, Thm. 4.3].

From the definition of the γ -norm the following important ideal property of the γ -spaces is
quite straightforward [24, Thm. 6.2].

Lemma 6.1 (Ideal property). Let Y be another Banach space and K another Hilbert space, let
L : X → Y and R : K → H be bounded linear operators, and let T ∈ γ∞(H ;X). Then

LT R ∈ γ∞(K;Y) and ‖LT R‖γ � ‖L‖L(X;Y)‖T ‖γ ‖R‖L(K;H).

If T ∈ γ (H ;X), then LT R ∈ γ (K;Y).

If g ∈ H we abbreviate g := 〈·, g〉, i.e., g �→ g is the canonical conjugate-linear bijection of
H onto its dual H . Every finite rank operator T : H → X has the form

T =
n∑

gn ⊗ xj ,
j=1
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and one can view γ (H ;X) as a completion of the algebraic tensor product H ⊗ X with respect
to the γ -norm. Since

‖g ⊗ x‖γ = ‖g‖H ‖x‖X = ‖g‖H ‖x‖X

for every g ∈ H , x ∈ X, the γ -norm is a cross-norm. Hence every nuclear operator T : H → X

is γ -radonifying and ‖T ‖γ � ‖T ‖nuc. (Recall that T is a nuclear operator if T = ∑
n�0 gn ⊗ xn

for some gn ∈ H,xn ∈ X with
∑

n�0 ‖gn‖H ‖xn‖X < ∞.) The following application turns out to
be quite useful.

Lemma 6.2. Let H , X be as before, and let (Ω,Σ,μ) be a measure space. Suppose that
f : Ω → H and g : Ω → X are (strongly) μ-measurable and∫

Ω

∥∥f (t)
∥∥

H

∥∥g(t)
∥∥

X
μ(dt) < ∞.

Then f ⊗ g ∈ L1(Ω;γ (H ;X)), and T := ∫
Ω

f ⊗ g dμ ∈ γ (H ;X) satisfies

T h =
∫
Ω

〈
h,f (t)

〉
g(t)μ(dt) (h ∈ H)

and

‖T ‖γ �
∫
Ω

∥∥f (t)
∥∥

H

∥∥g(t)
∥∥

X
μ(dt).

Suppose that H = L2(Ω,Σ,μ) for some measure space (Ω,Σ,μ). Every function u ∈
L2(Ω;X) defines an operator Tu : L2(Ω) → X by integration:

Tu : L2(Ω) → X, Tu(h) =
∫
Ω

h · udμ.

(Actually, one can do this under weaker hypotheses on u, but we shall have no occasion to use
the more general version.) In this context we identify the operator Tu with the function u and
write

u ∈ γ (Ω;X) in place of Tu ∈ γ
(
L2(Ω);X)

(and likewise for γ∞(Ω;X)). Extending an idea of [19, Remark 3.1] we can use Lemma 6.2
to conclude that certain vector-valued functions define γ -radonifying operators. Note that in the
following a = −∞ or b = ∞ are allowed; moreover we employ the convention that ∞ · 0 = 0.

Corollary 6.3. Let (a, b) ⊆ R, let u ∈ W1,1
loc ((a, b);X) and let ϕ : (a, b) → C. Suppose that one

of the following two conditions is satisfied:
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(1) ‖ϕ‖L2(a,b)‖u(a)‖X < ∞ and
∫ b

a
‖ϕ‖L2(s,b)‖u′(s)‖X ds < ∞;

(2) ‖ϕ‖L2(a,b)‖u(b)‖X < ∞ and
∫ b

a
‖ϕ‖L2(a,s)‖u′(s)‖X ds < ∞.

Then ϕ · u ∈ γ ((a, b);X) with respective estimates for ‖ϕ · u‖γ .

Proof. In case (1) we use the representation u(t) = u(a) + ∫ t

a
u′(s)ds, leading to

ϕ · u = ϕ ⊗ u(a) +
b∫

a

1(s,b)ϕ ⊗ u′(s)ds.

Then we apply Lemma 6.2. In case (2) we start with u(t) = u(b) − ∫ b

t
u′(s)ds and proceed

similarly. �
The space γ (L2(Ω);X) can be viewed as a space of generalized X-valued functions on Ω .

Indeed, if Ω = R with the Lebesgue measure, γ∞(L2(R);X) is a Banach space of X-valued
tempered distributions. For such distributions their Fourier transform is coherently defined via
its adjoint action: F T := T ◦ F , and the ideal property mentioned above shows that F restricts to
almost isometric isomorphisms of γ∞(L2(R);X) and γ (L2(R);X). Similarly, the multiplication
with some function m ∈ L∞(R) extends via adjoint action coherently to L(L2(R);X), and the
ideal property above yields that γ∞(L2(R);X) and γ (L2(R);X) are invariant. Furthermore,

‖T �→ mT ‖γ∞→γ∞ = ‖m‖∞

for every m ∈ L∞(R). Combining these two facts we obtain that for each m ∈ L∞(R) the Fourier
multiplier operator with symbol m

Fm(T ) := F −1(mF T )
(
T ∈ L

(
L2(R);X))

is bounded on γ∞(L2(R);X) and γ (L2(R);X) with norm estimate∥∥Fm(T )
∥∥

γ
� ‖m‖L∞(R)‖T ‖γ .

Similar remarks apply in the discrete case Ω = Z.
An important result in the theory of γ -radonifying operators is the multiplier theorem. Here

one considers a bounded operator-valued function T : Ω → L(X;Y) and asks under what con-
ditions the multiplier operator

MT : L2(Ω;X) → L2(Ω;Y), MT f = T (·)f (·)
is bounded for the γ -norms. To formulate the result, one needs a new notion.

Let X, Y be Banach spaces. A collection T ⊆ L(X;Y) is said to be γ -bounded if there is a
constant c � 0 such that

E

(∥∥∥∥ ∑
′
γT T xT

∥∥∥∥2

X

)1/2

� c E

(∥∥∥∥ ∑
′
γT xT

∥∥∥∥2

X

)1/2

(6.1)

T ∈T T ∈T
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for all finite subsets T ′ ⊆ T , (xT )T ∈T ′ ⊆ X. (Again, (γT )T ∈T ′ is an independent collection of
standard Gaussian random variables on some probability space.) If T is γ -bounded, the smallest
constant c such that (6.1) holds, is denoted by γ (T ) and is called the γ -bound of T . We are now
ready to state the result, established by Kalton and Weis in [19].

Theorem 6.4 (Multiplier theorem). Let H = L2(Ω) for some measure space (Ω,Σ,μ), and let
X, Y be Banach spaces. Let T : Ω → L(X;Y) be a strongly μ-measurable mapping such that

T := {
T (ω)

∣∣ ω ∈ Ω
}

is γ -bounded. Then the multiplication operator

MT : L2(Ω) ⊗ X → L2(Ω;Y), f ⊗ x �→ f (·)T (·)x

extends uniquely to a bounded operator

MT : γ (
L2(Ω);X) → γ∞

(
L2(Ω);Y )

with ‖MT S‖γ � γ (T )‖S‖γ (S ∈ γ (L2(Ω);X)).

It is unknown up to now whether such a multiplier MT always must have its range in the
smaller class γ (L2(Ω);Y).

6.2. Unbounded C0-groups

Let us return to the main theme of this paper. In Section 3.1 we have applied the transference
identities to unbounded C0-groups in Banach spaces. In the case of a Hilbert space this yielded
a proof of the Boyadzhiev–deLaubenfels theorem, i.e., that every generator of a C0-group on
a Hilbert space has bounded H∞-calculus on vertical strips, if the strip height exceeds the ex-
ponential type of the group. The analogue of this result for general Banach spaces but under
γ -boundedness conditions is due to Kalton and Weis [19, Thm. 6.8]. We give a new proof using
our transference techniques.

Recall that the exponential type of a C0-group on a Banach space X is

θ(U) := inf
{
ω � 0

∣∣ ∃M � 0:
∥∥U(s)

∥∥ � Meω|s| (s ∈ R)
}
.

Let us call the number

θγ (U) := inf
{
ω � 0

∣∣ {
e−ω|s|U(s)

∣∣ s ∈ R
}

is γ -bounded
}

the exponential γ -type of the group U . If θγ (U) < ∞ we call U exponentially γ -bounded. The
following is the γ -analogue of the Boyadzhiev–deLaubenfels theorem, see Eq. (3.2).

Theorem 6.5 (Kalton–Weis). Let −iA be the generator of a C0-group (U(s))s∈R on a Banach
space X. Suppose that U is exponentially γ -bounded. Then A has a bounded H∞(St(ω))-
calculus for every ω > θγ (U).
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Proof. Choose θγ (U) < ω < α. By usual approximation techniques [16, Proof of Theorem 3.6]
it suffices to show an estimate

∥∥f (A)
∥∥ � ‖f ‖H∞(St(ω))

only for f = F μ with μ a measure such that μω ∈ M(R). (Recall from Section 3.1 that
μω(dt) = cosh(ωt)μ(dt), so that f = F μ has a bounded holomorphic extension to St(ω).) By
the transference identity (3.1) the operator f (A) factorizes as

f (A) = P ◦ Lμω ◦ ι.

Here Lμω is convolution with μω,

ιx(s) = 1

coshαs
U(−s)x (x ∈ X, s ∈ R)

and

PF =
∫
R

ψ(t)U(t)F (t)dt.

In Section 3.1 this factorization was considered to go via the space L2(R;X), i.e.,

ι : X → L2(R;X), P : L2(R;X) → X.

However, the exponential γ -boundedness of U will allow us to replace the space L2(R;X) by
γ (L2(R);X). But on γ (L2(R);X) the convolution with μω—which is the Fourier multiplier with
symbol F μω—is bounded with a norm not exceeding ‖F μω‖L∞(R). That, in turn, by elementary
computations and the maximum principle can be majorized by ‖F μ‖H∞(St(ω)), cf. Section 3.1.

To see that indeed ι : X → γ (L2(R);X), we write

(ιx)(s) = 1

coshαs
U(−s)x = (

e−ω|s|U(−s)
)(

eω|s|

coshαs
x

)
and use the multiplier Theorem 6.4 to conclude that ι : X → γ∞(R;X) boundedly. To see that
ran(ι) ⊆ γ (R;X) we employ a density argument. If x ∈ dom(A), write ιx = ψ · u with

ψ(s) = cosh(αs)−1 and u(s) = U(−s)x (s ∈ R).

Then u ∈ C1(R;X), u′(s) = iU(−s)Ax, ψ ∈ L2(R), and

∞∫
‖ψ‖L2(s,∞)

∥∥u′(s)
∥∥

X
ds,

0∫
‖ψ‖L2(−∞,s)

∥∥u′(s)
∥∥

X
ds < ∞.
0 −∞
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Hence,

ιx = ψ · u = ψ ⊗ x +
∞∫

0

1(s,∞)ψ ⊗ u′(s)ds

−
0∫

−∞
1(−∞,s)ψ ⊗ u′(s)ds ∈ γ (R;X)

by Corollary 6.3. (One has to apply (1) to the part of ψu on R+ and (2) to the part on R−.) Since
dom(A) is dense in X, we conclude that ran(ι) ⊆ γ (L2(R);X) as claimed.

Finally, we show that P : γ (L2(R);X) → X is well defined. Clearly

P = (
integrate against eθ |t |ϕ(t)

) ◦ (
multiply with e−θ |t |U(t)

)
where θγ (U) < θ < ω. We know that ϕ(t) = O(e−ω|t |), so by the multiplier Theorem 6.4, ev-
erything works out fine. Note that in order to be able to apply the multiplier theorem, we have
to start already in γ (L2(R);X). And this is why we had to ensure that ι maps there in the first
place. �
Remark 6.6. Independently of us, Le Merdy [22] has recently obtained a γ -version of the clas-
sical transference principle for bounded groups. The method is similar to ours, by re-reading the
transference principle with the γ -space in place of a Bochner space.

6.3. Peller’s theorem—γ -version, discrete case

We now turn to the extension of Peller’s theorems (see Section 5) from Hilbert spaces to
general Banach spaces. We begin with the discrete case.

Theorem 6.7. There is an absolute constant c � 0 such that the following holds: Let X be a
Banach space, and let T ∈ L(X) such that the set

T := {
(1 + n)−αT n

∣∣ n � 0
}

is γ -bounded. Then ∥∥f (T )
∥∥ � c 9αγ (T )2‖f ‖B2α∞,1(D)

for every polynomial f .

The theorem is a consequence of the following lemma, the arguments being completely anal-
ogous to the proof of Theorem 5.1.

Lemma 6.8. There is a constant c � 0 such that∥∥μ̂(T )
∥∥ � c

(
1 + log(b/a)

)
M(b)‖μ̂‖H∞(D)
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whenever the following hypotheses are satisfied:

(1) T is a bounded operator on a Banach space X;
(2) a, b ∈ Z+ with 1 � a � b;
(3) M(b) := γ {T n | 0 � n � b};
(4) μ ∈ �1(Z+) such that supp(μ) ⊆ [a, b].

Proof. This is analogous to Theorem 4.6. Take ϕ,ψ ∈ L2(Z+) such that ψ ∗ϕ = 1 on [a, b] and
suppϕ, suppψ ⊆ [0, b]. Then

μ̂(T ) = 〈
ϕT,μ ∗ (ψT)∼

〉 = P ◦ Lμ ◦ ι,

see (2.3). Note that only functions of finite support are involved here, so ran(ι) ⊆ L2(Z) ⊗ X.
Hence we can take γ -norms and estimate

∥∥μ̂(T )
∥∥ � ‖P ‖γ (L2(Z);X)→X‖Lμ‖γ→γ ‖ι‖X→γ (L2(Z);X).

Note that

ιx = (
T∼1[−b,0]

)(
ψ∼ ⊗ x

)
so the multiplier theorem yields

‖ιx‖γ � M(b)
∥∥ψ∼ ⊗ x

∥∥
γ

= M(b)‖ψ‖2‖x‖.

Similarly, P can be decomposed as

P = (integrate against ϕ) ◦ (multiply with 1[0,b]T)

and hence the multiplier theorem yields

‖P ‖γ→X � ‖ϕ‖2M(b).

Finally note that

‖Lμ‖γ→γ = ‖μ̂‖H∞(D)

since—similar to the continuous case—all bounded measurable functions on T define bounded
Fourier multipliers on γ (L2(Z);X). Putting the pieces together we obtain

∥∥μ̂(T )
∥∥ � M(b)2‖ϕ‖2‖ψ‖2‖μ̂‖H∞(D)

and an application of Lemma A.2 concludes the proof. �
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6.4. Peller’s theorem—γ -version, continuous case

We turn to the continuous version(s) of Peller’s theorem.

Theorem 6.9. There is an absolute constant c � 0 such that the following holds: Let −A be the
generator of a strongly continuous semigroup T = (T (s))s�0 on a Banach space X. Suppose
that α � 0 is such that the set

T := {
(1 + s)−αT (s)

∣∣ s � 0
}

is γ -bounded. Then

∥∥f (A)
∥∥ � c 9αγ (T )2‖f ‖B0,2α

∞,1 (C+)

for every f = Lμ, μ ∈ M(R+) with compact support.

Let us formulate a minor generalization in the special case of γ -bounded semigroups, analo-
gous to Corollary 5.5 above,

Corollary 6.10. There is an absolute constant c � 0 such that the following holds: Let −A be
the generator of a strongly continuous semigroup T = (T (s))s�0 on a Banach space X such that
the set

T := {
T (s)

∣∣ s � 0
}

is γ -bounded. Then

∥∥f (A)
∥∥ � c γ (T )2‖f ‖B0,0

∞,1(C+)

for every f = Lμ, μ a bounded measure on R+.

The proofs are analogous to the proofs in the Hilbert space case, based on the following
lemma.

Lemma 6.11. There is a constant c � 0 such that

∥∥f (A)
∥∥ � c

(
1 + log(b/a)

)
M(b)2‖f ‖H∞(C+) (6.2)

whenever the following hypotheses are satisfied:

(1) T = (T (s))s�0 is a C0-semigroup on the Banach space X;
(2) 0 < a < b < ∞;
(3) M(b) := γ {T (s) | 0 � s � b};
(4) f = Lμ, where μ ∈ M(R+) such that supp(μ) ⊆ [a, b].
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Proof. We re-examine the proof of Theorem 4.1. Choose ϕ,ψ ∈ L2(0, b) such that ϕ ∗ ψ = 1
on [a, b]. Then

f (A) = Tμ = P ◦ Lμ ◦ ι,

where for x ∈ X and F : R → X

ιx = ψ∼T∼x, PF =
b∫

0

ϕ(t)T (t)F (t)dt.

We claim that ι : X → γ (R;X) with

‖ι‖X→γ � M(b)‖ψ‖L2(0,b).

As in the case of groups, the estimate follows from the multiplier theorem; and the fact
that ran(ι) ⊆ γ (R;X) (and not just γ∞(R;X)) comes from a density argument. Indeed, if
x ∈ dom(A) then ιx = ψ∼ · u with u(s) = T (−s)x for s � 0. Since u ∈ C1[−b,0] and
ψ∼ ∈ L2(−b,0), Corollary 6.3 and the ideal property yield that ιx = ψ∼ · u ∈ γ ((−b,0);X) ⊆
γ (R;X). Since dom(A) is dense in X, ran(ι) ⊆ γ (R;X), as claimed.

Note that P can be factorized as

P = (integrate against ϕ) ◦ (multiply with 1(0,b)T)

and so ‖P ‖γ→X � M(b)‖ϕ‖L2(0,b) by the multiplier theorem. We combine these results to obtain

∥∥f (A)
∥∥ � M(b)2‖ϕ‖L2(0,b)‖ψ‖L2(0,b) · ‖f ‖H∞(C+)

and an application of Lemma A.1 concludes the proof. �
7. Singular integrals and functional calculus

7.1. Functional calculus

The results of Sections 5 and 6 provided estimates of the form

∥∥f (A)
∥∥ � ‖f ‖B0,2α

∞,1 (Σθ )

under various conditions on the Banach space X, the semigroup T or the angle θ . However, to
derive these estimates we required f = Lμ, μ some bounded measure of compact support. It is
certainly natural to ask whether one can extend the results to all f ∈ B0,2α

∞,1 (Σθ ), i.e., to a proper
Besov class functional calculus.

The major problem here is not the norm estimate, but the definition of f (A) in the first place.
(If f = Lμ for a measure μ with compact support, this problem does not occur.) Of course one
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could pass to a closure with respect to the Besov norm, but this yields a too small function class
in general. And it does not show how this definition of f (A) relates with all the others in the
literature, especially, with the functional calculus for sectorial operators [12] and the one for
half-plane type operators [13].

Unfortunately, although these questions appear to have quite satisfying answers, a diligent
treatment of them would extend this already long paper beyond a reasonable size, so we postpone
it to a future publication.

7.2. Singular integrals for semigroups

A usual consequence of transference estimates is the convergence of certain singular integrals.
It has been known for a long time that if (U(s))s∈R is a C0-group on a UMD space X then the
principal value integral

1∫
−1

U(s)x
ds

s

exists for every x ∈ X. This was the decisive ingredient in the Dore–Venni theorem and in Fat-
torini’s theorem, as discussed in [14]. For semigroups, these proofs fail and this is not surprising
as one has to profit from cancellation effects around 0 in order to have a principal value integral
converging. Our results from Sections 4 and 5 now imply that if one shifts the singularity away
from 0 then the associated singular integral for a semigroup will converge, under suitable as-
sumptions on the Banach space or the semigroup. For groups we gave a fairly general statement
in [16, Theorem 4.4].

Theorem 7.1. Let (T (s))s�0 be a C0-semigroup on a UMD Banach space X, let 0 < a < b, and
let g ∈ BV[b − a, b + a] be such that g(· + b) is even. Then the principal value integral

lim
ε↘0

∫
εa�|s−b|�a

g(s)T (s)x
ds

s − b
(7.1)

converges for every x ∈ X.

Proof. Define

fε(z) :=
∫

εa�|s−b|�a

g(s)e−sz ds

s − b
(z ∈ C).

Then, since g is even about the singularity b,

fε(A)x =
∫

g(s)T (s)
ds

s − b
=

∫
g(s)

(
T (s)x − T (b)x

) ds

s − b
.

εa�|s−b|�a εa�|s−b|�a
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If x ∈ dom(A) then T (·)x is continuously differentiable, and therefore limε↘0 fε(A)x, which is
(7.1), exists. Hence, by density, one only has to show that sup0<ε<1 ‖fε(A)‖ is finite. In order to
establish this, we use Theorem 4.1 to estimate

∥∥fε(A)
∥∥ �

(
1 + log

(
b + a

b − a

))∥∥fε(i·)
∥∥

Mp,X
.

Writing h(x) = g(ax + b) we obtain

fε(it) = e−itb

∫
ε�|s|�1

e−iats h(s)

s
ds = e−ibt F

(
PV − hε

s

)
(at),

where hε = h1{ε�|s|�1}. It is a standard fact from Fourier multiplier theory that the exponential
factor in front and the dilation by a in the argument do not change Fourier multiplier norms. So
one is reduced to estimate the Mp,X-norms of the functions

mε := F
(

PV − hε

s

)
(0 < ε < 1).

By the UMD-version of Mikhlin’s theorem, ‖mε‖Mp
can be estimated by its Mikhlin norm, and

by [16, Lemma 4.3] this in turn can be estimated by the BV-norm of mε . But since BV[−1,1] is
a Banach algebra, and the characteristic functions 1{ε�|s|�1} have uniformly bounded BV-norms
for ε ∈ (0,1), we are done. �
Remark 7.2. The result is also true on a general Banach space if {T (s) | 0 � s � 1} is γ -bounded.
The proof is analogous, but in place of Theorem 4.1 one has to employ Lemma 6.11.

Acknowledgments

The work on this paper has occupied me for more than 3 years now, in which I had dis-
cussions with various colleagues and friends, a list too long to be given here. I am particular
indebted to Nikolai Nikolski (Bordeaux) for some very valuable remarks about Peller’s theorem
and the analytic Besov classes. To Tuomas Hytönen (Helsinki) I owe the proof of Lemma A.1 in
Appendix A; this was a major motivation to continue, although it eventually turned out that for
functional calculus estimates one can do without it. Finally, I am grateful to my colleagues in the
Analysis Group of the Delft Institute of Applied Mathematics, for the excellent atmosphere they
create.

Appendix A. Two lemmata

We provide two lemmata concerning an optimization problem for convolutions on the halfline
or the positive integers.

Lemma A.1 (Haase–Hytönen). Let p ∈ (1,∞). For 0 < a < b let

c(a, b) := inf
{‖ϕ‖p′‖ψ‖p: ϕ ∈ Lp′

(0, b), ψ ∈ Lp(0, b), ϕ ∗ ψ = 1 on [a, b]}.
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Then there are constants Dp,Cp > 0 such that

Dp

(
1 + log(b/a)

)
� c(a, b) � Cp

(
1 + log(b/a)

)
for all 0 < a < b.

Proof. We fix p ∈ (1,∞). Suppose that ϕ ∈ Lp′
(R+) and ψ ∈ Lp(R+) with ϕ ∗ ψ = 1 on [a, b].

Then, by Hölder’s inequality,

1 = ∣∣(ϕ ∗ ψ)(a)
∣∣ � ‖ϕ‖p′‖ψ‖p,

which implies c(a, b) � 1. Secondly,

log(b/a) =
∣∣∣∣∣

b∫
a

(ϕ ∗ ψ)(t)
dt

t

∣∣∣∣∣ �
b∫

a

t∫
0

∣∣ϕ(t − s)
∣∣∣∣ψ(s)

∣∣ds
dt

t

�
∞∫

0

∞∫
s

|ϕ(t − s)|
t

dt
∣∣ψ(s)

∣∣ds =
∞∫

0

∞∫
0

|ϕ(t)||ψ(s)|
t + s

dt ds

� π

sin(π/p)
‖ϕ‖p′‖ψ‖p.

(This is “Hilbert’s absolute inequality”, see [11, Chapter 5.10].) This yields

c(a, b) � sin(π/p)

π
log

(
b

a

)
.

Taking both we arrive at

1 ∨ sin(π/p)

π
log

(
b

a

)
� c(a, b).

Since sin(π/p) �= 0, one can find Dp > 0 such that

Dp

(
1 + log(b/a)

)
� 1 ∨ sin(π/p)

π
log(b/a)

and the lower estimate is established.
To prove the upper estimate we note first that without loss of generality we may assume that

a = 1. Indeed, passing from (ϕ,ψ) to (a1/p′
ϕ(a·), a1/pψ(a·)) reduces the (a, b)-case to the

(1, b/a)-case and shows that c(a, b) = c(1, b/a). The idea is now to choose ϕ, ψ in such a way
that

(ϕ ∗ ψ)(t) =
{

t, t ∈ [0,1],
1, t � 1,
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and cut them after b. Taking Laplace transforms, this means

[
(Lϕ) · (Lψ)

]
(z) = 1 − e−z

z2

for Re z > 0. Fix θ ∈ (0,1) and write

1 − e−z

z2
= (1 − e−z)(1−θ)

z
· (1 − e−z)θ

z
.

Now, by the binomial series,

(1 − e−z)θ

z
=

∞∑
k=0

α
(θ)
k

e−kz

z
=

∞∑
k=0

α
(θ)
k L(1(k,∞))(z),

and writing 1(k,∞) = ∑∞
j=k 1(j,j+1) we see that we can take

ψ =
∞∑

k=0

∞∑
j=k

α
(θ)
k 1(j,j+1) =

∞∑
j=0

(
j∑

k=0

α
(θ)
k

)
1(j,j+1)

and likewise

ϕ =
∞∑

j=0

(
j∑

k=0

α
(1−θ)
k

)
1(j,j+1).

Let β
(θ)
j = ∑j

k=0 α
(θ)
k . By standard asymptotic analysis

α
(θ)
k = O

(
1

k1+θ

)
and β

(θ)
j = O

(
1

(1 + j)θ

)
.

It is clear that

c(1, b) � ‖ϕ1(0,b)‖p′ ‖ψ1(0,b)‖p.

Now,

‖ψ1(0,b)‖p
p =

b∫
0

∣∣ψ(t)
∣∣p dt =

∞∑
j=0

(
βθ

j

)p

b∫
0

1(j,j+1)(t)dt �
∞∑

j=0

(1 + j)−θpγj,b

with

γj,b =
{1, j � b − 1,

b − j, j � b � j + 1,
0, b � j.
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With θ := 1/p this yields

‖ψ1(0,b)‖p
p � 1 +

�b�−1∑
j=1

j+1∫
j

dx

x
+ b − �b�

1 + �b� � 2 + log
(�b�) � 2(1 + logb).

Analogously, noting that 1 − θ = 1 − (1/p) = 1/p′,

‖ϕ1(0,b)‖p′
p′ � 2(1 + logb)

which combines to

c(1, b) � (1 + logb)

as was to be proved. �
Now we state and prove an analogue in the discrete case.

Lemma A.2. Let p ∈ (1,∞). For a, b ∈ N with a � b let

c(a, b) := inf
{‖ϕ‖p′‖ψ‖p: ϕ ∈ �p′

(Z+), ψ ∈ �p(Z+), ϕ ∗ ψ = 1 on [a, b]}.
Then there are constants Cp,Dp > 0 such that

Dp

(
1 + log(b/a)

)
� c(a, b) � Cp

(
1 + log(b/a)

)
for all 0 < a < b.

Proof. The proof is similar to the proof of Lemma A.1. The lower estimate is obtained in a
totally analogous fashion, making use of the discrete version of Hilbert’s absolute inequality [11,
Thm. 5.10.2] and the estimate

b∑
n=a

1

n + 1
� 1

2
log(b/a).

For the upper estimate we let

η(j) :=
{

j/a, j = 0,1, . . . , a,

1, j � a + 1,

and look for a factorization ϕ ∗ ψ = η. Considering the Fourier transform we find

η̂(z) = z 1 − za

2
a (1 − z)
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and so we try (as in the continuous case) the “Ansatz”

ψ = z

aθ

(1 − za)θ

1 − z
and ϕ = 1

a1−θ

(1 − za)1−θ

1 − z

for θ := 1/p. Note that

ψ(z) = z

aθ (1 − z)

∞∑
j=0

α
(θ)
j zaj = z

aθ (1 − z)

∞∑
k=0

γkz
k,

where

γk = γk(a, θ) =
{

α
(θ)
k/a if a | k,

0 else.

Consequently,

ψ(z) = z

aθ

∞∑
n=0

(
n∑

k=1

γk

)
zn = z

aθ

∞∑
n=0

β
(θ)
�n/a�z

n

and, likewise,

ϕ(z) = 1

a1−θ

∞∑
n=0

β
(1−θ)
�n/a� zn.

As in the continuous case, it suffices to cut off ϕ and ψ after b, so

c(a, b) � ‖ϕ1[0,b]‖p′‖ψ1[0,b]‖p.

Now write b = ka + r with 0 � r < a and k := �b/a�; then

‖ψ1[0,b]‖p
p � 1

a

b∑
n=0

∣∣β(θ)
�n/a�

∣∣p � 1

a

b∑
n=0

(
1 + �n/a�)−1

= 1

a

(
a

1
+ a

2
+ · · · + a

k
+ r

k + 1

)
�

k+1∑
j=1

1

j

� 1 +
k+1∫
1

dx

x
= 1 + log(k + 1) � 2

(
1 + log(b/a)

)
.

A similar estimate holds for ‖ϕ1[0,b]‖p
p . �
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