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Abstract The acronym CK2 denotes a highly pleiotropic Ser/
Thr protein kinase whose over-expression correlates with neo-
plastic growth. A vexed question about the enigmatic regulation
of CK2 concerns the actual existence in living cells of the cata-
lytic (a and/or a 0) and regulatory b-subunits of CK2 not assem-
bled into the regular heterotetrameric holoenzyme. Here we take
advantage of novel reagents, namely a peptide substrate and an
inhibitor which discriminate between the holoenzyme and the cat-
alytic subunits, to show that CK2 activity in CHO cells is en-
tirely accounted for by the holoenzyme. Transfection with
individual subunits moreover does not give rise to holoenzyme
formation unless the catalytic and regulatory subunits are co-
transfected together, arguing against the existence of free sub-
units in CHO cells.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: CK2 peptide substrate; CK2 activity assay; CK2
holoenzyme
1. Introduction

Protein kinase CK2 (an acronym derived from the misnomer

‘‘casein kinase’’ 2) is one of the most pleiotropic members of

the eukaryotic ‘‘kinome’’, with a list of more than 300 protein

substrates already identified [1], implicated in a variety of cel-

lular functions [2]. At variance with the great majority of Ser/

Thr protein kinases, which are basophilic and/or proline direc-

ted enzymes, CK2 recognizes phosphoacceptor residues speci-

fied by multiple carboxylic and/or pre-phosphorylated amino

acids, with the one at position n + 3 playing an especially cru-

cial role ([1] and references therein). Such a peculiar site spec-

ificity has been exploited to generate very specific peptide

substrates which not only are unaffected by basophilic and

Pro-directed kinases, but also neatly discriminate CK2 activity

from those of the other few acidophilic Ser/Thr kinases [3],

making possible the sensitive and precise determination of

CK2 activity in crude extracts and in living cells [4]. Unlike

the majority of protein kinases, CK2 is not turned on in re-

sponse to specific stimuli. Such a constitutive activity is sus-

pected to underlie the oncogenic potential of CK2 whose
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catalytic subunits, besides being causative of transformation

per se upon transfection, dramatically enhance the tumour

phenotype induced by altered expression of oncogenes or tu-

mour suppressor genes (reviewed in [5]). These data did not en-

tirely come as a surprise considering that CK2 activity is

invariably elevated in many different kinds of tumours (re-

viewed in [6]). These observations substantiate the raising con-

cept that CK2 may represent a valuable target in cancer

therapy (see e.g. Ref. [7]).

A pertinent question about the pathogenic potential of CK2

is whether it is promoted by abnormally high levels of CK2

holoenzyme or by an unbalanced excess of its un-assembled

catalytic subunits. Indeed this is one facet of a more general is-

sue, concerning the mode of regulation of this enigmatic ki-

nase, whose holoenzyme displays a quaternary structure

composed by two catalytic (a and/or a 0) and two ‘‘regulatory’’

b-subunits. Although the catalytic subunits are constitutively

active either alone or combined with the b-subunits, these lat-

ter deeply influence many other properties of the kinase, with

special reference to specificity, association with intracellular

partners and responsiveness to polybasic effectors [2,8]. It

would be tempting therefore to speculate that complexed and

non-complexed CK2 subunits might exist in equilibrium [2],

considering that the nature and surface of the contacts between

the b and a subunits make plausible the hypothesis that the

holoenzyme might dissociate [9]. This led to conceptual specu-

lations about sophisticated modes of regulation of CK2 [10,11]

based on the transient nature of CK2 holoenzyme and its dy-

namic association–dissociation eventually giving rise to com-

plexes in which CK2 subunits are bound to other proteins.

While the scenario proposed is appealing and, from time to

time, data suggesting the presence in cells of un-combined CK2

subunits appear in the literature (e.g. [12–17]), the incontro-

vertible proof of concept for the existence of pools of non-

assembled CK2 subunits has been frustrated by a number of

shortcomings: (1) Quantitative western blot analyses of cata-

lytic versus b CK2 subunits are not reliable due to the sharply

different immunoreactivity of available antibodies, as also

shown in this paper (see Fig. 2A). (2) Quantification based

on molecular weight estimation is biased by the formation of

supra-molecular complexes. (3) The specific peptide substrates

commonly employed for determining CK2 activity are phos-

phorylated with similar efficiencies by either the holoenzyme

or the isolated catalytic subunits. (4) Likewise inhibitors capa-

ble to neatly discriminate between free and assembled CK2

catalytic subunits were not available.
blished by Elsevier B.V. All rights reserved.
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Here we describe two novel reagents designed to overcome

hindrances outlined in 3 and 4 and their successful usage to

discriminate between activities of CK2 catalytic subunits and

holoenzyme in the lysates of CHO cells either as such or trans-

fected with individual CK2 subunits.
2. Methods

2.1. Peptides
The synthesis of the peptide MSGDEMIFDPTMSKKKKKKKKP

was performed by solid phase using an automated peptide synthesizer
(model 431-A, Applied Biosystems) and will be detailed elsewhere.

2.2. Plasmid constructs for CK2 subunits
CK2a and CK2b human cDNA were amplified by PCR from the

pT7-7 vector. PCRs were performed with Pfu DNA polymerase (Pro-
mega) for 28 cycles in a programmable thermal controller. Primer
sequences were: 50-GCGGCGACCATGGCGGGACCCGTG-3 0 (for-
ward primer) and 50-TGCCTGAGCGCCAGCGGCAGCTG-30 (reverse
primer). PCR fragments were gel purified, polyadenylated and sub-
cloned into pGEM-T Easy vector (Promega). pGEM-T Easy vector
was digested with EcoRI and the 1.2 kb fragment, obtained from EcoRI
digestion, was gel purified and ligated into the corresponding restriction
enzyme site of pcDNA�3.1/myc-His(�)A (Invitrogen) to generate
the two expression constructs. Two stop codons, generated in the clon-
ing process between the cDNA and c-myc and His tags, were mutated
with the ‘‘QuickChange-Site Directed Mutagenesis’’ Kit (Stratagene)
and the two used primers were 5 0-TCAGCAGGCAAATCACGCGG-
CAATTCCACCACACTGG-3 0 (forward primer) and 5 0-CCAGTGT-
GGTGGAATTGCCGCGTGATTTGCCTGCTGAGCGC-30 (reverse
primer). Sequencing was used to verify the two final constructs.
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2.3. Cell culture, transfection and immunoprecipitation
Chinese Hamster Ovary (CHO) cells were grown in Ham’s F10 med-

ium supplemented with 10% fetal calf serum (GIBCO), 2 mM LL-gluta-
mine, and antibiotics (penicillin, 100 U/ml, streptomycin 0.1 mg/ml) at
37 �C in a 5% CO2 incubator. Subconfluent CHO cells grown in 6-well
dishes were transfected with pcDNA�3.1/myc-His(�) vector express-
ing CK2a and/or CK2b and with pcDNA�3.1/myc-His(�) empty vec-
tor, as control, with GeneJammer (Statagene) according to the
manufacturer’s instructions. After 48 h of transfection, cells were cen-
trifuged, washed and lysed by the addition of 60 ll of ice-cold buffer
containing 50 mM Tris pH 7.5, 150 mM NaCl, 2 mM EGTA, 2 mM
EDTA, 0.5% (v/v) Triton X-100, 2 mM dithiothreitol, protease inhib-
itor cocktail Complete (Roche). After 20 min incubation on ice, the ly-
sates were centrifuged at 10000 · g for 10 min, at 4 �C and proteins of
soluble fractions were determined by the Bradford method. Equal
amounts (5 lg) were loaded on 15% SDS/PAGE, blotted on Immobi-
lon-P membranes (Millipore), and processed in Western blot with the
indicated antibody, detected by ECL (Enhanced Chemiluminescence,
Amersham Biosciences). Cells designated for IP were washed and lysed
as described above. Two hundred micrograms of cell extracts were
incubated with anti-CK2a overnight and immunoprecipitated by addi-
tion of protein A-Sepharose (1 h at 4 �C). The IP was washed three
times, subjected to SDS/PAGE, transblotted and developed with
anti-myc and subsequent anti-CK2a and anti-CK2b antibodies.

2.4. Phosphorylation assays
CK2 activity was determined as previously described [18] following

the P-cellulose filters procedure. CK2 activity of cell lysate (1 lg) was
tested in the same buffer using 333 lM synthetic peptides
RRRADDSDDDDD and MSGDEMIFDPTMSKKKKKKKKP.
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Fig. 1. The eIF2b[1–22] peptide is phosphorylated by CK2 holoen-
zyme but not by CK2a subunit. Phosphorylation reaction was
performed as described in Section 2. The data represent the mean
from three independent experiments. Similar results were obtained
using the other catalytic subunit of CK2, a 0.
3. Results

While the b-subunit can influence the substrate specificity of

CK2 by altering the phosphorylation efficiency of some protein

targets in opposite directions (reviewed in [8]), its effect on pep-
tide substrates is in general less pronounced and unidirectional,

typically resulting in a modest increase in phosphorylation rate

as compared to the catalytic subunits alone. Therefore com-

monly used CK2 peptide substrates cannot discriminate be-

tween holoenzyme and isolated catalytic subunits [19]. A

unique exception is provided by a recently synthesized peptide

reproducing the N-terminal segment of the eukaryotic transla-

tion initiation factor 2b (eIF2b). This protein is phosphorylated

by CK2 at residue Ser2 in a fashion which is entirely relying on

the CK2b-subunit [20], a property exceptionally maintained by

the peptide (eIF2b1–22), whose phosphorylation is also cata-

lyzed only by CK2 holoenzyme (Fig. 1).

We therefore decided to exploit this peptide to evaluate pre-

cisely the activity of CK2 holoenzyme in cell lysates and to

gain information about the presence of free CK2 subunits in

them. In particular we reasoned that, if present, these should

give rise to CK2 holoenzyme upon transfection of either the

CK2a or the CK2b subunits into the cells, thus reflecting in in-

creased activity toward the (eIF2b1–22) peptide. To discrimi-

nate between endogenous and transfected pools of CK2

subunits the latter were constructed with a short Myc-His

tag causing a significant up-shift upon PAGE/SDS and allow-

ing specific immuno-detection using anti-tag antibodies.

As shown in Fig. 2A, where Western blots of cell lysates with

anti-Myc antibodies is shown, transfection of either CK2a or

CK2b subunits or both gave rise to the expected patterns, with

transfected subunits detectable as intense bands. For sake of

quantitative comparison between transfected (Myc-His

tagged) and endogenous CK2 subunits the same gels were also

developed with anti-a and anti-b antibodies (Fig. 2B). This

highlights two points: (i) transfected Myc-His-CK2a is largely

predominant over endogenous CK2a, with a 4:1 ratio calcu-

lated by densitometric analysis (not shown); (ii) The sensitivity

of the anti-CK2b antibody is lower than that of the anti-a one,

since with this antibody the Myc-His-CK2b band is much fain-

ter than the Myc-His-CK2a one (Fig. 2B, lane 4) while using

the same antibody (anti-Myc) their intensities were compara-

ble (see lane 4 in Fig. 2A). Consequently endogenous CK2b
is not detectable at all (lane 1, control) so that, based on this
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Fig. 2. Transient overexpression of CK2 subunits in CHO cells. CHO cells were transfected with control vector (lane 1), with Myc-His-tagged CK2a
(lane 2), with Myc-His-tagged CK2b (lane 3), or cotrasfected with Myc-His-tagged CK2a plus Myc-His-tagged CK2b (lane 4). Cells lysates were
examined by immunoblotting using monoclonal anti-Myc (A) and anti-CK2a plus CK2b antibodies (B). Recombinant b subunit is shown in lane 5.
(C) CK2 activity in crude lysate of transfected cells was determined using either the peptide substrate eIF2b (filled bars) or RRRADDSDDDDD
(empty bars). The mean values ± S.D. from triplicate assays are reported. (D) Cell lysates of cotransfected cells were treated with anti-CK2a
antibody, immunoprecipitated with protein A sepharose, subjected to SDS/PAGE, transblotted and developed with anti-myc (lane 1), subsequently
with anti-CK2b (lane 2) and anti-CK2a (lane 3) antibodies.
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AB, one would get the wrong impression that in CHO cells ly-

sates CK2 is only present with its isolated a subunit. That this

is not the case is confirmed by the activity monitored with the

eIF2b peptide which is not phosphorylated by the isolated

catalytic subunits: such an activity is quite significant in

non-transfected cells, consistent with the presence of the holo-

enzyme in them, and is not increased upon CK2b transfection,

ruling out the presence of significant amounts of isolated

CK2a expected otherwise to associate with transfected

CK2b. Likewise transfection of CK2a does not give rise to

any increase in activity monitored with the eIF2b peptide,

whereas a fourfold increase is monitored using a canonical

CK2 peptide substrate (Fig. 2C), exactly corresponding to

the increase in CK2a protein evaluated by western blot (com-

pare Fig. 2C with Fig. 2B, lane 2). This outcome supports the

view that in CHO cells there is no pool of free CK2b subunits

ready to associate with CK2a. The confirmation that the eIF2b
peptide provides a reliable titration of CK2 holoenzyme is pro-

vided by bar 4 in Fig. 2C showing that an increase of activity

roughly proportional to the amount of transfected a is indeed

detectable provided that the b subunit is transfected together

with the CK2a one (compare bars 2 and 4).

The formation of CK2 holoenzyme upon transfection of

both the CK2a and the CK2b subunits in CHO cells was con-

firmed by co-immunoprecipitation experiments, as shown in

Fig. 2D. Lysates of co-transfected cells were treated with

anti-CK2a antibodies; the IPs were subjected to PAGE/SDS,

transblotted and developed with anti-Myc antibodies: these re-

vealed the presence also of the recombinant CK2b subunit in
the immunoprecipitate (lane 1). By subsequent development

of the stripe with anti CK2a and anti-CK2b antibodies the

presence of wild type CK2a and CK2b subunits was also de-

tected (lanes 2 and 3), consistent with the presence of the

endogenous CK2 holoenzyme, besides the recombinant one

in transfected cells. Note that CK2a subunit could be also

immunodetected in the anti-Myc immunoprecipitates (not

shown) consistent with the view that both native and transfec-

ted subunits are incorporated into the same molecules of het-

erotetrameric holoenzyme.

To validate the above conclusion by an independent phar-

macological approach advantage has been taken of MNA

(1,8-dihydroxy-4-nitro-antracene-9,10-dione) [18], a CK2

inhibitor whose efficacy on the holoenzyme is 10-fold higher

than on CK2a. As shown in Fig. 3A CK2 holoenzyme and

the isolated CK2a subunit are inhibited by MNA with IC50

values of 0.3 and 2.8 lM respectively. The IC50 value for inhi-

bition of endogenous CK2 activity in CHO lysates is 0.35 lM,

whereas comparable inhibition of CK2 activity in lysates of

CK2a transfected cells requires much higher concentration of

MNA (Fig. 3B). These data corroborate the view that endog-

enous activity is accounted for by CK2 holoenzyme, while

transfected CK2a remains in its monomeric form.
4. Discussion

We have developed two biochemical tools for discriminat-

ing between the activities of protein kinase CK2 holoenzyme
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Fig. 3. Inhibition of CK2 activity by MNA. CK2 activity of the
purified recombinant enzyme (A) and of CHO cell lysates (B) was
assayed as described in Section 2 by using the specific peptide substrate
RRRADDSDDDDD either in the absence or in the presence of
increasing concentrations of MNA inhibitor. The data represent the
mean of experiments run in triplicate with S.E. never exceeding 10%.
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and of its isolated catalytic subunits. One is based on a un-

ique peptide substrate (eIF2b1–22) which, unlike all the

CK2 peptide substrates described so far, is phosphorylated

exclusively by the holoenzyme, but not by the catalytic sub-

units. The other relies on an ATP site directed CK2 inhibitor

(MNA) whose potency is 10-fold higher on the holoenzyme

as compared to the isolated catalytic subunits. By both crite-

ria it appears that CK2 activity in CHO cell lysates is exclu-

sively accounted for by the holoenzyme while in the lysates of

the same cells transfected with CK2a subunits the activity is

predominantly due to the catalytic subunit not incorporated

into holoenzyme.

These conclusions, as far as CHO cells are concerned, are

grounded on the following main outcomes:

(i) The lysates of non-transfected CHO cells and cells trans-

fected with the b subunit display comparable CK2 activ-

ities monitored either with the eIF2b peptide or with a

conventional peptide which is phosphorylated by both

CK2 holoenzyme and catalytic subunits.

(ii) Transfection of CHO cells with fourfold molar excess re-

combinant Myc-His-tagged CK2a over wild type endog-

enous a promotes a fourfold rise in CK2 activity

monitored with the conventional peptide, without any

change in activity monitored with the eIF2b peptide.

(iii) Transfection of CHO cells with both recombinant CK2a
and CK2b CK2 subunits leads to a comparable increase

in activity monitored with either the conventional or

the eIF2b peptide.
(iv) The IC50 value for CK2 inhibition by MNA in CHO cell

lysates is the same observed with CK2 holoenzyme,

whereas the lysates of cells transfected with CK2a are

much more resistant to MNA, with an IC50 value compa-

rable to that observed in vitro with CK2a.

These data not only support the view that in CHO cells

CK2 activity is by far predominantly, if not exclusively, ac-

counted for by the holoenzyme, but also argue against the

presence in these cells of significant pools of free catalytic

and regulatory CK2 subunits, at least under the basal condi-

tions tested. Their presence in fact would have been revealed

by an increase of activity toward the eIF2b peptide upon

transfection with either the CK2a or the CK2b subunits

alone as a consequence of the formation of new holoenzyme

molecules. Such a formation, whenever the catalytic and reg-

ulatory subunits are transfected together inside the cell, is well

documented both by the increase of the activity toward the

eIF2b peptide (Fig. 2C) and by the co-immunoprecipitation

of the two subunits upon addition of anti-CK2a antibodies

(Fig. 3A). Likewise the presence of free CK2b-subunits,

sometimes reported under special conditions [12–17] in the

case of CHO cells would be inconsistent with the observation

that transfected CK2a-subunits accumulate in the cell as such

without giving rise to any detectable amount of holoenzyme.

Similar results have been obtained with N2A neuroblastoma

and HEK-293 cells: in both cases CK2 activity monitored

with the conventional peptide is comparable to that moni-

tored using the eIF2b peptide, arguing against the presence

of active CK2 catalytic subunits not assembled with the b
subunit in these cells (not shown). This does not rule out

the possibility that CK2 subunits might exist tightly bound

to other proteins able to prevent the formation of the canon-

ical holoenzyme. In this connection it would be interesting to

assess if elevated CK2 activity found in a variety of tumours

[6] is accounted for by holoenzyme or isolated catalytic

subunits. This can now be done by analyzing the elevated

CK2 activities found in tumour cells with respect to their

ability to phosphorylate the eIF2b peptide and of being

inhibited by MNA.
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