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Abstract This paper is concerned with the propagation of SH-waves in an inhomogeneous vis-

coelastic layer overlying an inhomogeneous isotropic half-space. For the study of viscoelastic layer

Kelvin–Voigt type model has been considered. The exponential type inhomogeneity is considered in

viscoelastic layer with different parameters for viscoelastic part and for density of medium whereas

for the half-space, it is quadratic type with single inhomogeneity parameter for rigidity and density.

The solutions are obtained analytically for both the layer and half-space. Dispersion relation is

obtained and subjected to continuity conditions at interfaces of viscoelastic layer and half-space

and the upper boundary of layer as free surface. The effects of the inhomogeneity parameter are

studied for both viscoelastic layer and inhomogeneous isotropic half-space. The numerical results

are shown by plotting the graph between phase velocity and wave number for different values of

inhomogeneity parameter and for the variation of depth of the layer.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The problems of propagation of SH-waves in an isotropic and
inhomogeneous elastic half-space are of great practical impor-
tance. They are not only helpful in investigating the internal

structure of the Earth but also very helpful in exploration of
natural resources buried inside the Earth like oil and gases
and other hydrocarbon and minerals, etc. Earth is also highly
inhomogeneous and some materials also exhibit viscoelastic

properties. Materials such as coal-tar, salt, and sediments that
are buried beneath the Earth surface can be modelled as vis-
coelastic materials. The general theory of viscoelasticity

describes the liner behaviour of both elastic and anelastic
materials and provides the basis for describing the attenuation
of seismic waves due to anelasticity. When seismic waves prop-
agate underground then these are not only influenced by aniso-

tropy of the medium but are also influenced by the intrinsic
viscosity of the medium [1]. Das and Sengupta [2] discussed
the surface wave propagation in general viscoelastic media of

higher order. They considered the general theory of surface
waves in higher order viscoelastic solid containing time rate
of strain and investigated the particular surface waves of

Rayleigh, Love and Stoneley type. Borocherdt [3] discussed
an excellent exposition to motion of seismic waves in arbitrary
linear viscoelastic media under different geometries.
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Chattopadhyay et al. [4,5] treated the propagation of SH-
waves in a viscoelastic medium with irregularity in different
geometries. Recently, Sethi et al. [6] and Kakar et al. [7]

attempted to study the nature of torsional wave propagation
in viscoelastic media; however, they have taken the real wave
number, while the hypothesis of real value of wave number

is not valid for viscoelastic medium.
The earth crust is highly anisotropic and inhomogeneous in

nature. The characteristics of medium such as elastic moduli,

density, thermal conductivities are not homogeneous through-
out the medium. So, by considering different types of depth
dependent inhomogeneity, the study can be made more close
to the real scenario of seismic wave propagation. Authors such

as Wilson [8], Deresiewicz [9], Dutta [10], Pal and Acharya
[11], Pal et al. [12], Kumar and Pal [13] considered the
exponential type inhomogeneity for the study of seismic wave

propagation in their problems while Chakrabarty and De [14],
Gazetas [15], Dey et al. [16], Kumar et al. [17] considered
quadratic inhomogeneity. Recently authors such as Kundu

et al. [18,19] and Zorammuana and Singh [20] studied
SH-wave propagation in inhomogeneous media.

This problem is considered on the basis that the layered

material inside possesses stress and they are not uniform
throughout the space domain. The stresses of material change
over time and depth. So, the layer of the problem is considered
the viscoelastic material in which stress is time dependent and

also depth dependent whereas in the half-space the stresses are
only depth dependent. Also, the density of the material is not
homogeneous throughout the medium. The depth-dependent

densities are chosen for both layer and half-space. This study
investigates the effects of various parameters namely inhomo-
geneity parameter, layer width, wave number and phase veloc-

ity. The numerical results are shown by plotting the graph
between phase velocity and wave number for different values
of inhomogeneity parameter and depth of layer.

2. Formulation of the problem

Consider an inhomogeneous viscoelastic layer of finite

thickness h and an inhomogeneous isotropic half-space. The
interface of these two media is taken at z ¼ 0 whereas the free
surface is at z ¼ �h. Here z-axis is taken positive along
vertically downwards direction and x-axis is assumed in the
Figure 1 Geometry of the problem.
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direction of wave propagation with velocity c. The geometrical
configuration is depicted in Fig. 1. For the layer, the inhomo-
geneity parameter for viscoelastic coefficients is a and density

is b whereas for half-space inhomogeneity parameter for rigid-
ity and density is c. For SH-type of waves the displacement
and body forces do not depend on y and if ðu; v;wÞ be the dis-
placement at any point Pðx; y; zÞ into the medium then

u � w ¼ 0; v ¼ vðx; z; tÞ and @

@y
� 0 ð1Þ
3. Solution of the problem

3.1. Inhomogeneous viscoelastic layer

The general equation of motion for the SH-waves propagation
without body force for the layer is given by,

@sxy
@x

þ @syz
@z

¼ q1

@2v1
@t2

ð2Þ

where q1 is the density of the medium, sxy and syz are stress

components and v1 is the displacement component in y direc-

tion in the layer. The stress–strain relations as considered by
Flugge [21] for viscoelastic layer of Kelvin–Voigt type model
and inhomogeneity for both viscoelastic coefficients and den-

sity parameter are taken as considered by Wilson [8]

syz ¼ e�azDl
@v1
@z

; sxy ¼ e�azDl
@v1
@x

; q1 ¼ q0e
bz ð3Þ

where Dl ¼
Pn

j¼0lj
@ j

@t j
and a; b are inhomogeneity parameters

whose unit is inverse of length.
Substituting Eq. (3) in Eq. (2) we have

Dl
@2v1
@x2

þ @2v1
@z2

� a
@v1
@z

� �
¼ q0e

ðaþbÞz @
2v1
@t2

ð4Þ

Assuming the solution as v1ðx; z; tÞ ¼ V1ðzÞeikðx�ctÞ and sub-
stituting in Eq. (4) we have,

d2V1

dz2
� a

dV1

dz
� k2 1� c2

c21
eðaþbÞz

� �
V1 ¼ 0 ð5Þ

where c1 ¼
ffiffiffiffi
D0

l

q0

q
and D0

l ¼
Pn

j¼0ljð�ikcÞ j.
To eliminate the first order derivative dV1

dz
, we substitute

V1ðzÞ ¼ eaz=2/1ðzÞ in Eq. (5) we get,

d2/1

dz2
� a2 þ 4k2

4
� k2c2

c21
eðaþbÞz

� �
/1 ¼ 0 ð6Þ

Considering new variable vðzÞ ¼ eðaþbÞz, Eq. (6) becomes

v2
d2/1

dv2
þ v

d/1

dv
þ ðm2v� l2Þ/1 ¼ 0 ð7Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffi
a2þ4k2

p
2ðaþbÞ and m ¼ kc

c1ðaþbÞ.

Eq. (7) is well known Bessel’s equation and its solution is

given by

V1ðzÞ ¼ eaz=2 CJlðm ffiffiffi
v

p Þ þDYlðm ffiffiffi
v

p Þ� � ð8Þ
where C;D are constants, Jlðm ffiffiffi

v
p Þ and Ylðm ffiffiffi

v
p Þ are Bessel’s

function of order l of first and second kind respectively.
elastic layer overlying an inhomogeneous isotropic half-space, Ain Shams Eng J
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Hence, the displacement and stress component in inhomo-
geneous viscoelastic layer are given by

v1ðx; z; tÞ ¼ V1ðzÞeikðx�ctÞ

¼ eaz=2 CJl me
ðaþbÞz

2

� �
þDYl me

ðaþbÞz
2

� �h i
eikðx�ctÞ ð9Þ

syz
	 


I
¼ e�azDl

@v1
@z

; ðsxyÞI ¼ e�azDl
@v1
@x

ð10Þ
3.2. Inhomogeneous half-space

The equation of motion for SH-wave in the inhomogeneous
isotropic half-space is given as

@sxy
@x

þ @syz
@z

¼ q2

@2v2
@t2

ð11Þ

where q2 is the density of the medium, sxy and syz are stress

components and v2 is the displacement component in y direc-

tion in half-space. The stress–strain relation and density for
the inhomogeneous isotropic half-space are considered follow-
ing Dey et al. [16]

sxy ¼ l0
0ð1þ czÞ2 @v2

@x
; syz ¼ l0

0ð1þ czÞ2 @v2
@z

;

q2 ¼ q0
0ð1þ czÞ2 ð12Þ

where c is the inhomogeneity parameter and its unit is inverse
of length.

Now substituting Eq. (12) in Eq. (11) we get,

@2v2
@x2

þ 2c
1þ cz

@v2
@z

þ @2v2
@z2

¼ 1

c22

@2v1
@t2

ð13Þ

where c2 ¼
ffiffiffiffi
l0
0

q0
0

r
.

Assuming the solution of Eq. (13) as

v2ðx; z; tÞ ¼ V2ðzÞeikðx�ctÞ and substituting we have

d2V2

dz2
þ 2c
1þ cz

dV2

dz
� k2s22V2 ¼ 0 ð14Þ

where s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
2

q
.

To eliminate first order derivative dV2

dz
, we substitute

V2 ¼ /2ðzÞ
1þcz in Eq. (14), we have

d2/2

dz2
� k2s22/2 ¼ 0 ð15Þ

The solution of Eq. (15) is given by

/2ðzÞ ¼ Ae�ks2z þ Beks2z ð16Þ
where A;B are constants.

The displacement component is bounded, as z ! 1 the
second term of Eq. (16) makes the solution unbounded. There-
fore, the approximate solution of Eq. (16) is given as

/2ðzÞ ¼ Ae�ks2z ð17Þ
Hence, the displacement and stress component in the half-
space are given by

v2ðx; z; tÞ ¼ V2ðzÞeikðx�ctÞ ¼ Ae�ks2z

1þ cz
eikðx�ctÞ ð18Þ
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ðsxyÞII ¼ l2

@v2
@x

; ðsyzÞII ¼ l2

@v2
@z

ð19Þ
4. Boundary conditions

We assume that layer is in contact with free surface at z ¼ �h
and the interface of layer and half-space is in welded contact.
Mathematically, these boundary conditions can be expressed

as follows:

ðsyzÞI ¼ 0; at z ¼ �h ð20Þ

ðsyzÞI ¼ ðsyzÞII at z ¼ 0 ð21Þ

v1 ¼ v2 at z ¼ 0 ð22Þ
Using boundary conditions (20)–(22) and Eqs. (9), (10),

(18) and (19), we get

aJlðPÞ þ PQfJl�1ðPÞ � Jlþ1ðPÞg½ �Cþ aYlðPÞ þ PQfYl�1ðPÞ½
� Ylþ1ðPÞg�D ¼ 0 ð23Þ

�Aþ CJlðmÞ þDYlðmÞ ¼ 0 ð24Þ

2l0
0ðcþ ks2ÞAþD0

l aJlðmÞ þmQfJl�1ðmÞ � Jlþ1ðmÞg½ �C
þD0

l aYlðmÞ þmQfYl�1ðmÞ � Ylþ1ðmÞg½ �D ¼ 0 ð25Þ
where P; Q are given by

P ¼ me�Qh; Q ¼ aþ b
2

� �
ð26Þ

Eliminating A;C and D from Eqs. (23), (24) and (25), we

get the dispersion relation for SH-type wave propagation in
viscoelastic layer overlying inhomogeneous isotropic half-
space subjected to free surface as upper boundary condition

in third order determinant form

aij
�� ¼ 0;

�� 8i; j ¼ 1; 2; 3 ð27Þ
where aij the entries of third-order determinants are as follows

a11 ¼ 0; a12 ¼ aJlðPÞþPQ Jl�1ðPÞ� Jlþ1ðPÞf g;
a13 ¼ aYlðPÞþPQfYl�1ðPÞ�Ylþ1ðPÞg
a21 ¼�1; a22 ¼ JlðmÞ; a23 ¼YlðmÞ
a31 ¼ 2l0

0ðcþ ks2Þ; a32 ¼D0
l aJlðmÞþmQ Jl�1ðmÞ� Jlþ1ðmÞf g½ �;

a33 ¼D0
l aYlðmÞþmQ Yl�1ðmÞ�Ylþ1ðmÞf g½ �
5. Particular cases

Case I:When h ! �1, the problem reduces to propagation of

SH-wave in inhomogeneous viscoelastic half-space overlying
inhomogeneous isotropic half-space. Then the displacement
component for half-space from Eq. (9) can be written as

v1ðx; z; tÞ ¼ Deaz=2Yl me
ðaþbÞz

2

� �
eikðx�ctÞ ð28Þ

Since, the first term of solution get unbounded as z ! �1.
Hence following the boundary condition (21) and (22), the dis-

persion relation for propagation of SH-wave in inhomoge-
neous viscoelastic half-space overlying inhomogeneous
isotropic half-space can be obtained as
elastic layer overlying an inhomogeneous isotropic half-space, Ain Shams Eng J
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Figure 2 Variation of ReðcÞ against wave number k for fixed

value of b and h.

Figure 3 Variation of ImðcÞ against wave number k for fixed

value of b and h.
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l0
0ðcþ ks2Þ ¼

D0
l

2
mQ

Ylþ1ðmÞ � Yl�1ðmÞ
YlðmÞ

� 
� a

� �
ð29Þ

Case II: When h ! 0, the problem reduces to propagation
of SH-wave in inhomogeneous isotropic half-space. So, the
dispersion relation for SH-wave in inhomogeneous half-space

with stress free surface at interface at the vacuum i.e.
ðsyzÞII ¼ 0 can be obtained from Eqs. (19) and (20) as

c ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

k2

s
ð30Þ

Case III: When a ! 0; b ! 0 and c ! 0, the problem

reduces to SH-wave propagation in homogeneous viscoelastic
layer overlying homogeneous isotropic half-space. The disper-
sion relation can be obtained as from Eq. (27)

tan kh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

c21
� 1

s !
¼

l0
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
2

q
D0

l

ffiffiffiffiffiffiffiffiffiffiffiffi
c2

c2
1

� 1
q ð31Þ

Case IV: When a ! 0; b ! 0, c ! 0 and D0
l ¼ l0, the

problem reduces to SH-wave propagation in homogeneous iso-

tropic layer overlying homogeneous isotropic half-space. The
dispersion relation can be obtained as from Eq. (27)

tan kh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

c21
� 1

s !
¼

l0
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
2

q
l0

ffiffiffiffiffiffiffiffiffiffiffiffi
c2

c2
1

� 1
q ð32Þ

which is the well-known classical equation of the Love wave in
the elastic homogeneous isotropic layer overlying a homoge-
neous isotropic elastic half-space.

6. Numerical results and discussion

In order to show the effect of inhomogeneity parameter and
dependency of phase velocity on wave number, we have taken

data for inhomogeneous isotropic half-space from Babuska
and Cara [22]

l0
0 ¼ 218 GPa; q0

0 ¼ 4400 kg=m3

For viscoelastic layer we have taken the following data
from Kumar et al. [17]

l0 ¼ 8:16 GPa; l1 ¼ 0:82 GPa; l2 ¼ 0:2 GPa;

q1 ¼ 3320 kg=m3

The graphs are plotted separately for both real and imagi-
nary parts for phase velocity against wave number. In Figs. 2

and 3, the graphs are plotted for real part of phase velocity
i.e.ReðcÞ and imaginary part of phase velocity i.e. ImðcÞ against
non-dimensional wave number k for different values of non-
dimensional inhomogeneity parameter að¼ 0:10; 0:15; 0:20Þ
b ¼ 0:1, c ¼ 0:1 and h ¼ 3 km. It is observed that the phase
velocity decreases with increasing wave number for both real
and imaginary parts of the phase velocity. As we increase the

inhomogeneity parameter the magnitude in phase velocity
decreases but the nature of the curves is same. For increasing
values of wave number and inhomogeneity parameter, phase

velocity decreases. In Figs. 4 and 5, the graphs are plotted for
real and imaginary parts of the phase velocity separately for dif-
ferent values of inhomogeneity parameter bð¼ 0:10; 0:15; 0:20Þ
a ¼ 0:1, c ¼ 0:1 and h ¼ 3 km. From these figures, we observe
Please cite this article in press as: Majhi S et al., Propagation of SH waves in a visco-
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that the nature of the graphs is same as in Figs. 2 and 3. In
Figs. 6 and 7 we plot the graph for different values of layer
depth i.e. h ¼ ð2:5 km; 3 km; 3:5 kmÞ, and fixed value of inho-
mogeneity parameter a ¼ 0:1, b ¼ 0:1 and c ¼ 0:1. Here we see

that as we increase wave number phase velocity decreases for
both the cases of real and imaginary part of the phase velocity
but one thing differs from above figure that phase velocity

increases with increasing depth. Due to less involvement of
inhomogeneity parameter c in the dispersion relation, it has
very less effect on the phase velocity.

7. Conclusions

The propagation of SH-type surface waves is investigated in

the inhomogeneous viscoelastic layer and inhomogeneous
isotropic half-space. For the layer, viscoelastic coefficients
elastic layer overlying an inhomogeneous isotropic half-space, Ain Shams Eng J
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Figure 4 Variation of ReðcÞ against wave number k for fixed

value of a and h.

Figure 5 Variation of ImðcÞ against wave number k for fixed

value of a and h.

Figure 6 Variation of ReðcÞ against wave number k for fixed

value of a and b.

Figure 7 Variation of ImðcÞ against wave number k for fixed

value of a and b.
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are taken as exponentially decaying function with depth
whereas density is taken exponentially increasing with depth.
The rigidity and density of isotropic half-space are taken as
quadratically increasing function with depth. The solutions

of both layer and half-space are obtained by variable separable
technique, the solution in the layer leading to well known Bes-
sel’s function type. The dispersion relation is obtained sub-

jected to continuity condition at interface and upper contact
of layer as free surface. From the dispersion relation, it can
be observed that there is sufficient involvement of the inhomo-

geneity parameters and depth of layer in dispersion relation to
affect the propagation of SH-waves. The numerical results are
obtained for particular model and the results are shown in the
figures. The figures reveal the fact that the phase velocity for

both real and imaginary parts decreases as the wave number
increases but the magnitude of phase velocity decreases for
Please cite this article in press as: Majhi S et al., Propagation of SH waves in a visco-
(2016), http://dx.doi.org/10.1016/j.asej.2016.03.011
increasing value of inhomogeneity parameter while it increases

for increasing value of depth of the layer. This discloses the
fact that heterogeneity of material and depth of layers have
great impact on the velocity of seismic waves. By observing

the records of seismographs for these phase velocities of seis-
mic waves enables in predicting the nature of materials inside
the earth. However, it is not easy to solve the problem for

any type of inhomogeneity analytically and in nature the inho-
mogeneity of earth is random.
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