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In our previous work (math/0008128), we studied the set Quant(K) of all uni-
versal quantization functors of Lie bialgebras over a field K of characteristic zero,
compatible with the operations of taking duals and doubles. We showed that
Quant(K) is canonically isomorphic to a product G0(K)×QQ(K), where G0(K) is a
universal group and QQ(K) is a quotient set of a set B(K) of families of Lie poly-
nomials by the action of a group G(K). We prove here that G0(K) is equal to the
multiplicative group 1+(K[[(]]. So Quant(K) is ‘‘as close as it can be’’ to QQ(K).
We also prove that the only universal derivations of Lie bialgebras are multiples
of the composition of the bracket with the cobracket. Finally, we prove that the
stabilizer of any element of B(K) is reduced to the 1-parameter subgroup generated
by the corresponding ‘‘square of the antipode.’’ © 2001 Elsevier Science

1. MAIN RESULTS

1.1. Results on Quant(K). Let K be a field of characteristic zero. In [2],
we introduced a group G0(K); the elements of G0(K) are the universal
automorphisms of the adjoint representations of K[[(]]-Lie bialgebras.

Let us recall the definition of G0(K) more explicitly. Let ( be a formal
variable and let LBA( be the category of Lie bialgebras over K[[(]],
which are topologically free K[[(]]-modules. An element of G0(K) is a
functorial assignment (a, [,], da) W ra, where for each object (a, [,], da) of
LBA(, ra is an element of EndK[[(]](a), given by a composition of tensor
products of the bracket and cobracket of a, this composition being the
same for all Lie bialgebras (we express the latter condition by saying that
aW ra is universal), and such that the identities (ra mod ()=ida, r(ag)cop=
(ra) t and ra([x, y])=[ra(x), y] for x, y ¥ a hold at the universal level.
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In [2], we also introduced the group Aut(LBA() of transformations of
the category of Lie bialgebras over K[[(]]. Elements of Aut(LBA() are
assignments a: (a, [,]a, da) W (braa , coaa), where braa and coaa are universal
elements of Hom(M2 a, a) and Hom(a, M2 a), such that (a, braa , coaa) is a
Lie bialgebra; braa and coaa should be equal to [,]a and da modulo (, and
also satisfy compatibility conditions with the operations of taking duals
and doubles of Lie bialgebras. The composition law in Aut(LBA() is
defined by braaŒa =bra(a, braŒa , coaŒa ) and coaaŒa =coa(a, braŒa , coaŒa ).

There is a unique map from G0(K) to Aut(LBA(), sending the assignment
(aW ra) to the assignmentaW (a, r−1/2

a p [,]a p (r
1/2
a é r1/2

a ), (r1/2
a é r1/2

a ) p
da p r

−1/2
a ). This map is injective, and the composition law of G0(K) is

uniquely defined by the condition that it is a group morphism.
View 1+(K[[(]] as a multiplicative subgroup of K[[(]] ×. There is a

unique map b: 1+(K[[(]] Q G0(K), such that for any Lie bialgebra a,
(b(l))a=l ida. This map makes 1+(K[[(]] a subgroup of G0(K).

We will show

Theorem 1.1. (1) Let (aW ra) be a universal assignment, where a is
an object of LBA( and ra is an element of EndK[[(]](a) such that for any x, y
in a, ra([x, y])=[ra(x), y]. Then there is a scalar l such that for any a,
ra=l ida. The same statement holds if we replace LBA( by LBA and the
base ring by K.

(2) G0(K) is equal to its subgroup 1+(K[[(]].

In [2], we defined Quant(K) as the set of all isomorphism classes of
universal quantization functors of Lie bialgebras, compatible with duals
and doubles. If we denote by LBA and QUE the categories of Lie bialgebras
and of quantized universal enveloping algebras over K, and by class:
QUE Q LBA the semiclassical limit functor, then a universal quantization
functor of Lie bialgebras, compatible with duals and doubles, is a functor
Q: LBA Q QUE, such that

(1) class p Q is isomorphic to the identity;
(2) (universality) there exists an isomorphism of functors between

aW Q(a) and aW U(a)[[(]] (these are viewed as functors from LBA to
the category of K[[(]]-modules) with the following properties: if we
compose this isomorphism with the symmetrisation map U(a)[[(]] Q
S(a)[[(]], and if we transport the operations of Q(a) on S(a)[[(]], then
the expansion in ( of these operations yields maps S i(a) é S j(a) Q Sk(a)
and S i(a) Q S j(a) é Sk(a); we require that these maps be compositions of
tensor products of the bracket and cobracket of a, these compositions
being independent of a (see [1]);
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(3) if Q K (resp., D(Q), Qcop) denotes the QUE-dual (resp., Drinfeld
double, the QUE-algebra with opposite coproduct) of an object Q of QUE,
and D(a) denotes the double Lie bialgebra of an object a of LBA, then
there are canonical isomorphisms Q((a*)copQ Q(a) K)cop and Q(D(a)) Q
D(Q(a)) (see [2]).

In [2], we also introduced an explicit set QQ(K) of equivalence classes
of families of Lie polynomials, satisfying associativity relations, and we
constructed a canonical injection of QQ(K) in Quant(K). Moreover, we
constructed an action of G0(K) on Quant(K) and showed that the map

G0(K)×QQ(K) Q Quant(K)

given by the composition G0(K)×QQ(K) … G0(K)×Quant(K) Q Quant(K)
(in which the second map is the action map of G0(K) on Quant(K)) is a
bijection. Theorem 1.1 therefore implies

Corollary 1.1. If a=(a, [,], da) is an object of LBA and l ¥
(1+(K[[(]]), let al be the object of LBA( isomorphic to (a, [,], ld). The
group 1+(K[[(]] acts freely on Quant(K) by the rule (l, Q) W Ql, where
Ql is the functor aW Q1(al) and Q1 is the natural extension of Q to a functor
from LBA( to QUE. Then the map

(1+(K[[(]])×QQ(K) Q Quant(K)

given by the composition (1+(K[[(]])×QQ(K) … (1+(K[[(]])×Quant(K)
Q Quant(K) is a bijection.

Therefore Quant(K) is ‘‘as close as it can be’’ to QQ(K).

1.2. Universal (Co)Derivations of Lie Bialgebras. Recall that a coderi-
vation of a Lie coalgebra (c, dc) is an endomorphism d of End(c), such that
(d é idc+idc é d) p dc=dc p d. By a derivation (resp., coderivation) of a
Lie bialgebra we mean a derivation (resp., coderivation) of the underlying
Lie algebra (resp., Lie coalgebra).

Let D (resp., C) be the space of all universal derivations (resp., coderiva-
tions) of Lie bialgebras. More explicitly, D (resp., C) is the linear space of
all functorial assignments aW la, where for each object a of LBA, la
belongs to End(a), is universal in the above sense, and is a derivation
(resp., coderivation) of the Lie bialgebra structure of a. It is well-known
that if [,]a and da are the bracket and cobracket maps of a, then [,]a p da
is a derivation of a; e.g., if a is finite-dimensional, if ;i ¥ I ai é bi is the
canonical element of a é a* and if we set u=;i ¥ I[ai, bi], then we have the
identity ([,]a p da)(x)=[u, x] in the double Lie algebra of a; and since
[,]a

g p dag is a derivation of a*, its transpose [,]a p da is a coderivation of a. Then
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Theorem 1.2. D and C both coincide with the one-dimensional vector
space spanned by the assignment aW [,]a p da.

If V is a vector space, we denote by F(V) the free Lie algebra generated
by V. Then the assignment cW F(c) is a functor from the category LCA of
Lie coalgebras to LBA. The proof of Theorem 1.2 implies the following
analogous statement for the subcategory of LBA of free Lie algebras of Lie
coalgebras.

Proposition 1.1. Let (cW lc) be a functorial assignment, where for
each object c of LCA, lc is a both a derivation and a coderivation of the Lie
bialgebra F(c). Then there exists a scalar l, such that for any object c of
LBA, lc=l[,]F(c) p dF(c).

The analogues of Theorem 1.2 and Proposition 1.1 also hold if we
replace the categories LBA and LCA by the categories LBA( and LCA(,
where LCA( is the category of Lie coalgebras, which are topologically free
K[[(]]-modules.

1.3. Isotropy of the Action of G(K) on B(K). If n is any integer \ 0, we
define FAn as the free algebra with generators x1, ..., xn. If we assign
degree di to each xi, then it is graded by Án

i=1 Ndi. We define FAn as the
degree ;n

i=1 di part of FAn. Let FLn be the Lie subalgebra of FAn

generated by x1, ..., xn. So FLn is the free Lie algebra with generators
x1, ..., xn. FLn is also graded by Án

i=1 Ndi. Define FLn as the part of FLn

of degree ;n
i=1 di. FLn may be viewed as the space of all functorial

assignments aW la, where a is a Lie algebra and la ¥ Hom(aén, a); FAn is
the space of similar assignments for the category of associative algebras.

We record here the definition of QQ(K). Let B(K) be the set of families
(Bpq)p, q \ 0, such that for each p, q, Bpq belongs to FLp+q[[(]], B10(x)=
B01(x)=x, Bp0=B0p if p ] 1, B11(x, y)=[x, y], and for any integers p, q, r,
the identity

C
a > 0

C
(pb)b=1, ..., a ¥ Parta(p), (qb)b=1, ..., a ¥ Parta(q)

Bar(Bp1q1 (x1, ..., xp1 | y1, ..., yq1 )

· · ·Bpaqa (xC a−1
b=1 pb+1, ..., xp | y C a−1

b=1 qb+1, ..., yq) | z1, ..., zr)

=C
a > 0

C
(qb)b=1, ..., a ¥ Parta(q), (rb)b=1, ..., a ¥ Parta(r)

Bpa(x1, ..., xp |

Bq1r1 (y1, ..., yq1 | z1, ..., zr1 ) · · ·Bqara (y C a−1
b=1qb+1, ..., yq | z C a−1

b=1rb+1, ..., zr))
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holds; here Parta(n) is the set of a-partitions of n, i.e., the set of families
(n1, ..., na) of positive integers such that n1+·· ·+na=n. Define G(K) as
the subset of < n \ 1 FLn[[(]] of families (Pn)n \ 1, such that P1(x)=x. Then
we are going to define a group structure on G(K), and an action of G(K)
on B(K); QQ(K) is the quotient set B(K)/G(K).

Recall first that if (c, dc) is a Lie coalgebra and B ¥B(K), then there is a
unique Hopf algebra structure on the completed tensor algebra T(c)[[(]]
with coproduct D c

B: T(c)[[(]] Q T(c)ê2 [[(]] defined by

D c
B(x)=x é 1+1 é x+ C

p, q | p+q \ 1
(
p+q−1apq(d

(Bpq)
c (x))

for any x ¥ c, where for any P in FLn[[(]], d (P)c is the map from c to cén

dual to the map from (c*)én to c* defined by P (when c is finite-dimensional),
and apq is the map from cép+q [[(]] to T(c) é T(c)[[(]] sending
x1 é · · · é xp+q to (x1 é · · · é xp) é (xp+1 é · · · é xp+q).

If P=(Pn)n \ 1 belongs to G(K), and (c, dc) is a Lie coalgebra, define i cP
as the unique automorphism of T(c)[[(]], such that for any x in c, we
have

i cP(x)=x+C
n \ 2
(
n−1d (Pn)c (x).

Then the product f : G(K)×G(K) Q G(K) and the operation f : G(K)×
B(K) QB(K) are uniquely determined by the conditions that for any Lie
coalgebra (c, dc), and any P, Q in G(K) and any B in B(K), we have

i cPfQ=i cP p i
c
Q and D c

PfB=(i cP é i cP) p D
c
B p (i

c
P)

−1.

Then one checks that for any B in B(K), there exists a unique family
(Sn)n \ 2, where Sn ¥ FLn[[(]], such that for any Lie coalgebra (c, dc), the
antipode S c

B of the bialgebra (T(c)[[(]], m0, D
c
B) is such that for any x ¥ c,

S c
B(x)=−x+ C

n | n \ 2
(
n−1d (Sn)(x)

(m0 is the multiplication map in T(c)[[(]]). It follows that there is a
unique family (S2n)n \ 2, where S2n ¥ FLn[[(]], such that

(S c
B)

2 (x)=x+ C
n | n \ 2

(
n−1d (S

2n)(x)
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for any x ¥ c. Let us set S21(x)=x and set S2
B=(S2n)n \ 1. Then S2

B is an
element of G(K). Moreover, G(K) is a pro-unipotent group. It follows that
one can define the logarithm log(S2

B) of S2
B, and the corresponding

one-parameter subgroup exp(K[[(]] log(S2
B)) of G(K).

Since for any Lie coalgebra (c, dc), we have ((S c
B)

2 é (S c
B)

2) p D c
B=

D c
B p (S

c
B)

2, we also have S2
B f B=B. It follows that for any element g of

exp(K[[(]] log(S2
B)), we have g f B=B, so exp(K[[(]] log(S2

B)) is con-
tained in the isotropy group of B.

Proposition 1.2. For any B in B(K), the isotropy group of B for the
action of G(K) on B(K) is equal to exp(K[[(]] log(S2

B)).

2. PROOF OF THEOREM 1.1

Let us define E as the set of all universal K[[(]]-module endomor-
phisms of Lie bialgebras. More explicitly, an element E is a functorial
assignment (a, [,], da) W Ea ¥ EndK[[(]](a), where a is an object of LBA(
and the universality requirement means that Ea is given by a composition of
tensor products of the bracket and cobracket of a, this composition being
the same for all Lie bialgebras. Then E is a K[[(]]-module, and G0(K) is a
subset of E. We will first give a description of E is terms of multilinear
parts of free Lie algebras (Proposition 2.1). Then a computation in free
algebras will prove Theorem 1.1.

2.1. Description of E. Recall that FLn is the multilinear part in each
generator of the free Lie algebra over K with n generators. Let Sn act
diagonally on FLn é FLn by simultaneous permutation of the generators
x1, ..., xn and y1, ..., yn of each factor.

We define a linear map p W (aW i(p)a) fromÁ3 n | n \ 1 (FLn é FLn)Sn
[[(]]

to E as follows.
If Q is an element of FLn, view Q as an element of the free algebra with

generators x1, ..., xn and write Q=;s ¥Sn
Q sxs(1) · · · xs(n). Then set

d (Q)
a (x)=

1
n

C
s ¥Sn

Qs((id
én−2
a é da) p · · · p da(x))(s(1)...s(n))

for any x ¥ a. The definition of d (Q)
a is such that if a is a Lie coalgebra, b is

a Lie algebra and we have a pairing O, P: a×bQK, then we have

Od (Q)
a (x), y1 é · · · é ynP=Ox, Q(y1, ..., yr)P

for any x ¥ a and y1, ..., yn ¥ b.
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If p=; a Pa é Qa is an element of FLn é FLn, define i(p)a as the
endomorphism of a such that

i(p)a (x)=C
a

Pa(d (Qa) (x))

for any x ¥ a. This maps factors through a linear map p W i(p)a from
(FLn é FLn)Sn

to EndK[[(]](a), and induces a linear map p W ı̂ (p)a from
Á3 n | n \ 1(FLn é FLn)Sn

[[(]] to EndK[[(]](a) (here Á3 is the (-adically
completed direct sum).

Then if a is finite-dimensional over K[[(]], and if we express the
canonical element of a é a* as ;i ¥ I ai é bi, then

i(p)a(x)=C
a

C
i1, ..., in ¥ I

Ox, Qa(bi1 , ..., bin )P Pa(ai1 , ..., ain ).

Proposition 2.1. The linear map ı̂ from Á3 n | n \ 1(FLn é FLn)Sn
[[(]] to

E defined by p W (aW ı̂ (p)a) is a linear isomorphism.

Proof. If n and m are \ 1, define En, m as the vector space of all univer-
sal linear homomorphisms from aén to aém (‘‘universal’’ again means that
these homomorphisms are compositions of tensor products of the bracket
and cobracket map, this composition being the same for each a). Then E is
just E1, 1. The direct sum Á3 n, m | n, m \ 1 En, m may be defined formally as the
smallest (-adically complete vector subspace of the space of all functorial
assignments aW ra ¥Á3 n, m | n, m \ 1 HomK[[(]](aén, aém), containing the assign-
ments aW ida ¥ HomK[[(]](a, a), the bracket and the cobracket operations,
stable under the external tensor products operations HomK[[(]](aén, aém) é
HomK[[(]](aénŒ, aémŒ) Q HomK[[(]](aén+nŒ, aém+mŒ), under the natural actions
of the symmetric groups Sn and Sm on HomK[[(]](aén, aém), and under the
composition operation.

Let us define F (n, m) as

F (n, m)

= Â
(pij) ¥N

{1, ..., n}×{1, ..., m}

1ë
n

i=1
FL C m

j=1 pij é ë
m

j=1
FL C n

i=1 pij
2

D (i, j) ¥ {1, ..., n}×{1, ..., m}Spij
;

the generators of the ith factor of the first tensor product are x (ij)
a ,

j=1, ..., m, a=1, ..., pij, and the generators of the jth factor of the second
tensor product are y (ij)

a , i=1, ..., n, a=1, ..., pij; the group Spij acts by
simultaneously permuting the generators x (ij)

a and y (ij)
a , a ¥ {1, ..., pij}.
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Then there is a unique linear map in, m: F (n, m)
Q Em, n, such that if

p= C
(pij) ¥N

{1, ..., n}×{1, ..., m}

C
l

ë
n

i=1
Pli (x

(ij)
a ; j=1, ..., m; a=1, ..., pij)

éë
m

j=1
Qlj (y

(ij)
a ; i=1, ..., n; a=1, ..., pij),

and x1, ..., xm belong to a Lie bialgebra a, then

(in, m(p))a (x1 é · · · é xm)

= C
(pij) ¥N

{1, ..., n}×{1, ..., m}

C
l

1ë
n

i=1
Pli 2 p a(pij)1ë

m

j=1
d (Q

l
j )(xj)2 . (2)

Here a(pij) is the linear endomorphism of aé;n
i=1 ;m

j=1 pij given by the follow-
ing permutation of factors

a(pij)
1ë

m

j=1

1ë
n

i=1

1ë
pij

a=1
x (ij)
a
222=ë

n

i=1

1ë
m

j=1

1ë
pij

a=1
x (ij)
a
22 .

If a is a finite-dimensional Lie bialgebra, and if we write the canonical
element of a é a* as ;i ¥ I a(i) é b(i), then the map (in, m(p))a takes the
following form

(in, m(p))a (x1 é · · · é xm)

=C
l

C
i(11)1 ¥ I, ..., i(nm)

pnm
¥ I

D
m

j=1
Oxj, Q

l
j (b(i

(ij)
a ); i=1, ..., n: a=1, ..., pij)P

pë
n

i=1
Pli (a(i

(ij)
a ); j=1, ..., m; a=1, ..., pij).

The map in, m induces linear maps ı̂n, m: F (n, m)[[(]] Q En, m and Á3 n, m | n, m \ 1

ı̂n, m : Á3 n, m | n, m \ 1 F (n, m)[[(]] QÁ3 n, m | n, m \ 1 En, m.
Let us show that Á3 n, m | n, m \ 1 ı̂n, m is surjective. For this, let us study

Á3 n, m \ 1 Im(ı̂n, m). This is a subspace of the space of all functorial assign-
ments

aW ra ¥Á3 n, m | n, m \ 1 HomK[[(]](aén, aém).
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Let us show that it shares all the properties of Án, m | n, m \ 1 En, m. The identity
is the image of the element x (11)

1 é y (11)
1 of F (1, 1), the bracket is the image of

the element [x (11)
1 , x (12)

1 ] é y (11)
1 é y (12)

1 of F (1, 2), and the cobracket is the
image of the element x (11)

1 é x (21)
1 é [y(11)

1 , y (21)
1 ] of F (2, 1). The fact that

Á3 n, m \ 1 Im(ı̂n, m) is stable under the composition follows from the following
lemma.

Lemma 2.1. Let P and Q be Lie polynomials in FLn and FLm , respec-

tively. Then there exist an element p=;p ¥N
{1, ..., n}×{1, ..., m} ;l(ên

i=1 Pp, l
i ) é

(êm
j=1 Qp, l

j ) of F (n, m), such that if a is any Lie bialgebra over K, we have

(d (Q)
p P)a=in, m(p)a=1 C

p ¥N
{1, ..., n}×{1, ..., m}

1ë
n

i=1
Pp, l

i
2 p ap p 1ë

m

j=1
d (Q

p, l
j ))2

a

(3)

in End(aén, aém).

Proof. Assume that a is finite-dimensional and ;i ¥ I a(i) é b(i) is the
canonical element of a é a*, then the statement is equivalent to the follow-
ing formula

C
i1, ..., jm ¥ I

OQ(a(j1), ..., a(jm)), P(b(i1), ..., b(in))P 1ë
n

a=1
a(ia)2 é 1ë

m

b=1
b(jb)2

= C
p ¥N

{1, ..., n}×{1, ..., m}

C
l

C
i(11)1 ¥ I, ..., i(nm)

pnm
¥ I

1ë
n

i=1
Pp, l

i (a(i (ij)a ); j=1, ..., m; a=1, ..., pij)2

é 1ë
m

j=1
Qp, l

j (b(i (ij)a ); i=1, ..., n; a=1, ..., pij)2. (4)

To prove it, we may assume that P and Q have the form P(x1, ..., xn)=
[x1, [x2, ..., xn]] and Q(y1, ..., ym)=[y1, [y2, ..., ym]]. Then the invariance
of the canonical bilinear form in D(a) and the fact that ;i ¥ I a(i) é b(i)
satisfies the classical Yang–Baxter identity in D(a) imply the following
formula. If a is an integer and k=(k1, ..., ka) is a sequence of integers such
that 1 [ k1 < ... < ka < m, let kŒ=(k −1, ..., k

−

m) be the sequence such that
k −i=ki for i=1, ..., a, (k −i)i > a is decreasing and {k −1, ..., k

−

m}={1, ..., m}.
Then
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C
i1, ..., jm ¥ I

O[a(j1), [a(j2), ..., a(jm)]], [b(i1), [b(i2), ..., b(in)]]P

p a(i1)é · · · é a(in)é b(j1)é · · · é b(jm)

=C
m−1

a=1
C

k1, ..., ka | 1[ k1 < · · · < ka <m
C
m−a

s=0
o(s)

p C
i1, ..., jm ¥ I

O[a(jkŒm), ..., [a(jkŒa+s+2
), a(jkŒa+s+1

)]], [b(i2), [b(i3), ..., b(in)]]P

p [a(jkŒ1), · · · [a(jk−a+s
), a(i1)]]é a(i2)é · · · é a(im)

é b(j1)é · · · é [b(jk−a+s+1), b(i1)]é · · · é b(jm),

where o(0)=−1 and o(s)=(−1) s if s ] 0. Formula (4) then follows by
induction on n and m. One then checks that the element p obtained from
this computation also satisfies the identity (3) for any Lie bialgebra. L

End of Proof of Proposition. Let is explain why Lemma 3 implies that
Á3 n, m \ 1 Im(ı̂n, m) is stable under composition. Tensoring r copies of identity
(3), we find that if we are given any homogeneous Lie polynomials
P1, ..., Pr, Q1, ..., Qr (the sum of degree of Pi is n, the sum of degrees of Qi

is m), then there exist families (Pp, l
i )i, l and (Qp, l

i )i, l, such that the identity

11ë
r

i=1
d (Qi)2 p 1ë

r

i=1
Pi
22

a

=1C
i, l

1ë
n

i=1
Pp, l

i
2 p ap p 1ë

m

j=1
d (Q

p, l
j )22

a

holds for any a. Then composing this identity from the left by a composi-
tion s p (êiŒP

−

iŒ) and from the right by a composition (êjŒ d
(QŒjŒ)) p y, where

P −iŒ and Q −iŒ are homogeneous Lie polynomials and s, y are permutations,
we express the product of any pairs of elements of Á3 n, m \ 1 Im(ı̂n, m) as an
element of the same space.

The other properties of Á3 n, m | n, m \ 1 En, m are obviously shared by
Á3 n, m \ 1 Im(ı̂n, m). So Á3 n, m \ 1 Im(ı̂n, m) is contained in Á3 n, m | n, m \ 1 En, m and
shares all its properties; since Á3 n, m | n, m \ 1 En, m is the smallest vector subspace
of the space of functorial assignments aW ra ¥Á3 n, m | n, m\ 1 HomK[[(]](aén, aém)
with these properties, we obtain Á3 n, m | n, m \ 1 Im(ı̂n, m)=Á3 n, m|n, m \ 1 En, m. This
proves that Á3 n, m | n, m \ 1 ı̂n, m is surjective. Since ı̂=ı̂1, 1, this implies that ı̂ is
surjective.
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Let us now show that the map ı̂ is injective. Let (pn)n \ 1 be a family such
that pn ¥ (FLn é FLn)Sn

[[(]] and ı̂ (;n | n \ 1 pn)=0. Then if a is any Lie
bialgebra, then ;n | n \ 1 ı̂ (pn)a=0.

If V is any vector space, let us denote by F(V) the free Lie algebra gen-
erated by V. If (c, dc) is a Lie coalgebra, then the map cQM2 F(c) defined
as the composition of cQM2 cQM2 F(c) of the cobracket map of c with
the canonical inclusion extends to a unique cocycle map dF(c): F(c) Q
M2 F(c). Then (F(c), [,], dF(c)) is a Lie bialgebra. The assignment cW F(c)
is a functor from the category LCA of Lie coalgebras to LBA. Then if
(c, dc) is any Lie coalgebra, we have

C
n | n \ 1

ı̂ (pn)F(c)=0. (5)

Recall that FAn is the multilinear part of the free algebra with generators
x1, ..., xn. Then Sn acts on FAn é FLn by simultaneously permuting the
generators x1, ..., xn of FAn and y1, ..., yn of FLn. The injection FLn … FAn

induces a linear map (FLn é FLn)Sn
Q (FAn é FLn)Sn

; since Sn is finite,
this linear map is an injection. Moreover, the map FLn Q (FAn é FLn)Sn

,
sending P to the class of x1 · · · xn é P(y1, ..., yn), is a linear isomorphism.

For each n, define p̄n as the element of FLn such that the equality

pn=x1 · · · xn é p̄n(y1, ..., yn)

holds in (FAn é FLn)Sn
[[(]].

The restriction of ı̂ (pn)F(c) to c … F(c) is a linear map ı̂ (pn)F(c) | c from c to
F(c)[[(]]. The image of this map is actually contained in the degree n part
F(c)n [[(]] of F(c)[[(]]. The space F(c)n is a vector subspace of cén.
Moreover, formula (1) shows that the composition of ı̂ (pn)F(c) | c with the
canonical inclusion F(c)n [[(]] … cén [[(]] coincides with d (p̄n). So if (c, dc)
is any Lie coalgebra, the map ;n | n \ 0 d

(p̄n): cQÁn | n \ 0 c
én [[(]] is zero.

Now the linear map FLn Q {functorial assignments cW yc ¥ Hom(c, cén),
where c is an object of LCA} defined by P W d (P), is injective. This implies
that each p̄n is zero. So ı̂ is injective.

This ends the proof of Proposition 2.1. L

More generally, we have the following description of En, m (we will not
use it in the sequel). After it was written, I was informed by P. Etingof that
this result and its proof were obtained in an e-mail message of Positselski
[5].

Proposition 2.2. The map ı̂n, m: F (n, m)
Q Em, n[[(]] defined by (2) is a

linear isomorphism.
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Proof. The surjectivity of ı̂n, m has already been proved in Proposition
2.1, and we use the category of all Lie bialgebras of the form F(c), where
(c, dc) is a Lie coalgebra, and the inclusion

F (n, m) … Â
(pij) ¥N

{1, ..., n}×{1, ..., p}

1ë
n

i=1
FA Cm

j=1 pij éë
m

j=1
FL Cn

i=1 pij
2
D(i, j) ¥ {1, ..., n}×{1, ..., m} Spij

;

= Â
(pij) ¥N

{1, ..., n}×{1, ..., p}

Â
s1 ¥Sp11, ..., p1m

, ..., sn ¥Spn1, ..., pnm

ë
m

j=1
FL Cn

i=1 pij

to prove the injectivity (here Sn1, ..., nk is the set of permutations of {1, ..., n1

+·· ·+nk}, which are increasing on each subset {n1+·· ·+ni−1+1, ...,
n1+·· ·+ni}). L

Remark 1. It would be interesting to understand (1) the algebra struc-
ture of F (1, 1) provided by the isomorphism of Proposition 2.1 and (2) the
algebra structure of Án, m | n, m \ 1 F (n, m) provided by Proposition 2.2. As we
noted before, the latter algebra is also equipped with natural operations of
the symmetric groups Sn and Sm on each component F (n, m), and external
product maps F (n, m) é F (nŒ, mŒ)

Q F (n+nŒ, m+mŒ).

Remark 2. Universal Gerstenhaber–Schack–Shnider–Sternberg complex.
Let Fantisymmn, m be the subspace of Fn, m corresponding to totally antisymmetric
tensors with respect to the actions of the symmetric groups Sn and Sm. So
Fantisymmn, m is a universal version of the vector spaces Hom(N na,N ma).

The bigraded vector space Án, m Fantisymmn, m is then equipped with a double
complex structure, which is a universal version of the Shnider–Sternberg
variant of the Gerstenhaber–Schack complex for Lie bialgebra cohomology
(see [4, 6]). Theorem 1.2 says that the first cohomology group of this
complex is one-dimensional. On the other hand, universal deformations
and obstructions to deformations of enveloping algebras of Lie bialgebras
as QUE-algebras are parametrized by the second and third cohomologies
of the associated complex. For example, the facts that the dimensions of
these cohomology groups are respectively 1 and 0 would imply the unicity
of universal quantization functors of Lie bialgebras up to rescalings of the
deformation parameter, but we do not know any evidence for these facts.

Remark 3. Graph interpretation of the algebra Á3 n, m | n, m \ 1 En, m. In [3],
Etingof and Kazhdan defined a universal category C of Lie bialgebras as
an example of ‘‘linear algebraic structures.’’ C is a tensor category, whose
objects are labelled by nonnegative integer numbers; if [n] is the object
corresponding to the integer n, then we have [n]=[1]én. Then Proposition
2.2 says that there are ‘‘enough’’ Lie bialgebras for the natural map
HomC([n], [m]) Q En, m to be an isomorphism.
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HomC([n], [m]) can be described in the following way. Let Graphn, m be
the set of all graphs c, oriented, without cycles, and with the following
properties. Vertices of c are of two types, ‘‘algebras’’ and ‘‘operations.’’
‘‘Algebra’’ vertices are of two subtypes, ‘‘input’’ and ‘‘output’’; ‘‘opera-
tions’’ vertices are of two types, ‘‘bracket’’ and ‘‘cobracket.’’ Input (resp.,
output) vertices have exactly 1 outgoing (resp., 1 incoming) edge; bracket
(resp., cobracket) vertices have exactly 2 incoming and 1 outgoing (resp., 1
ingoing and 2 outcoming) edges. There are exactly n (resp., m) input (resp.,
output) vertices, numbered from 1 to n (resp., from 1 to m). Factor the
vector space Á3 c ¥Graphn, m K[[(]] c by the relations arising from the Lie
bialgebra axioms.

Then the resulting vector space is isomorphic to HomC([n], [m])=En, m.
The algebra structure of E=Á3 n, m | n, m \ 1 En, m corresponds to the composi-
tion of classes of graphs, the action of permutation groups to renumbering
of the algebra vertices, and the external product corresponds to juxtaposi-
tion of graphs with renumbering of algebra vertices.

2.2. Proof of Theorem 1.1. Let (aW ra) belong to G0(K). Recall that
this means that (aW ra) belongs to E, in particular, ra belongs to
EndK[[(]](a) for any object a of LBA(.

Let us prove 1). Let (aW ra) be a universal assignment such that ra
satisfies the identity ra([x, y])=[ra(x), y] for any x, y in a. Let p be the
preimage of ra by the map ı̂. Then there is a unique sequence (pn)n \ 1,
where pn belongs to (FLn é FLn)Sn

[[(]], such that p=;n | n \ 1 pn. Then
if we set pn=;a P (n)

a é Q (n)
a , and if a is finite-dimensional, and ;i ¥ I a(i) é

b(i) is the canonical element of a é a*, then we have

ra(x)= C
n | n \ 1

C
i1, ..., in ¥ I

C
a

Ox, Q (n)
a (b(i1), ..., b(in))P P (n)

a (a(i1), ..., a(in)).

Then

ra([x, y])= C
n | n \ 1

C
i1, ..., in ¥ I

C
a

O[x, y], Q (n)
a (b(i1), ..., b(in))P

p P (n)
a (a(i1), ..., a(in)).

Lemma 2.2. If t belongs to a*, [; i ¥ I a(i) é b(i), t é 1+1 é t] belongs
to a* é a*, and we have

O[x, y], tP=7x é y, 5C
i ¥ I

a(i) é b(i), t é 1+1 é t68.
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Proof of Lemma. The first statement follows from the fact that
;i a(i) é b(i)+b(i) é a(i) is D(a)-invariant.

Let us prove the second statement. The invariance of the bilinear form of
D(a) implies that O[x, y], tP is equal to Ox, [y, t]P. This is equal to
O;i ¥ I [a(i), t] é b(i), x é yP. Since a is an isotropic subspace of D(a), this
is the same as

7C
i ¥ I

[a(i), t] é b(i)+a(i) é [b(i), t], x é y8. L

So we get

ra([x, y])= C
n | n \ 1

C
a

C
i1, ..., in ¥ I

7x é y, C
i

[a(i), Q (n)
a (b(i1), ..., b(in))]

é b(i)+a(i) é [b(i), Q (n)
a (b(i1), ..., b(in))]8

p P (n)
a (a(i1), ..., a(in)). (6)

On the other hand, we have

[ra(x), y]= C
n | n \ 0

C
i1, ..., in ¥ I

Ox, Q (n)
a (b(i1), ..., b(in))P[P

(n)
a (a(i1), ..., a(in)), y]

so

[ra(x), y]= C
n | n \ 0

C
a

C
i1, ..., in ¥ I

C
i ¥ I

Ox é y, Q (n)
a (b(i1), ..., b(in)) é b(i)P

p [P (n)
a (a(i1), ..., a(in)), a(i)]. (7)

Comparing (6) and (7), and using the first part of Lemma 2.2, we get

C
n | n \ 1

C
a

C
i1, ..., in, i ¥ I

[P (n)
a (a(i1), ..., a(in)), a(i)] é Q (n)

a (b(i1), ..., b(in)) é b(i)

= C
n | n \ 1

C
a

C
i1, ..., in, i ¥ I

P (n)
a (a(i1), ..., a(in)) é a(i)

é [b(i), Q (n)
a (b(i1), ..., b(in))]

+P(n)
a (a(i1), ..., a(in)) é [a(i), Q (n)

a (b(i1), ..., b(in))] é b(i). (8)
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In fact, it is easy to see that the identity

C
n \ 1

C
a

[P (n)
a (x1, ..., xn), x] é Q (n)

a (y1, ..., yn) é y

= C
n | n \ 1

C
a

P (n)
a (x1, ..., xn) é x é [y, Q (n)

a (y1, ..., yn)]

+P(n)
a (x1, ..., xn) é [x, Q (n)

a (y1, ..., yn)] é y (9)

holds in

F (abb)
n =(FLn é (FL é 2

n )C n
i=1 di

)Sn
,

where Sn acts by simultaneously permuting the generators of FLn and
(FLn)é2. Equation (8) is then a consequence of (9).

Applying the Lie bracket to the two last tensor factors of (8), we obtain

C
n | n \ 1

C
a

C
i1, ..., in, i ¥ I

[P(n)
a (a(i1), ..., a(in)), a(i)] é [Q(n)

a (b(i1), ..., b(in)), b(i)]

= C
n | n \ 1

C
a

C
i1, ..., in, i ¥ I

P (n)
a (a(i1), ..., a(in))

é [[a(i), b(i)], Q (n)
a (b(i1), ..., b(in))]. (10)

Since ;i ¥ I a(i) é b(i) satisfies CYBE, we have

C
j ¥ I

a(j) é 5C
i ¥ I

[a(i), b(i)], b(j)6= C
i, j ¥ I

[a(i), a(j)] é [b(i), b(j)].

So identity (10) is rewritten as

C
n | n \ 1

C
a

C
i1, ..., in, i ¥ I

[P(n)
a (a(i1), ..., a(in)), a(i)] é [Q(n)

a (b(i1), ..., b(in)), b(i)]

= C
n | n \ 1

C
a

C
n

k=1
C

i1, ..., in, i ¥ I
P (n)
a (a(i1), ..., [a(i), a(ik)], ..., a(in))

é Q (n)
a (b(i1), ..., [b(i), b(ik)]..., b(in)). (11)
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On the other hand, one easily derives from (9) the identity

C
n | n \ 1

C
a

[P (n)
a (x1, ..., xn), x] é [Q (n)

a (y1, ..., yn), y]

= C
n | n \ 1

C
n

k=1
C
a

P (n)
a (x1, ..., [x, xk], ..., xn) é Q (n)

a (y1, ..., [y, yk]..., yn)
(12)

valid in F (1, 1); this identity is the universal version of (11). Separating
homogeneous components, we get for each n \ 1

C
a

[P(n)
a (x1, ..., xn), x] é [Q (n)

a (y1, ..., yn), y]

=C
a

C
n

k=1
P (n)
a (x1, ..., [x, xk], ..., xn) é Q (n)

a (y1, ..., [y, yk]..., yn). (13)

For each n \ 1, let Rn be the element of FLn[[(]] such that the identity
Rn(x1, ..., xn) é y1 · · · yn=;a P (n)

a (x1, ..., xn) é Q (n)
a (y1, ..., yn) holds in

(FLn é FAn)Sn
[[(]]. Then (13) implies that Rn satisfies identity

[Rn(x1, ..., xn), xn+1]−[Rn(x2, ..., xn+1), x1]

=2 C
n

k=1
Rn(x1, ..., [xk, xk+1], ..., xn+1) (14)

in FLn+1[[(]].
Recall that Rn belongs to FAn[[(]]. It follows that there are unique

elements R (i)
n of FAn−1[[(]] (i=1, ..., n), such that

Rn(x1, ..., xn)=C
n

i=1
xiR

(i)
n (x1, ..., xi−1, xi+1, ..., xn).

Let us view (14) as an identity in FAn[[(]], and let us project it on
Ás | s ¥Sn, s(1)=1 K[[(]] xs(1) · · · xs(n) parallel to Ás | s ¥Sn, s(1) ] 1 K[[(]] xs(1) · · ·
xs(n). This means that we select in this identity the terms ‘‘starting with x1.’’
This yields

R (1)
n (x2, ..., xn) xn+1+Rn(x2, ..., xn+1)

=2x2R
(1)
n (x3, ..., xn+1)+2 C

n

i=2
R (1)

n (x2, ..., [xi, xi+1], ..., xn+1). (15)
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This is an equality in FAn[[(]]. Let us denote by FAn the free K[[(]]-
algebra with generators x2, ..., xn+1, and by FLn the free Lie algebra with
the same generators. Then FAn[[(]] …FAn, and FAn is the universal
enveloping algebra U(FLn) of FLn. This structure of an enveloping
algebra defines a filtration on FAn. An element of FAn has degree [ b

for this filtration iff it can be expressed as a polynomial of degree [ b in
elements of FLn.

Let a be the degree of R (1)
n for the analogous filtration of FAn−1. Let us

assume that a > 0. Then R (1)
n (x2, ..., xn) xn+1 and x2R

(1)
n (x3, ..., xn+1) both

have degree a+1 in FAn; R (1)
n (x2, ..., [xi, xi+1], ..., xn+1) has degree a in

FAn; and Rn(x2, ..., xn+1) has degree 1 (its degree is [ 1, but if this degree
is zero, then Rn vanishes identically).

Let R̄ (1)
n be the image of R (1)

n in the associated graded of FAn, which is
the symmetric algebra S(FLn)[[(]] of FLn. Then (15) implies the identity

R̄ (1)
n (x2, ..., xn) xn+1=2x2R̄

(1)
n (x3, ..., xn+1) (16)

in S(FLn)[[(]]. Recall that in this identity, R̄ (1)
n (y1, ..., yn−1) is a poly-

nomial in variables Pk, a(yi1 , ..., yik ), where k runs over 1, ..., n−1, i1, ..., ik
runs over all sequences of integers such that 1 [ i1 < · · · < ik [ n−1, and
Pk, a runs over a basis of FLk, so it is a polynomial in ;n−1

k=1 (n−1
k )(k−1)!

variables. Moreover, if (d1, ..., dn−1) is the canonical basis of Nn, and we
say that the variables Pk, a(yi1 , ..., yik ) have multidegree di1+·· ·+dik , then
R̄ (1)

n is homogeneous of multidegree d1+·· ·+dn−1.
Equation (16) implies that x2 divides R̄ (1)

n (x2, ..., xn); if we set

R̄ (1)
n (x1, ..., xn−1)=x1R

(1) −
n (x1, ..., xn−1),

where R (1) −
n (x1, ..., xn−1) belongs to S(FLn)[[(]], then R (1) −

n (x1, ..., xn−1) is
homogeneous of multidegree d2+·· ·+dn−1. So R (1)−

n (x1, ..., xn−1) actually
belongs to S(FLn−1) and may be written S (1)

n (x2, ..., xn−1). We have then

S (1)
n (x3, ..., xn) xn+1=2x3S

(1)
n (x4, ..., xn+1);

this equation is the same as (16), where the number of variables is
decreased by 1. Repeating the reasoning above, we find R̄ (1)

n (x1, ..., xn−1)=
lx1 · · · xn−1, where l is scalar. Then Eq. (16) implies that l=0. This is a
contradiction with a > 0.
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Therefore a=0, which means that R (1)
n is scalar. The only cases when a

scalar belongs to FAn−1[[(]] is n=1, or this scalar is zero. We have
therefore shown that if n > 1, then R (1)

n is zero. Equation (15) then implies
that Rn(x1, ..., xn) also vanishes. On the other hand, when n=1, all the
solutions of (14) are Rn(x)=lx, where l ¥K[[(]].

Therefore the only solutions to Eq. (12) are such that if n > 1,

C
a

P (n)
a (x1, ..., xn) é Q (n)

a (y1, ..., yn)

is zero, and ;a P (1)
a (x1) é Q (1)

a (y1) is of the form lx1 é y1, with l ¥K[[(]].
This solution corresponds to the assignment

aW ra=l ida . (17)

So all assignments of (aW ra) such that ra([x, y])=[ra(x), y] have
necessarily the form (17). This proves (1).

Let us now prove (2). It follows from (1) that any assignment of G0(K) is
necessarily of the form (17). The necessary and sufficient condition for an
assignment of the form (17) to actually belong to G0(K) is that
l ¥ (1+(K[[(]]). This ends the proof of Theorem 1.1. L

Remark 4. It is much simpler to prove Theorem 1.1 by noting that
each homogeneous component of the right hand side of Eq. (9) is anti-
symmetric in its two last tensor factors. However, the techniques of the
above proof will again be used in the next proofs.

3. PROOFS OF THEOREM 1.2 AND PROPOSITION 1.1

3.1. Proof of Theorem 1.2. Let (aW la) be an element of D. According
to the ‘‘non-(-adically completed’’ version of Proposition 2.1, (aW la) is
the image by i of an element q of Án | n \ 1(FLn é FLn)Sn

. Let us write q as

q= C
n | n \ 1

C
a

P −(a)n (x1, ..., xn) é Q −(a)n (y1, ..., yn);

then in the same way as identity (9), one shows that

C
n | n \ 1

C
a

[P −(n)a (x1, ..., xn), x] é Q −(n)a (y1, ..., yn) é y

−[P −(n)a (x1, ..., xn), x] é y é Q −(n)a (y1, ..., yn)

= C
n | n \ 1

C
a

P −(n)a (x1, ..., xn) é x é [y, Q −(n)a (y1, ..., yn)]

+P −(n)a (x1, ..., xn) é [x, Q −(n)a (y1, ..., yn)] é y (18)
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holds in F (abb). Applying the Lie bracket to the two last tensor factors of
this identity, we get

2 C
n | n \ 1

C
a

[P −(n)a (x1, ..., xn), x] é [Q −(n)a (y1, ..., yn), y]

= C
n | n \ 1

C
n

k=1
C
a

P −(n)a (x1, ..., [x, xk], ..., xn) é Q −(n)a (y1, ..., [y, yk], ..., yn).
(19)

Let us separate the homogeneous components of this equation, and let us
denote by R −n the element of FLn such that the identity R −n(x1, ..., xn) é
y1 · · · yn=;a P −a(x1, ..., xn) é Q −a(y1, ..., yn) holds in (FLn é FAn)Sn

. Then
R −n satisfies the identity

[R −n(x1, ..., xn), xn+1]−[R −n(x2, ..., xn+1), x1]

=C
n

k=1
R −n(x1, ..., [xk, xk+1], ..., xn+1) (20)

in FLn+1.
If n=1, then (20) implies that R −n=0. If n=2, then the solutions of (20)

are of the form R −n(x, y)=l[x, y], where l is any scalar.
Let us assume that n > 2. We will show that the only solution to (20) is

R −n=0.
Let us proceed as above and introduce the elements R −(n)i of FAn−1

(i=1, ..., n), such that

R −n(x1, ..., xn)=C
n

i=1
xiR

−(n)
i (x1, ..., xi−1, xi+1, ..., xn).

Let us select in (20) the terms ‘‘starting with x1’’. We obtain

R −(1)n (x2, ..., xn) xn+1+R −n(x2, ..., xn+1)

=x2R
−(1)
n (x3, ..., xn+1)+C

n

i=2
R −(1)n (x2, ..., [xi, xi+1], ..., xn+1). (21)

There exists unique scalars l and (lij)2 [ i < j [ n, such that

R −n(x2, ..., xn)=lx2 · · · xn+ C
2 [ i < j [ n

x2 · · · xi−1[xi, xj] xi+1 · · · xj−1xj+1 · · · xn

+terms of degree < n−2
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(the degree is with respect to the enveloping algebra filtration of FAn−1=
U(FLn−1)). We therefore obtain the equality

C
i, j | 2 [ i < j [ n

lijx2 · · · xi−1[xi, xj] xi+1 · · · xj−1xj+1 · · · xn+1

= C
i, j | 2 [ i < j [ n

lijx2 · · · xi[xi+1, xj+1] xi+2 · · · xjxj+2 · · · xn+1

+l C
n

i=2
x2 · · · xi−1[xi, xi+1] xi+2 · · · xn+1 (22)

modulo terms of degree [ max(1, n−2), which is [ n−2 by assumption
on n.

Lemma 3.1. If R −n ] 0, then l ] 0.

Proof. Let d be the degree of R −(1)n for the enveloping algebra filtration
of FAn−1=U(FLn−1). If d=0, then R −(1)n is a scalar, so n=1, which we
ruled out. So d > 0. Let us denote by R −(n)1 the image of R −(n)1 in the degree d
part of the associated graded of FAn−1. Then since R −n(x2, ..., xn+1) has
degree [ 1 [ d , and R −(1)n (x2, ..., [xi, xi+1], ..., xn+1) has degree d, the
image of (21) in the degree d+1 part of the associated graded of FAn−1

yields

R −(n)1 (x2, ..., xn) xn+1=x2R
−(n)
1 (x3, ..., xn+1).

Therefore x2 divides R −(n)1 (x2, ..., xn), and an induction as above shows that
there exists a scalar a such that

R −(n)1 (x2, ..., xn)=a× class of x2 · · · xn .

Since R −(n)1 cannot be zero, a is not equal to zero. On the other hand, we
have necessarily a=l, so l ] 0. L

Let us assume that R −n ] 0. We have seen that then l ] 0. On the other
hand, the image of (22) in the associated graded of FAn−1 implies the
equalities

l23=l, l34 −l23=l, ..., ln−1, n −ln−2, n−1=l, −ln−1, n=l.
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Summing up these equalities, we get (n−1) l=0, so l=0, a contradiction.
Therefore R −n=0. It follows that q is homogeneous of degree 2, and is
therefore proportional to [x1, x2] é [y1, y2]. This ends the proof of the
first part of Theorem 1.2 on universal derivations.

Let us prove the statement on universal coderivations. Assume that
aW la is a universal coderivation. Then the assignment aW (lag) t is a
universal derivation. We have shown that a universal derivation is neces-
sarily proportional to ua=[,]a p da. Since (ua

g) t=ua, any universal
coderivation is also proportional to aW ua. This implies the second part of
Theorem 1.2.

3.2. Proof of Proposition 1.1. We have shown that any functorial
assignement (cW lc), where for each object c of LCA, lc is a derivation of
F(c), is provided by an element q=(qn)n \ 1 of Án | n \ 1(FLn é FLn)Sn

. More
precisely, lc is uniquely determined by its restriction to c, which has the
form (if c is finite-dimensional)

lc(x)=C
n \ 1

C
a

C
i1, ..., in ¥ I

Ox, S (n)
a (bi1 , ..., bin )P R (n)

a (ai1 , ..., ain ),

where qn is the class of ;a R (n)
a é S (n)

a and we write the canonical element of
c é c* as ;i ¥ I ai é bi.

Since lc is a coderivation, it satisfies the identity

dF(c) p lc(x)=(lc é idF(c)+idF(c) é lc) p dc(x) (23)

for any x ¥ c.
Let us denote by ad* the coadjoint action of c* on c. For any x ¥ c, we

have dc(x)=;i ¥ I ai é ad*(bi)(x). Then

(lc é idF(c)) p dc(x)

=C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

OaiŒ, S
(n)
a (bi1 , ..., bin )P R (n)

a (ai1 , ..., ain ) é ad*(biŒ)(x)

=C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

R (n)
a (ai1 , ..., ain ) é ad*(S (n)

a (bi1 , ..., bin ))(aiŒ)Ox, biŒP.

On the other hand, if we again denote by ad* the action of c* on F(c)
induced by the coadjoint action of c* on c, we have

dF(c) p lc(x)=C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

aiŒ é ad*(biŒ)(R
(n)
a (ai1 , ..., ain ))

×Ox, S (n)
a (bi1 , ..., bin )P.
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Identity (23) therefore implies

C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

aiŒ é ad*(biŒ)(R
(n)
a (ai1 , ..., ain )) é S (n)

a (bi1 , ..., bin )

=C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

R (n)
a (ai1 , ..., ain ) é ad*(S(n)

a (bi1 , ..., bin ))(aiŒ) é biŒ

−ad*(S(n)
a (bi1 , ..., bin ))(aiŒ) é R (n)

a (ai1 , ..., ain ) é biŒ.

Let us assume that c is a Lie bialgebra. Then there is a unique Lie algebra
morphism ac from F(c) to c, extending the identity on c. The image of this
identity by ac é ac é idc

g is the identity in D(c) é D(c) é c* (where both
sides belongs to c é c é c*)

C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

aiŒ é [biŒ, R
(n)
a (ai1 , ..., ain )] é S (n)

a (bi1 , ..., bin )

+[aiŒ, R
(n)
a (ai1 , ..., ain )] é biŒ é S (n)

a (bi1 , ..., bin )

=C
n \ 1

C
a

C
iŒ, i1, ..., in ¥ I

−R (n)
a (ai1 , ..., ain ) é aiŒ é [S (n)

a (bi1 , ..., bin ), biŒ]

+aiŒ é R (n)
a (ai1 , ..., ain ) é [S (n)

a (bi1 , ..., bin ), biŒ];

this identity holds only due to the fact that ;i ¥ I ai é bi is a solution of
CYBE, so it holds at the universal level. It means that q (21) satisfies (18).
The proof of Theorem 1.2 then implies that q is homogeneous of degree 2,
which is the conclusion of Proposition 1.1.

3.3. Proof of Proposition 1.2. Let P=(Pn)n \ 1 be an element of G(K),
such that P f B=B. Multiplying P by the suitable power of S2

B , we may
assume that P2=0. The neutral element of G(K) is the sequence e=
(en)n \ 1, where ei=0 for i \ 2. Assume that P is not equal to e and let k be
the smallest index such that Pk ] 0. Then k \ 3.

Let us denote by D0 the usual (undeformed) coproduct of T(c)[[(]], and
by D1 the first jet of its deformation: so D1 is the unique map from
T(c)[[(]] to T(c)é2 [[(]], such that D1 | c=dc and D1(xy)=D0(x) D1(y)+
D1(x) D0(y) for any pair x, y of elements of T(c)[[(]].

Then we have the identities

D0(d
(Pk)
c (x))=d (Pk)c (x) é 1+1 é d (Pk)c (x),
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and

D0(d
(Pk+1)
c (x))+D1(d

(Pk)
c (x))

=d (Pk+1)
c (x) é 1+1 é d (Pk+1)

c (x)+(d (Pk)c é idF(c)+idF(c) é d (Pk)c ) p dc(x).

The first identity means that d (Pk)c (x) is actually contained in F(c). Let us
expand Pk in the form Pk=;s ¥Sk

Pk, sxs(1) · · · xs(k), then this means that
Pk=;s ¥Sk

Pk, s −1xs(1) · · · xs(k) also belongs to FLk[[(]]. Therefore the class
of ;s ¥Sk

Pk, sxs(1) · · · xs(k) é y1 · · · yk in (FAn é FAn)Sn
actually belongs to

(FLn é FLn)Sn
.

In the second identity, the first and last terms are antisymmetric, while
the others are symmetric. It follows that

D1(d
(Pk)
c (x))=(d (Pk)c é idF(c)+idF(c) é d (Pk)c ) p dc(x).

Let us denote by dF(c) the extension of dc to a cocycle map from F(c) to
M2 F(c). Then the restriction of D1 to F(c) coincides with dF(c), so

dF(c) p d
(Pk)
c (x)=(d (Pk)c é idF(c)+idF(c) é d (Pk)c ) p dc(x),

for any x ¥ c. So d (Pk)c satisfies identity (23). Since k \ 3, the proof of
Proposition 1.1 implies that d (Pk)c =0, so Pk=0, a contradiction. This
proves Proposition 1.2.
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