>

View metadata, citation and similar papers at core.ac.uk brought to you by t CORE

provided by Elsevier - Publisher Connector
acience of Lomputer Programming | (19682) 223-233 223

A

North-Holland Publishing Company

Edsger W. DIJKSTRA
Burroughs Corporation, Nuenen, The Netherlands

Communicated by M. Rem
Received October 1981

Abstract. Like heapsort - which inspired it - smoothsort is an algorithm for sorting in situ. It is
of order N - log N in the worst case, but of order N in the best case, with a smooth transition
beiween the two. (Hence its name.)

1. Iatroduction

Heapsort [3, 4] is an efficient algorithm for sorting m(i: 0<i <N) in situ; some,
however, consider it a disadvantage of heapsort that it absolutely fails to exploit
the circumstances in which the sequence is initially nearly sorted. While sharing in
general with heapsort its N -log N characteristic, smoothsort does not share this
cisadvantage: for an initially (nearly) sorted sequence, smoothsort is of order N
with a smooth transition between the two. Smoothsort can be viewed as a pure
exchange sort that is of order N -log N in the worst case. For brevity's sake we
shall describe sorting the integer sequence m(i: 0 <i <N) in ascending order.

2. General outline of smcothsort

After a preparation in its first phase, smoothsort builds up the sorted sequence
from right to left, i.e. it maintains between q and m

PO: (Al j:O0=si<jagqsj<N:mism(jharlsqsN,

which is vacuously true for ¢ = N and enjoys the useful property that POrg=1
implies that the sequence m is in ascending order. (Since smoothsort modifies m
only by swapping two of its elements, m obviously remains a permutation of the
same bag of values.)

The second relation, built up during smoothsort’s first phase and maintained
during its second phase, is

P!: the unsorted prefix m(i: 0<i<gq) is the postorder traversal of a tree
in which no son exceeds its father.

0167-6423/82/0000-0000/$02.75 © 1982 North-Holland

https://core.ac.uk/display/82681046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

224 . 3 E.W. Dijkstra

Relation P1 ensures that the rightmost element of the unsorted prefix is its maximum
element and that, therefore, q can be decreased by 1 without violating PO. In order
to maintain PI, however, the decrease g :=q — 1 must, in general, be accompanied
by a rebuilding of the tree. This clerical obligation has no analogue in heapsort, in
which a sxmxlar tree is pruned by removing a leaf; in smoothsort the tree is pruned
at its root and ‘without precautions it would, in general, fall apart into a forest of
subtrees. Smoothsort restores the tree by grafting each subtree of the forest on the
root of the subtree to the right of it.

Note that relation PI1 has been inspired by the desire to leave the sequence m
untouched when initially already in ascending order.

Once the shape of the tree for ¢ =N has been chosen, the grafting procedure
sketched above determines the shape of the tree for all smaller values of q. Our desire
to construct an algorithm that would be of order N when m is initially (nearly) sorted
forced us to derive the shape of the next tree from that o* the preceding one. This
recurrent computation, which heavily depends on the way in whic.i shapes of trees are
represented, is responsible for much of smoothsort’s apparent ¢ mplexity.

3. The presentation of smoothsort

In our presentation we shall follow the principle of pos.puning definitions
until they are needed and—as a special case—not introducizg vaiiables until
they are needed. The latter leads to so-called “program projeciiins”. A program
is projected on a subset of its variables by omitting the declarztic.ns of its other
variables and all statements not assigning to any of the variable: of the subset
projected on; the remaining expressions may only depend on the variables of
the subset. Each time we shall give the minimal extension of the sibset projected
on. In the new statements thereby introduced, the vanables intraoduced earlier
are constants.

This way of programx presentation has the advantage of irtroducing one
complication at a time. It has the disadvantage of hiding the heuristics that
led to the algorithm to be presented; the general outline and !ater remarks have
been included to overcome this disadvantage as much as possible. (I think thax
we shall have to learn to live with the fact that presenting the fiial (esign in
the most disentangled way and giving the heuristics—perhaps e ve 1 the form of
a possible design history—are not recessarily compatible gosl: Fiaally I beg the
impatient reader to remember that a program projection—thcug!. a legal program—
does not raake sense in isolation: its sole purpose is to be exte ided to something
meaningful.

When invariants are given, they precede the repetition of which they are the
invariant.

Smoothsort: sorting in situ 225

3.1. The introduction of q
Projected on the variable g, smoothsort is reduced to

l{q: int; q =1 {invariant: 1 <q < N}
;dog# N> q:=q+1 od {invariant: 1 <q <N}
jdog#1l-»qg=q-1o0d

|

Variable ¢ denotes the length of the unsorted prefix; the above projection shows
that smoothsort as presented here is only defined for N =1.

3.2. The introduction of r
Projected on the variables (q, r), smoothsort is reduced to

llq, r: int; q = 1; r:=0 {invariant: q - r = constant}
idog#N->g:=q+1;r=r-1o0d|invariant: q = r = constant}
idog#logi=q-1;r=r-1led

Il

Remark 0. Variable r comes in handy in two ways. Firstly because m(r) is the
rightmost element of the unsorted prefix, and secondly because replacing its initializ-
ation r=0 by r=X will cause smoothsort to sort the sequence m(i: X <i<X +N).
Smoothsort accom:aadates such a shift of origin a little bit more easily than heapsort.

3.3. The introducticn of p, b, and ¢

Invariant Pl states that the unsorted prefix m(i:0<i<gq) is the postorder
traversal of a tree, but does not define the tree. In this section we shall begin to
define the tree for the unsorted prefix of length ¢ and show how the shape of that
tree is recorded using the triple (p, b, ¢).

To this purpose we regard the unsorted prefix m(i: 0<i<gq) as a so-called
standard concatenation of so-called stretches.

A “‘stretch” is a subsequence of consecutive elements m(i: h <i<hl) for some
h < h1 (which we shall later identify with the postorder traversal of a binary subtree
of the tree mentioned in 21). As we shali see later, it is desirable that the number
of stretches that concatenated together constitute the unordered prefix is relatively
small. Stretches, however, don’t come in all possible lengths and when g is not a
stretch length we need more stretches to cover m(i: 0 =i <q). The available stretch
lengths are the so-called Leonardo numbers

41251595311 (-D

given by LPy=LP;=1 and LP,.»=LP,.,+LP,+1. (The justification for this
choice of available stretch lengths is better postponed.)

226 ;. ©+E.W.Difkstra *

‘The “standard concatenation” of a sequence of length g1 consists of the longest
stretch with length < g1, followed by the standard concatenation of the remainder
(when not empty).

Remark b8 Wé‘;l;c;ii:ize it a5 an-exercise for the reader to convince himself of the
fact that the standard concatenation of a sequence of given length decomposes that
sequence into the minimum number of stretches.

For the sake of the recurrent stretch length computations, we introduce for each
stretch length b its “companion” ¢, i.e. we maintain

(En:n=0:b=LP,Ac=LP,1);

here LP., is to be taken = ~1. This is achicved by modifying variables b and ¢
using on'y “up”’ and “down™, deﬂned by

up:b,c=b+c+1,b and down:b,c=c,b—c—1.

The stretches forming a standard concatenation are given b the triple (p, b, ¢);
more precisely, with a binary representation of p

«++« PsPaP3 P2 P1 Do,

the triple (p, b, ¢) defines the set of stretches LP,.; for all i sucly tha. p;=1 and n
defined by LP, =bALP,_=c.

Note 0. As a first result, the length of the standard concateratiyn given by the
triple (p, b, c) can—destructively—be computed by

length =0
dop=>0~
‘if even(p)- p=p/2; up
O odd(p)-» length:=length + b; p=(p—1)/2; up
Py ;
od.

Note 1. The representation is not unique: the operations “p:=2+p; down" leave
the standard concatenation rzpresented by the triple (p, b, ¢) uncharead.

The above coding of 2 standard concatenation is possid'. becuause, with the
exception of stretch length 1, which may occur twice in a standard concatenation—
e.g. of length 2 or 7—, each stretch length occurs at most once, whereas for stretch
length 1 we have LP; and LP, at our disposal. We adopt ‘he aciditional convention
of recording a single stretch of length 1 as LP;.

Note 2. We leave it as an exercise for the reader to prove that, as a consequence
of the stretch lengths being Leonardo numbers, in the binary representation of p

Smoothsort: sorting in situ 227

only the two least significant 1’s may be adjacent. This fact will be used in our next
projection.

We now extend the subset of variables projected on by adding the triple (p, b, ¢)
satisfying the invariant

P2: the length of the standard concatenation represented by the triple
(p, b, c) equals q.

g rp b ciint;q:=1.r=0;p, b, c:=1, 1, l{invariant: P2}
;dog# N
+ifpmod8=3
»>p=(p-1/2;up;p=(p-1)/2;up; p=p+1{b =3}
Opmodd=1
=+ down; p:=2%p
idob#1=>down,p=2«pod;p=p+1{b=1}
fiq=q+1;r=r+1
od {invariant: P2}

;dog#1
»q=q-l;r=r-1
yifb=1
-+p:=p—1;doeven(p)=>p:=p/2; up od {p mod 4 = 1}
0b=3
+p:=p-1;down,p=2xp+1;down; p:=2+p+1{p mod 8 = 3}
fi
od
]2

Note 3. For the (nonemnt:!} standard concatenations we have chosen in the above
the “normalized™ representation with odd({p).

Nete 4. The assertions at the end of each alternative have been given in order to
stress that—as it should be!—t1e one repeatable statement is the inverse of the
other: assertions in the one reappear as guards in the other [1].

Note §. The reader may wish to prove that p’s property as described in Note 2 is
an invariant of both repetitions.

Note 6. The above projection is still of order N. The argument is as follows. In
the first repetition the number of “down’s” is bounded by the number of “up’s”,
which is certainly less than 2N. The second repetition is merely the inverse of the
first one and the conclusion follows.

228 - E.W. Dijkstra

3.4. The introduction of m

At last the time Itas come to describe how stretches and the standard concatena-
tion define which order relations between elements of m are maintained by smooth-
sort. We begin with the stretches, on which the predicates “trusty” and *‘dubious”
will be defined. In accordance with the interpretation of a stretch as the postorder
traversal of a binary tree we shall refer to the rightmost element of a stretch as
the “root” of that stretch.

Denoting a sequence of length LP, by (seq,), we parse for n =2

(5qn) = {5€qn-1){seqn—2)(ro0t)

where (root) stands for a singleton sequence. Stretch (seq,) is dubious means that
both (seq,-1) and {seq,_>) are trusty. Stretch (seq,) is trusty means that, in addition,
the roots of {seq,-1) and (seq,-2) are at most the root of {(seq,); a stretch of length
1 is by definition both dubious and trusty. As a consequence, the root of a trusty
stretch is the maximum element of that stretch.

When stretches thus parsed are viewed as pos‘.rder traversals of binary trees,
trustiness means that no son exceeds its father. A dubious stretch is made into a
trusty one by applying the operation “sift’’—a direci 'nheritance from heapsort—to
its root, where sift is defined as follows: sift appliec to an element without larger
son is a skip, sift applied to an element m(r!) that .. exceeded by its largest son
m(r2) consists of a swap of these two values, iollow d by an application of sift to
m(r2).

Remark 2. We can now partly justify our choice - iz Leonardo numbers as
available stretch lengths, i.e. justify why we have :;:0t chosen (with the same
recurrence relation)

...3320127 421 (0).

The occurrence of length 2 would have required a sift ablc to deal with fathers having
one or two sons, like the sift required in heapsort; thanks to the Leonardo numbers a
father has always two sons and, consequently, smoothsort’s sift is simpler.

During the second repetition smoothsort maintains

P3: the stretches of the standard concatenation of the unsorted prefix
m(i: 0<i<gq) are all trusty.

During the first one it maintains the weaker
P3': of the standard concatenation of the unsorted prefix m(i: 0si<q)

the rightmost stretch is dubious; its other streiches are all trusty.

Remark 3. The weaker P3' has been introduced for reasons of efficiency which
cannot be explained now; see, however, Remark 4.

Smoothsort: sorting in situ 229

So much for the order relations captured by the stretches. In addition, smoothsort
maintains during the second repetition

P4: the roots of the stretches of the standard concatenation of the
unordered prefix m(i: 0 <i <gq) are ascending from left to right,

a relation, which is useful since P3 A P4 implies that m(r), the rightmost element
of the prefix, is a maximum element of the prefix, and this is the circumstance
under which ¢ = q — 1 maintains PO. During the first repetition smoothsort main-
tains the weaker

P4': the roots of the trusty stretches of the standard concatenation of
the unordered prefix m{i: 0<i <q) that are also stretches of the
standard concatenation of length N are ascending from left to right.

We now have to investigate

(1) what to add to the first repetition for the maintenance of P3' A P4’,

(2) what to insert between the two repetitions in order to transform P3'2 P4’
into P2 A P4,

(3) what to add to the second repetition for the maintenance of P3 A P4.

Investigation 1. In the case p mod 8 = 3, the standard concatenation ends on a
dubious stretch of length b which must be made trusty before it can be combined
with the preceding stretch and the following element into a new dubious rightmost
stretch. This can be achieved by applying sift to mi(r). Since no new trusty stretch
is added to the standard concatenation, P4’ is maintained without further measures.

In the case p mod 4 = 1, the standard concatenation ends on a dubious stretch
of length b, which in this step becomes the last but one stretch of the standard
concatenation and, hence, must be made trusty. In the case g + ¢ <N, it suffices to
apply sift to m(r) as before, since this stretch will later disappear from the standard
concatenation. In the case q+c¢ =N, however, just applying sift to m(7) might
violate P4’ since this stretch of length b also occurs in the standard concatenation
of length N. Making a dubious stretch trusty and including its root in the sequence
of ascending roots is achieved by applying “trinkle” to m(r). (As we shall see later,
trinkle is like sift, be it for a partly ternary tree.)

Investigation 2. The reader may prove that it suffices to apply trinkle to m(r).

Investigatien 3. In the cas ., the standard concatenation loses its last stretch,
and P3 A P4 is maintained without further measures.

In the case b =3, the rightmost stretch of length b is replaced by two trusty ones;
hence P3 is maintained. To restore P4 it would suffice tc apply trinkle first to the
root of the first new stretch and then to the root of the second new stretch, but
this would fail to exploit the fact that the new stretches are already trusty to start
with. This is exploited by applying *‘semitrinkle’ in order to those roots.

230 : E.W. Dijkstra

Remark 4. From a logical point of view it would be perfectly permissible to replace
a call on trinkle by a call on sift, which would make the dubious stretch trusty,
followed by a call on semitrinkle, which would include its root in the sequence of
ascending roots. After this substitution, each iteration of the first repetition starts
with a sift and the whole first repetition is immediately followed by a sift. Since
initially the last (and only) stretch is trusty, we can transform the program by
removing all calls on sif? and inserting a single cail on sift at the end of the repeatable
statement of the first repetition. This is essentially the program transformation that
would be required if we wished to replace P3' by P3. (The collection of trusty
stretches being extended, P4' would require reformulation.)

The version resulting from the above transformation is, however, rejected because
a succession of sift and semitrinkle requires in general more comparisons and swaps
than frinkle, as will become apparent later. This can be remedied by replacing the
single call on sift by guarded calls on either sift or the combination in the form ot
trinkle (and removal of the calls on semitrinkle from the first repetition, which have
now beea catered for). P3 would still be valid, P4’ would have to be changed. This
version, however, is rejected since it would lead 0 - duplication of the evaluation
of the guards p mod 8 = 3, etc.

In order to enable the reader to check the code in - hich the calis on sift, trinkle,
and semitrinkle have been inserted, we give thei: . alling conventions. (These
conventions are not to be regarded as a recommen- ~tinn_ they have been chosen
because in this publication I did not want to me¥~ . iy assumptions about a
parameter mechanism.)

Routine sift is applied to the root m(r1) of a strct . of length b1, of which c1
is the companion. Routine trinkle is applied to the root m(r1) of the last strexch
of the standard concatenation represented by the triple ... b, ¢); this representation
reed not be normalized. Routine semitririkle is applied to the root in(r) of a stretch
of length ¢ which is preceded by the nonempty standard concatenation represented
by the triple (p, b, c); again this representation is not necessarily normalized.

Note that “p=(p-1)/2; p=(p-1)/2; p=p+1" has been simplified to
“p=(p+1)/4” and that “r=r—b +c; down; r'=r+c¢’ decreases r by 1.

swmoothsort
g, r,p b,¢crl bl cl:int
3q'=1;r=0;p, b, c:=1, 1, 1 {invariant: P3' A P4}
;dog#= N
»>rli=y
;ifpmod 8=3
=>bl,cl=b,c;sift,p=(p+1)/4;, up, up
{lpmodd=1
>ifg+c<N-bl, cl=5, ¢, sift
Og+c=N-winkle

Smoothsort: sorting in situ 231

fi; down; p:=2xp
sdob# 1 ->down; p:=2xpod,p=p+1
fi,qg=q+1;r=r+i
od {P3' A P4'}; rl=r; rinkle {invariant: P3 A P4}
ideog#1
>qi=q-1
iifb=1
>r=r-1;p=p-1;doeven(p)->p=p/2; up od
0b=3
»p=p-1.ri=r—-b+c
yif p = 0- skip 0 p > 0 - semitrinkle &
vdown; pi=2xp+ 1, ri=r+c; semitrinkle
vdown; pi=2xp +1
fi
od
|

upl: bl,cl=bl+cl+1,bl
downl:bl, cl,=cl, bl —cl-1

sift:
dobl=3-»
W[r2:int; r2—-rl b1 +cl
siEm(r2) =mirl - 1) skip
Om(r2)ysmirl = 1)»r2—rl - 1; downl
fi
ifm(rN=zm(r2)->b1=1
Om(rl)y<ri(rz: > m:swap(rl, r2); rl'=r2; downi
fi

1
od

semitrinkle .
rl=r—c
s m(rly<=mir)- skip
Om1)>miry> m: swayp(r, rl); trinkle
fi

Trinkle is very simi:ar to sift when we regard each stretch root as the stepson
of the root of the stret:h to its right. Applied to a root without larger son, trinkle
is a skip; otherwise the root is swapped with its largest son, eic. The trouble with
the code is that all sorts of sons may be missing. In the following, trinkle is eventually
reduced to a siit, viz. when the stepson relation is no longer of interes?.

32 - E.W. Difkstra

rinkle :
Tpl:int;pl bl cli=p,b,c
idopl >0
i{r3: ine; do even(pl)- pl =pl/2; upl od; r3:=rl - bI
clpl =1corm{r3)ysm(rl}=pl=0
fisl >1cand m(r3)>>m(rl)
- pl=pl —1
M bl = 1-»m:swapirl, 13y, rl=r3
(b1 23
{r2:int; r2:=r1 —bl +cl
W mir2y=m(rl - 1)-» skip
Om(r2ysm(r? - 1)
I sr2i=r] -1 downl; pli=2¥pl

i
H¥m(r3y=m(r2)
sm: swapirl, r3);rli:=r3
Om(r3)y=m(r2)
»>m: swapirl, r2); rl'=r2;dr-wnl; pl=0)
fi
]
|
fi
I
od
B sift

And this concludes the code, in which I have abstained from implementation
dependent optimizations.

4. %a refrospect

While heapsort prunes the tree leaf by leaf, smoothsort prunes the tree at the
root, and inimediately one of heapsort’s charms is lost: while the tree in heapsort
remains beautifully balanced, the tree in smoothsort can get very skew indeed. So
why bother about smoothsort at all? Well, I wanted to design a sorting algorithm
of order N in the best case, of order N - log N in the worst case, and with a smooth

ransition between the two (hence its name).
This is also the answer to the question why I introduced P4. By dropping P4
cne can dispense with #inkle and the code becomes much simpler. The price to
be paid is 2 search for the maximum stretch root in order to establish that m(r) is
& maximum element of the unsorted prefix. Though such a simpler sorting algorithm
i quite defensible, I rejected the option because it i3 never of order N

Smoothzart: sorting in situ 213

One can also raise the question why I have not chosen as available stretch
lengths: ...63 31157 31, which seems attractive since each stretch can then be
viewed as the postorder traveisal of a balanced binary tree. In addition, the
recurrence relation would be simpler. But I know why I chose the Leonardo
numnbers: with balanced binary trees the average number of stretches is 1.2539
{=%(5 -+\/§)(2103(1+~/5)-—1)} times the average number of stretches with the
Leonardo numbers. (I do not present this ratio as a compzlling argument.)

It is possible that others have thought of this algorithm, but have rejected it for
valid reasons, as yet unknown to me. I could not find it in the literature and it is
not mentioned in [2], a recent article that compares five well-known sorting
algorithms when fed with initially nearly sorted sequences. (That article compares
Straight Insertion Sort, Shelisort, Straight Merge Sort, Quickersort, and Heapsort.)
If it has not been discovered earlier, I would like to know the reason, because all
its ingredients are well known since the discovery of heapsort in 1964.

Besides the possible intercst in smoothsort I had another reason for developing
it to the degree I did and for writing the above. (It took me three weeks, but |
consider them well-spent.) The reason was that I knew beforehand that in trying
to present smoothsort in a way as disentangled as possible I would encounter
considerable difficulties. I hope they have been surmounted sufficiently well.

Acknowledgment

I am greatly indebted to C.S. Scholten and to all the members of the Tuesday
Afternoon Club, with whom I had the privilege of discussing the algorithm, its
coding, and its presentation. They have helped me clarifying my own thoughts and
have suggested several significant simplifications. I am furthermore indebted to
D.E. Knuth and W.M. Turski for their comments on the previous version of this
text, and to the participants of the Marktoberdorf Summer School, 1981, on whom
{ could try out my presentation.

Re‘erences

[1] F.L. Bauer and M. Broy, Editors, Program Constriction, Lecture Notes in Co. iputer Science 6%
(Springer, Berlin, 1979) 54-57.

[2] C. R. Cock and D.J. Kim, Best sorting algorithm for nearly sorted lists, Comm. ACM 23 (11
(1980) 620-624.

[3] R.W. Floyd, Algorithm 242 TREESORT 3, Comm. ACM 7 (12) (1964) 701.

[4] J.W.). Willliams, Algorithin 232 HEAPSORT, Comm. ACM 7 16) (1964) 347-348.

