
223

red it - smoothsott is an algorithm for sorting in situ. It is
but of order N in the best case. with a smooth transition

rt [3,4] is an efficient algorithm for sorting 1y1 (i: 0 =z i c N) in situ; some,
sider it a disadvantage of heapsort that it absolutely fails to exploit

hich the sequence is initially nearly sorted. While sharing in
rt its N l log IV characteristic, smoothsort does not share this

an initially (nearly) sorted sequence, smoothsort is of order N
h transition between the two. Smoothsort can be viewed as a pure

at is of order N l tog N in the worst case. For brevity’s sake we
shalt describe sorting the integer sequence m (i: 0 < i < N) in ascending order.

ration in its first phase, smoothsort builds up the sorted sequence
i.e. it rn~~nt~ins between q and m

e useful property that P&b A q = 1

Since smoothsort modifies m

viously remains a permutation of the

t’s first phase and maintained

sal of a tree

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82681046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

224 E. W; L?iji&m

Relation fl ensures that the rightmost element of the unsorted prefix is its maximum
element and that, therefore, q can be decreased by 1 without violating PO. In order
to maintain Pl, however, the decrease q := q - 1 must, in general9 be accompanied
by a rebuilding of the tree. This clerical obligation has no analo
whilch a similar tree is pruned by removing a leaf; in smooths
at its root and ‘without precautions it would, in general, fall into a forest of
subtrees. Smoothsort restores the tree by grafting each subtre
root of the subtree to the right of it.

Note that relation Pl has been inspired by the desire to Is:
untouched when initially already in ascending order.

Once the shape of the tree for q = N has been chosen, the
sketched above determines the shape of the tree for all smaller va
to construct an algorithm that would be of order N when m is initially ~nearly~ sorted
forced us to derive the shape of the next tree from that oc the p
recurrent computation, which heavily depends on the way in whic:r shap
represented, is responsible for much of smoothsort’s apparent CT-,

3. The presentation of smoothsort

In our presentation we shall follow the principle of po$
until they are needed and-as a special case-not introd\&?,
they are needed. The latter leads to so-called “program project;
is projecte,d on a subset of its variables by omitting the decla
variables and all statements not assigning to any of the vari
projected on; the remaining expressions may only depend on the
the subset. Each time we shall give the minimal extension of t
on. In tbe new statements thereby introduced, the variables intr
are constants.

This way of program presentation has the adva
complication at a time. It has the disadvantage of
led to the algorithm to be presented; the general out1
been included to overcome this disadvantage as much as
we shall have to learn to live with the fact that pr
the most disentangled way and giving the heuristics
a possible design history-are not necessarily camp
impatient reader to remember that a program proje
does not make sense in isolation: its sole purpose
meaningful.

Whtin invariants are given, they precede the repetition of w
i t.

3.1.

~rQje~ted on the v Me , §~~th~~rt is reduced

th

3 Li.

d Bronx; the above projection shows
defined for N a 1.

thsort is reduced to

0. Variabfe r comes in handy in two ways. Firstly because m(r) is the
ent of the unsorted prefix, and secondly because replacing its initializ-

ause smoothsort to sort the sequence m(a’: X s i < X + IV).
es such a shift of origin a little bit more easily than heapsort.

Invariant Pf states that the unsorted prefix ndi: 0 s i < q) is the postorder
traversal of a tree, but does not define the tree. In this section we shall begin to

define the tree for the unsorted prefix of length 4 and show how the shape zf th8.t

the triple (p, b, c).
e refrard the unsorted prefix m(i: (b 6 i < (I) as a so-called

nation of so-called stretches.
is 8 s~~equen~e of consecutive elements nt (i: h Q i < 12 2) for some

traversal of a binary subtree
tree rn~nti~n~d in PI). s we shall see later, it is desirable that the number

ther constitute the unordered prefix is relatively
engths and when q is not a
i <q). The available stretch

The “standard concatenation” of a sequence of length ql consists of the Ion
stretch with length G qP, followed by the standard concatenation of the remainder
(when not empty).

a~ anexercise for the reader to
fact that the standard concatenation of a sequence of
sequence into the ,ninimum number of stretch.es.

For the s&e of the recurrent stretc length computations,
stretch length 6 its “companion” 6, i.c. we maintain

(E RF: n al: b = LP, n c = LP&;

here LP- 1 is to be taken = -1. This is achieved by modifyilngC vari nd c
using o&y “up” and Vuwn”, defined by

up: b, c:=b i-c + 1, b and dc7wn:b,6:=c,b-c-l.

The stretches forming a standard concatenation are given b 1 the triple (g, IP, c);
more precisely, with a binary representation of p

. . . jfb~4~3~2plp0,

the triple (p, b, c) defines the set of stretches LPR,i for all i s ah t a.pizlandn
defined by LP,, = b n LPr.-l = c.

Note 0, As a first resulr, the length of the standard concate~~~~~~ given by the
triple (p, 6, c) can4estr uctively-be computed by

length :== 0
;dop>O+

ifeuen(p)+p:=yyQ; up
U odd(p)-, kwgth:=length + b; p:==(p - 1)/2; rep
fi -

od .

Note! 1. The representation is not unique: the operations “E):=
the standard concatenation rI=presented by the triple (ps Q, c)

ove coding of II standard conca
exception of stretch length 1, which may o
e.g. of length 2 or 7---, each stretch length
length 1 we have LPI and L.& at our discos
of recording a single stretch of length 1 as LPI.

s sort: sortirlg in sit14 227

nificant 1 *s may be adj cent. This fact will be used in our next

abbes ,~r~j~~t~d m by adding the triple (p, b, c)

rd ~Qn~~t tim represented by the triple

:== 1, 1, 1 (invariant: PZ}

p:=p+ 1 {l? = 1)

+q:=q-1;r:==t--I

;&B= 1

+p:=p- 1;doczwt(p)-+p:=p/2; up
Qa3
3p:==p - 1; &?wn; p:=2 p+l;&.mvt;p:=2*p+1{pmod8=3)

18
ad

O& 3, For the ~~~~~~~~~~~~ standard concatenations we have chosen in the above
lized”” repr~~~ntatio~~ with odd(p).

d of each alternative have been given in order to
one repeatable statement is the inverse of the

uards in the other [I].

rove that p’s property as described in Vote 2 is

3.4. The I%mwiuctiun t9f t?l

At last the time hz~s come to describe how stretches and the standard concatena-
tion define which order relations between elements of HI are maintain
sort, We begin with the stretches, on which the predicates “trusty” and “dubious”
will be defined. fn accordance with the interpret n of a stretch as the postorder
traversal of a binary tree we shall refer to the tmost element of
the “root” of that stretch.

Denoting a sequence of length LP, by (str~,,), we parse for 12 3

(seq,) = (ses, - &eqH -2M@

where (root) stands for a singleton sequence. Stretch (secl,) is dubious means th
both (seq,& and (seq& are trusty. Stretch (seq,) is trusty means that, in addition,
the roots of (seq,-1) and (seq& are at most the root of {seq,); a stretch of len
1 is by definition both dubious and trusty. As a consequence, the root of a t
stretch is the maximum element of that stretch.

When stretches thus parsed are viewed as ~0% &V traversals of binary trees,
trustiness means that no son exceeds its father. A dubious stretch is made into a
trusty one by applying the operation “sift” -a direca tnheritance from heapsort-to
its root, where sift is defined as follows: sift appliei” to an element without larger
son is a skip, sift applied to an element m (rl) that I 1 exceeded by its largest son
m (r2) consists of a swap of these two values, MOP d by an application of sift to

m(d).

Remark 2,, We can now partly justify our choice F I’-: Leonardo numbers as
available stretch lengths, i.e. justify why we ha*ye MC chosen (with the same
recurrence relation)

. . . 33 20 12 7 4 2 1 (0).

The occurrence of length 2 would have required a s@ abls: to deal with fathers having
one or PNO sons, like the sift required in heapsort; thanks to the Leonardo numbers a
father has always two sons and, consequently, smoothsort’s sift is simpler.

During the second repetition smoothsart maintains

P3: the stretches of the standard ~on~at~~~at~on of the unsorted prefix
m(i: 0 < i C q) are all trusty.

wing the first one it maintains the weaker

P3,: of the standar;f concatenation of the unsorted prefix m (i: 0 s r’ c qj
the rightmost stretch is ideas;

. The weaker P3’ has been i
.

So much for the order reMions captured by the stretches. In addition, smoothsort
rn~i~t~ins durin the second repetition

: the roots of the stretches of the standard concatenation of the
unordered prefix pn(i: 0 d i < q 1 are ascending from left to right,

Pd implies that m(r), the rightmost element
t of the prefix, and this is the circumstance

the first repetition smoothsort main-

routs of the trusty stretches of the standard concatena’tion of
unordered prefix m(i: 0~ i <q) that are also stretches of the

rd ~on~ate~~ti~n of length N are ascending from left to right.

t repetition for the maintenance of P3’ A f4’,
tween the two repetitions in order to transform P3’n P4’

(3) what to add to the second repetition for the maintenance of P3 A P4.

1. In the case p mod 8 = 3, the standard concatenation ends on a

dubious stretch af length b which must be made trusty before it can be combined
with the preceding stretch and the following element into a new dubious rightmost
stretch. This can be achieved by applying sift to m(r). Since no new trusty stretch
is added to the standard concatenation, P4’ is maintained without further measures.

In the case p mod 4 = 1, the standard concatenation ends on a dubious stretch
of length 6, which in this step becomes the last Put one stretch of the standard
concatenation and, hence, must be made trusty. In the case q + c < N, it suffices ta

apply sift to m(r) as before, since this stretch will later disappear from the standard
concatenation. In the case q +c NV, however, just applying sift to m (7) might
violate P4’ since this stretch of length b also occurs in the standard concatenation
of length N, Making a dubious stretch trusty and including its root in the sequence
of ascending roots is achielred by applying “trinkle” to m(r). (As we shall see later,
tridde is like sift, be it for a partly ternary tree.)

T5e reader may prove that it suffices to apply trinkle to m(r).

tim 3. In the cas ., the standard concaten;ltion loses its last stretch,
and P3 A P4 is maintained wrthout further measures.

In the case b 2 3, the right ost stretch of length A is replaced by two trusty ones;
t: to apply trinkle first to the

the second new stretch, but
es are already trusty PO start

ould be required if we wished to replace

a succession of sZ’ft and semitrhkk requires
than trinkle, as will become apparent later.

in general more compariso
This can be remedied by replacing the

single call on sift by guarded calls on either sift or the combination
removal of the calls on s~~~~~~~k~~ from th

o’* beei catered for). P3 wou
version, however, is rejected s
of the guards p 8 = 3, etc.

In order to enable the reader to check the code in * %hich the calls on sift, tinkle,
and semitriPzkZe have been inserted, we give &ei; ~ alling conventions. (These
cclnventions are not to be regarded as a ret erp-* +TY they have been chosen
because in this publication I did not wa m:bQn ’ .hy assumptions about a
parameter mechanism.)

outine sift is applied to the root pn (rl) t of length bl, of which cl
is the companion. Routine trhkie is ap~lie root m(rl) of the last stretch

*. b, c); this representation
is a to the root in(r) of a stretch

ceded by the non~m~ty s concatenation represented
try the triple (p, 6, c); again this representation is not ~ee~ssarily normalized.

Note that “p:=(p- 1112; p:=(p - 1)/2; p:=p+ 1” has bee simplified to
“p:=(p + ” and that “r:= r - b + c ; ~u~~~ ; r:= t + c” decreases r by 1.

231

a@ : 61, cl :=bl ccl -I- I, 61
1, cl, :-cl, bl -cl - 1

t, in ~~~~~ I bava: &Ma&d from implementation

kew indeed. So

with a smooth

P4, By dropping P4
pier, The price to

Smootkwt: sorting in situ 2.33

One can also raise the question why I have not chosen as available stretch
lengths: . . .63 3 1 15 7 3 1, which seems attractive since each stretch can then /&
viewed as the postorder travelsal of a balanced binary tree. In addition, the
recurrence relation would be simpler. But I know w y I chose tht:

numbers: with balanced binary trees the average number of stretches is 1
{ = $(S + &)(210g(1 + 45) - 1)) times the average number of stretches
Leonardo numbers, (I do not present this ratio as a corn elling argument.)

It is possible that others have thought of this algorithm, but have rejected it for
valid reasons, as yet unknown to me. I could not find it in the literature and it is
not mentioned in [2], a recent article that compares five well-known sortin
algorithms when fed with initially nearly sorted sequences. (That article com~arcs
Straight Insertion Sort, Shellsort, Straight Merge Sort, Quickersort, and ~ea~s~rt .)
If it has not been discovered earlier, I would like to know the reason, bec~us~ all
its ingredients are well known since the discovery of heapsort in 1964.

Besides the possible interest in smoothsort I had another reason for dcv~l~~il~
it to the degree I did and for writing the above. (It took me three weeks, but I

consider them well-spent.) The reason was that I knew beforehand that in tr
to present smoothsort in a way as disentangled as possible I would en~~unt~~
considerable difficulties. I hope they have been surmounted sufficiently well.

Acknowledgment

I am greatly indebted to C.S. Scholten and to all the members of the ?“uesday
Afternoon Club, with whom I had the privilege of discussing the algorithm, its
coding, and its presentation. They have helped me clarifying my own thou
have suggested several significant simplifications. I am furthermore indebted ta
DE. Knuth and W.M. Turski for their comments on the previous version of this
text, and to th,e participants of the Marktoberdorf Summer School, 19g 1, on who

‘9 could try out my presentation.

e?erences

[l] F.L. Bauer and h4. Broy, Editors, Proporn Constrrrction, Lecture Notes in Ctp Ip
(Springer, Berlin, 1979) 54-57.

[2] C. R. Cook and D.J. Kim, Best sorting algorithm for nearly sorted lists, (‘wtwt .qI ‘\I 23 I 1 1 I
(1980) 620-624.

133 R.W. Floyd, Algorithm 242 TREESBRT 3, Comm. ACM 7 (12 I(19
[4] J.W.J. Willlishms, Algorithm 232 HEAPSORT, ~o~~?l. ACM 7 !61 P 1

