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Abstract

We prove the uniqueness of the supersymmetric Salam—Se¥ikowski)4 x S2 ground state among all non-singular
solutions with a four-dimensional Poincaré, de Sitter or anti-de Sitter symmetry. We construct the most general solutions with
an axial symmetry in the two-dimensional internal space, and show that included amongst these is a family that is non-singular
away from a conical defect at one pole of a distorted 2-sphere. These solutions admit the interpretation of 3-branes with negative
tension.

0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction ing a chiral four-dimensionaV = 1 supergravity cou-
pled to anSU(2) Yang—Mills multiplet and a scalar
There has recently been a el of interest in the multiplet [8]. It was also shown that there exists an
six-dimensional gauged supergravity model of Salam extended family of supersymmetdaS; x $° vacua,
and Sezgin, which has long been known to admit a with a parameter characterising the degree of squash-
(Minksowki)4 x S? supersymmetric vacuuifi], and ing of the $3, which in an appropriate limit reduce
to have potentially interesting applications in cosmol- (locally) to the (Minkowski)s x $? vacuum[9]. On
ogy [2-7]. On the theoretical side, it was recently the phenomenologicalside, the currentinterestin large
found that this is one of the very few supergravity extra dimensions favours six-dimensional models, and
models that admits a fully consistent Pauli-type re- the Salam—Sezgin model hizatured in recent studies
duction on a coset space. Specifically, it was shown (se€[6,7], and references therein).
that it admits such a consistent reductionsgnyield- The Salam—Sezgin model as it stands, being chiral,
is anomalous. These anomalies can be cancelled by
the inclusion of additional matter multiplef$0—12]
1 Research supported in part by DOE grant DE-FGOS- A su.rprising feat_u_re of the six-dim.ensionallmodel is
95ERA0917. that it has a positive scalar potential and this fact has
2 Research supported in part by the Turkish Academy of sci- hindered attempts to obtain it from higher-dimensional
ences (TUBA). models such as eleven-dimensional supergravity or
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ten-dimensional string theory. Recently[18], it has 2. Proof of uniqueness
been shown that the bosonic sector of the model can be
obtained via a generalised dimensional reduction from |n this section we shall show that any non-singular

D =7 and in[14] an M/string-theory origin for the  solution with a compact internal 2-space and with
Salam—Sezgin theory has been found. a four-dimensional spacetime of maximal symmetry
In this Letter, we shall show that the remarkable must be the Salam—-SezgiMinkowski)s x 2 ground
supersymmetric background found by Salam and Sez- state. We shall do so by first showing that any
gin is in fact unique among all non-singular back- smooth solution with compact internal 2-space must
grounds with four-dimensional Poincare, de Sitter or pe axisymmetric. All axisymmetric solutions, whether
anti-de Sitter invariance. Thus any four-dimensional they be singular or not, are then obtained exp|icit|y_
model based on the SalaneZgjin theory must neces-  We then show that the only non-singular solution
sarily be Supersymmetric unless 3-branes areincluded,with compact internal 2-space in this class is that
as, for example, introduced [i@] by inserting conical ~ of Salam and Sezgin. It follows therefore that any
defects at the north and south poles of the 2-sphere. By smooth ground state with compact internal space must
contrast with many compactifications, such as those pe the Salam-Sezgin solution. Note that we do not
of Calabi—Yau type, which have many moduli corre- assume axisymmetry; we prove it for all non-singular
sponding to flat supersymmetry-preserving directions solutions. Of course, singular solutions need not be
in the relevant effectivgpotential, the Salam-Sezgin  axisymmetric. However, the explicit axisymmetric
vacuum has just one free parameter, which may be (but singular) solutions which we obtain in this section
taken to be the expectation value of the dilaton field. provide exp|icit 3-brane solutions whose properties

Although the full SO(3) rotational symmetry of il be explored in the next section.
the 2-sphere is broken by the presence of the coni- The bosonic sector of the six-dimensionsi =

cal defects in the 3-branes introduced[?ﬂ, the so- (1,0 gauged Einstein—Maxwell supergravity is de-
lutions are still axisymmetric. We construct the most  scribed by the Lagrangigt,17]

general Poincaré-invariant axisymmetric solution, and

find that within this class there exist additional 3-brane 7 — R 41 — sxdpndg— %e¢ % H) A Hez

solutions (first constructed, in a general framework, 114~ by 14

in [15]) with conical defects in which the local geom- — 5¢2? & Fo) A Fg) — 8g%™2% 41, (2.1)

etry of the 2-sphere is modified from the usual round

$2 geometry, and the dilaton field is no longer con-

stant. The Einstein equations in these solutions force 5 . YA .

the existence of conical defects, without the necessity CONVeNtions wheréw A w = ;o™ ™ rwyy...p, * 1

of introducing additional delta-function sources in the 07 @y p-form w.) Here g is the gauge-coupling

equations. By contrast with the 3-branes introduced constant, and the fermions all carry chaggen their

in [7], which retain supersymmetry in the bulk, in our Minimal coupling to thel/(1) gauge fieldA . The

new solutions supersymmetry is broken in the bulk. ~ POSOnic equations of motion following fro@.1)are
Unfortunately, the Dirac quantisation condition 1 1 1p( 02 1.on

forces these branes to hawegative tension. Follow- ~ Run = zdmddne + 3¢2%(Fiyy — 5F 8un)

ing earlier suggestiorjg,16], one may incorporate ad- 1 ¢/ s2 1,524 2 _lga

ditional six-dimensional gauge fields in the solutions. + z¢%(Hiyy — §H8mN) +28%¢ 2% gun,

These modify the Dirac quantisation condition in a V2p = %e%quz + %e¢H2 - 8gze*%¢,

way which is similar to the modification required for 1

the conical defects introduced [i] but do not alter d(e2? x Fo)) = ¢? x Ha) A F2),

the sign of the tension. d(e? % He)) =0. (2.2)
The new 3-brane solutions have a non-constant

dilaton field, but are nevertheless apparently consistent Note that the dimensionful coupling constgntan be

with the suggestion of7] that the 3-brane dilaton rescaled at will by adding a constant ¢o together

coupling should vanish. with compensating rescalings of the other figigls

Whel’eF(z) =dAqy, Hz =dBp) + %F(z) AN A, and
we place a hat on the six-dimensional metric. (We use
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It has long been known that this theory admits %F(Zz)e%"’ _ 8g2e 3% — %V”(W“Vaqb). (2.5)
a solution of the form(Minkowski)a x $2, and fur- 4
thermore, that this solution haé = 1 supersymme- It follows that
try in the four-dimensional spacetin&]. In what
follows, we shall demonstrate that the supersymmet- V(W*Va(¢ — 4logW)) + 4AW? =0. (2.6)

ric Salam—Sezgin solution is in fact the only one
with four-dimensional Poincaré, de Sitter or anti-
de Sitter invariance and a smooth, non-singular, two-
dimensional, compact internal spate We shall do
so by first showing that the cosmological constant
for the four-dimensional eximally-symmetric space-
time vanishes. Then, we shall show that every solu- VWV, (¢ — 4logW)) =0. (2.7)
tion must admit a rotational Killing vector acting on
the internal space, and then we exhibit explicitly all Assuming as before that the internal spaces com-
such axisymmetric solutions. The only non-singular plete and non-singular, and thatand W are every-
one is that of Salam and Sezgin, but there are also non-where smooth functions oir, with W everywhere
supersymmetric solutions with conical singularities, Positive, we may multiphEq. (2.7)by (¢ — 4logW)
which may be interpreted as containing 3-branes. Thus and integrate by parts, to get
in this case, non-singularity together with Poincaré,
de Sitter or anti-de Sitter invariance implies Poincaré | /g d%y W*|V(¢ — 4IogW)|2 =0, (2.8)
supersymmetry, and in order to break supersymmetry y,
onemust introduce 3-branes.

The most general ansatz for a configuration with and hence
four-dimensional maximal symmetry is

Integrating over the compact internal manifolt]
we immediately see that [, W2 =0 and hence the
cosmological constant must vanish.

Having established that the four-dimensional met-
ric is flat, we now have

¢ = 4logW. (2.9)
2 2,2 2
dsg =W dsi+ds3, (There s no loss of generality in omitting the addititive
Hz) =0, Fu, =0, constant.) The equation of motion 62, now gives
F,, =0, F,, = , 2.3 _
na ab f(y)eab ( ) F(Z) — %qW Gemn dym /\dyl’l’ (210)

whereds§ = gun dy™ dy" is the metric on the internal
spaceY, W(y) is a warp factor, andisf is a four-
dimensional Minkowski, de Sitter or anti-de Sitter
metric. In the obvious tangent frame, the components
of the six-dimensional Ricci tensor are given by

whereq is a magnetic charge.

BecauseY is two-dimensional, we havek,,, =
Kgmn, whereK = K (y) is the Gauss curvature. The
R, equation becomes

R 1 1 oy Koo — 2 v v .2

RHV:WRHV — 4—VV4V w n/‘“” 8mn W2 mVn

R 4 R =34%w—10 2¢8°W " 2g,m. 211
RabZRab—anvbW, R, =0, (2.4) 84 W™"gmn +28°W ™ “gun ( )

The tracefree part gives
where R, and R,;, are the tangent-frame compo-

nents of the Ricci tensor for the four-dimensional v, v, w?=1v?w?g,,, (2.12)
spacetime and the internal space, andis the co-
variant derivative onv. Our assumption of maximal ~ Which shows tha¥” W? is a conformal Killing vector
four-dimensional symmetry implies that we shall have onY. It then follows that
Ry = Anyy.

The Ié,w and¢ equations become, fro(2.2),
A is a Killing vector onY, which is orthogonal to the
WV2W4 - — level sets ofW (and hence).

K™ ="V, W? (2.13)
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By integrating the trace dR.11)overY, one finds
that

Vgk d%y
Y

/x@dzy

Y

dl

(2.14)
and hence the Euler number must be positive. Since
we are assuming that is complete, orientable and
non-singular, it follows that we must haye= 2 and
Y must be topologicallys?. Moreover, the Killing
vector field K™ must have circular orbits with two
fixed points, that isK™ is a rotational Killing vector
andY has axial symmetry. The most general metric
can therefore be written in the form

xX=5=
JT

27

A(VW)2
W2

+ %qu*lo + ZgZWZ),

dsg = W2 dx" dx, + dp® + a®dy?, (2.15)

whereW anda are functions only op. The equations
of motion then take the form

% + SVWZZ + % = %e’%d’(%qzw ®—8¢%),
W e (3w 2),
LA egewt ), @19

where the dot signifies a derivative with respecpto
These equations can be derived from the Lagrangian

L=—8W3Wa—12aW2W? + 1aw4p?
—ae*%¢<%q2W*4+8g2W4), (2.17)

subject to the constraint that the associated Hamil-
tonian vanishes.

It follows from (2.16)that there is a constant of the
motion given by

a(Wp — AW3W) = k. (2.18)

As shown above, there are two fixed points of the
axial Killing vector K™ on the smooths? manifold,
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at which the Killing vector field vanishes. At these
points, thereforeq? = g,,, K™ K" = 0. If we take
one of these points, without loss of generality, to be
at p =0, then if W and ¢ are smooth functions,
bounded ap = 0, then it is evident that the integration
constantc must vanish. IMppendix A we construct
the most general solutions with non-vanishingfere,
we restrict attention to the cases with- 0 because, as
explained above, only these can give smooth compact
internal spaces.

The local solutions wittk = 0 were written down
in [15]. They havep = 4logW, with

dZ 2
ds%:e%d’(%—i-r—zdl/fz),
fo S
Foo= -2 arndy
2= r )
@ Wafoh
2 2
r r
67¢=ﬁ, foEl+—2, f1£1+—2.
N ré rs
(2.19)

The constantgy andry are given by

1
2
r0=—2

, (2.20)
gZ

If r1 = ro, then settingr = rotan36 one obtains
W=1¢=0and
ds5 = 3ré(d0? +sir 0 dy?), (2.21)
which is the rounds? metric of the Salam—Sezgin
solution. As we shall see in detail in the next section,

this is the only completely regular solution. Our proof
of the uniqueness is thus complete.

3. 3-branesolutions
Whenrg # r1, one finds that ifyy € [0, 2), then

Y is smooth at- = 0 but has a conical singularity at
r = oo, with deficit angles given by

(3.1)

This conical singularity represents a 3-brane with
positive tension ifrg > r1, and negative tension if
ro < r1. The field F(2, can be written locally in terms
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of the 1-form potential

4
Aqy=——4dvy. 3.2
qJj1

J:

This is well-behaved as goes to infinity, but not at
the origin. Performing the gauge transformation—
A1+ d(4y/q) gives a potential which is regular near
the origin, and so single-valuedness of the fermionic
fields requires that the Dirac quantisation condition
8 _ N
q
must be satisfied, wher€ is an integer. Equivalently,
the flux

1

47
Y

is quantised in units of A2g).
From (2.20) it follows that the deficit angle at
r = o0 is given by

(3.3)

2
— (3.4)
(2 q

1)
— =1-N?, (3.5)
21
and that the ratio1 /g is quantised
r1
— =|N|. (3.6)
ro

Unfortunately, this implies fopN | > 1 that the 3-brane
tension is necessarily negative.
More generally, one may identify> with period

2ra, wherexa > 0. The deficit angle is given by

8 =21 — Iim l'o),

p—0 p

whereC(p) is the circumference of a small circle of
radiusp. Thus atr = 0 andr = oo the deficits are

(3.7)

NZ
So=2n(1—a), 300=27T<1— —) (3.8)
o

The tension is given in terms of the deficit angle by
)

81 G’

which implies

(3.9)

1 N2
=—(1-—). (3.10
4G< o ) ( )
Thus both7p and 7. are less thagt, and

1
T0=E(1—Ol), T

(1—4GTo)(1 — 4GTx) = N2. (3.11)
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If the integerN exceeds 1, then it follows that both
tensionsTp andT,, cannot be positive.

4. Solutionswith additional gaugefields

In [7], following earlier work of[16], the 2-form
supporting the solution was taken to be a linear
combination of the supergravity 2-forifi,) that we
have been using thus far, andJg1) subgroup of an
additional Yang—Mills gauge sectdf(’z) in the six-
dimensional theory. Thus now

qr cosp
Fo = ar—

W2 jof1

sin
— Toqiliﬂ A d\/f,
W2 fof1

whereg is the mixing angle, andp denotes thé/ (1)
generator within the Yang—Mills sector. There are now
two Dirac quantisation conditions, associated with the
requirement of single-valuedness for the supergravity
and gauge-sector feions, respectively:

dr Ndyr,

TiFl, dr 4.1)

4gcosp N 4g'sing N

q q

whereg’ is the relevant gauge coupling constant in the
Yang—Mills sector, an&v andN’ are integers.
Using(2.20) we can re-express these conditions as

ri N g’ N/
ro cosg’ g N
The first equation can always be solved, provided
thatry > ro, which implies as before that the 3-brane
will not have a positive tension. The second equation
may then be regarded as determinigig Note that
these Dirac quantisation conditions are similar to those
obtained in[8], where, following[7], conical deficits
2me were introduced at the north and south poles of
a rounds?. In that case, the analogous quantisation
conditions werg8]

(4.2)

cotg. (4.3)

g'sing N’

COsSp = = .
h 1—¢

1< . (4.4)
The special case =0 andg = %n were obtained
earlier in[7]. It was noted ir{8] that the first equation
in (4.4) could not be satisfied for any integ®drwhen
|cosB| # 1 or 0, unlesg was taken to be negative; in
other words the 3-brane tension had to be negative.
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5. 3-brane/dilaton coupling

In [7], 3-branes were introduced into the Salam—
Sezgin model by inserting conical deficits at the north
and south poles of the 2-sphere, with the dilaton being
independent of the coordinates 68. The 3-brane
action was taken to be
Sp=—T / d*x e~ 2 (— dety,,) Y2, (5.1)
wherey,, = gund, X3, X" is the induced metric
on the 3-brané.In the detailed calculations {i7], the
3-brane/dilaton coupling was taken to be zero.

In the more general solution®.19) obtained in
this Letter, 3-branes arise naturally when+# ro.

In these solutions the dilaton is not constant, and
this allows us to make qualitative statements about
the 3-brane/dilaton coupling. For negative-tension
3-branes, i.e.r1 > rg, the dilaton decreases from its
value at the origin as one aproaches the 3-brane at
r = oo. Conversely, if the tension is positive, i.e.,
r1 < ro, the dilaton increases as the 3-brane atco

is approached. The fact that in our solutiogsis

a smooth function without singularities is consistent
with the idea that the 3-brane/dilaton couplihgs in

fact zero, as proposed {i7], because otherwise one
would expect singular behaviour near the 3-brane from
the delta-function in the dilaton equation arising from
the contribution(5.1)to the action.

6. Modulus and breathing mode

Our proof of uniqueness shows that the Salam-—
Sezgin ground state has just one modulus, namely the
value of ¢g. One can consider solutions in which the
radius of the 2-sphere varies in space and time, with
the six-dimensional fields taking the forms

dsg = 03 (@1+¢2) ds? + o~ 3 ($1+02) g dy™ dy",
¢ = d2 — 1, Hz =0, (6.1)

wheree ) is the volume-form of metrig,,, dy™ dy"
on $2, which we normalise taR,,, = 8g2gmn. Sub-
stituting into the higher-dimensional action, which is

Fo) =4g€(2),

3 Our ¢ is (—2) times theg in [7], and sox is the same as that
used in[7].
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a valid procedure since this dimensional reduction is
trivially consistent, yields the four-dimensional action

1092 — 1(02) — g2 (1 - )2,
(6.2)
The potential in(6.2) was first derived, in the purely
time-dependent case, [2], and some cosmological
applications were given if2-5].
The field¢, plays the role of a breathing mode (or
“radion”). Its massMk is given by

L=R-

Mk = 4ge?™, (6.3)

wheregg denotes the expectation value of the massless
“modulus scalar®; . As pointed out i8], all Kaluza—
Klein modes have masses set by the mass of this radion
field.
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Appendix A. General axisymmetric solutions

Here we construct the most general solution to
Eq. (2.16)for axially-symmetric configurations. It is
advantageous first to introduce the “lapse functiah”
in the Lagragiar{2.17), which enforces the vanishing
of the associated Hamiltonian:

L= (-8W3Wa —12aW2W? + Law*$?) N\
— ae*%d’./\/'*l(%qu*4 +8g%w*).

We next sendV' — N /(aW#), make the coordinate
gauge transformatiodp = aW*dn, and then sup-
press the lapse function. After introducing new inde-
pendent variables by defining

(A.1)

W= ed— a4 = ed G Hy+20)

p=y—x+2z (A.2)
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we obtain the Lagrangian

X224 72 1 202¢ | 89262, (A.3)
together with the Hamiltonian constraint
X2 —y2 472+ 1g%e®™ — 8g%e® =0, (A.4)

where a prime denotes a derivative with respeat.to

In terms of the new variables, the general system

of equations of motion is decoupled, reducing to two
Liouville equations forx and y, and a free-particle
equation forz. We have the three first integrals

1.2 2x

X%+ 5q°e —kz, +8g2 Zy—kz,

7 =3, (A.5)

and the Hamiltonian constraint implies that the three
constants of integration obey the relation

A3 =23 423 (A.6)

Note thatis is related to the constaitin (2.18 by
k= 2\3.

The general solution can be taken, without loss of
generality, to be given by

“x q
o 1(n—m
2.2
eV — © g coshho(n — n2), z=2Ax3n. (A7)
2

The metric and dilaton are therefore given by

ds2 = W2dx" dx, +a®W8dn? + a®dy?,
e = Whe?3n, (A.8)
whereW anda are given by
WA — qhr2 coshii(n —n1)

4ghr1 coshiz(n —n2)’

a "t =

G.W. Gibbons et al. / Physics Letters B 595 (2004) 498-504

3
%e‘%” cost A1(n — n1) OS2 (1) — n2).
)»1)»2 (A.9)

The solutions inSection 2that are regular at the
origin correspond to takingz = 0, and hence; = A».
This solution, in the forn§2.19) is obtained by setting

4
M=r2=1, r=rye’ M, en—nz — 28
q
(A.10)
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