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Abstract The categorization of genes by structural distinctions
relevant to biological characteristics is very important for under-
standing of gene functions and predicting functional implications
of uncharacterized genes. It was absolutely necessary to deploy
an effective and efficient strategy to deal with the complexity
of the large olfactomedin-like (OLF) gene family sharing se-
quence similarity but playing diversified roles in many important
biological processes, as the simple highest-hit homology analysis
gave incomprehensive results and led to inappropriate annotation
for some uncharacterized OLF members. In light of evolutionary
information that may facilitate the classification of the OLF
family and proper association of novel OLF genes with charac-
terized homologs, we performed phylogenetic analysis on all
116 OLF proteins currently available, including two novel mem-
bers cloned by our group. The OLF family segregated into seven
subfamilies and members with similar domain compositions or
functional properties all fell into relevant subfamilies. Further-
more, our Northern blot analysis and previous studies revealed
that the typical human OLF members in each subfamily exhib-
ited tissue-specific expression patterns, which in turn supported
the segregation of the OLF subfamilies with functional diver-
gence. Interestingly, the phylogenetic tree topology for the
OLF domains alone was almost identical with that of the full-
length tree representing the unique phylogenetic feature of full-
length OLF proteins and their particular domain compositions.
Moreover, each of the major functional domains of OLF proteins
kept the same phylogenetic feature in defining similar topology
of the tree. It indicates that the OLF domain and the various do-
mains in flanking non-OLF regions have coevolved and are likely
to be functionally interdependent. Expanded by a plausible gene
duplication and domain couplings scenario, the OLF family com-
prises seven evolutionarily and functionally distinct subfamilies,
in which each member shares similar structural and functional
characteristics including the composition of coevolved and inter-
dependent domains. The phylogenetically classified and prelimi-
narily assessed subfamily framework may greatly facilitate the
studying on the OLF proteins. Furthermore, it also demonstrated
a feasible and reliable strategy to categorize novel genes and pre-
dict the functional implications of uncharacterized proteins based
on the comprehensive phylogenetic classification of the subfami-
lies and their relevance to preliminary functional characteristics.
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1. Introduction

There is usually significant functional diversity among mem-

bers in large gene families. Since the cloning of the first identi-

fied OLF member, Olfactomedin, which is a major structural

component of bullfrog olfactory neuroepithelium and may

influence the differentiation of olfactory cilia [1,2], more than

100 known OLF members have been discovered in various spe-

cies ranging from Caenorhabditis elegans to Homo sapiens.

Some OLF members have been demonstrated to play essential

roles in various physiological processes. For example, Myoci-

lin/TIGR was the first member in this family identified to be

associated with human disease processes [3], and recurrent

mutations in the OLF domain of Myocilin were closely associ-

ated with primary open angle glaucoma [4]. Another OLF

member, Optimedin/OLFM3, was demonstrated to colocalize

with Myocilin in the trabecular meshwork of human eye and

may be involved in the disorders of the anterior segment of

the eye [5]. Noelin was found to play an important role in neu-

ral development [6,7]. A recent report revealed that C. elegans

UNC-122 was involved in neuromuscular signaling [8].

Although some members in the OLF family were found to

have similar activities involved in the development of the ner-

vous system, there still existed significant functional diversity

among them. Furthermore, some OLF members were not ex-

pressed in the neural tissues at all [9–11], and many new

OLF members with no accompanying functional information

have poured into this family. Thus, this makes it even more

difficult to characterize the ever-expanding OLF family with-

out comprehensive view on structural and functional proper-

ties of the OLF proteins through effective and efficient

analysis.

In our research on hunting for novel human secreted pro-

teins, we trapped several putative secreted protein sequences

with OLF domains, which comprise approximately 260 amino

acids and are usually located at the C-terminals. In order to

categorize these trapped putative OLF secreted proteins and

to find functional clues, we used the common highest-hit

homology method to analyze them, but it gave incomprehen-

sive results because of the complexity of the large OLF family,
blished by Elsevier B.V. All rights reserved.
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and even some annotation information of them led to incorrect

inference. For example, one of our trapped OLF sequences

hOLF44, was previously deposited in sequencing database as

HNOEL-iso (Accession No. AF201945), and was annotated

with the description of OLFML3 (olfactomedin-like 3) as the

ortholog of chick OLFM/Noelin (Accession No. AF239804)

at the time of analysis. However another human OLF member,

named OLFM1 (Accession No. NM_014279), was found to

have much higher sequence similarity to chick Noelin than

HNOEL-iso. Such orthologous relationships may be resolved

by the reciprocal BLAST method only if all the relevant se-

quences are available at the time of analysis, which is not often

the case for genes from most species. Furthermore, it is hard to

obtain a comprehensive view on the orthologous and paralo-

gous relationships among the OLF proteins only by the reci-

procal BLAST method. Evolutionary information may help

to solve this problem when the phylogenetic relationships of

the OLF family are analyzed and examined systematically.

However, very few studies have been reported on this issue,

and those evolutionary or bioinformatic analyses focused on

either identifying conserved structural motifs in the Olfactom-

edin protein [12], searching for the human OLF homologs [13],

or hunting for Myocilin-related OLF proteins involved in

pathogenesis of ocular disorders [14]. The expanded OLF pro-

teins in sequencing database available now makes it possible to

classify the OLF family and obtain the biological implications

of the OLF members from a comprehensive view of the orthol-

ogous and paralogous relationships by phylogenetic analysis.

To clarify relationships among the OLF proteins we

trapped, and to better understand the ever-expanding and

complex OLF family, and of particular interest is to find some

common biological/functional characteristics of the OLF pro-

teins, we performed phylogenetic classification on all currently

available OLF proteins. To further investigate whether our

phylogenetic classification of the OLF family has biological

relevance to functional implications, we analyzed mRNA

expression patterns of the typical human OLF members in dif-

ferent subfamilies, including two novel members cloned by our

group. Additionally, the structural properties and evolutionary

history of the OLF subfamilies were discussed. Our strategy of

grouping family members into structurally and functionally

distinct subfamilies is of great value to make sense of the com-

plex OLF family, and it may also be useful to the characteriza-

tion of other gene families.
2. Materials and methods

2.1. Data collection and taxon sampling
227 OLF protein sequences were obtained using the OLF domain

of the first identified OLF member Olfactomedin (Accession No.
Q07081) as query to search NCBI non-redundant database. Addi-
tionally, because the Takifugu rubripes protein sequences were not
available in the NCBI database at the time of analysis (February,
2005), we searched for the OLF genes in International Fugu Genome
Consortium database (http://www.fugu-sg.org/) and Smart database
[15], and this search resulted in 41 Takifugu rubripes OLF protein
sequences.
The redundant sequences (alternately spliced transcripts and short

truncated sequences) were eliminated following the two criteria: (1) if
several sequences share the same UniGene number, we select the lon-
gest one in length; (2) if not, when the sequence identity is above 90%
for 100 or more amino acids, we select the one with UniGene num-
ber. After the redundancy was eliminated, 116 OLF members from
20 species were obtained. To briefly present the result, we next ex-
tracted the OLF members from the extensively sequenced species.
Furthermore, since the protein repertoires between Homo sapiens
and Pan troglodytes, Mus musculus and Rattus norvegicus, Tetraodon
nigroviridis and Takifugu rubripes are almost identical, only the H.
sapiens, M. musculus, and T. nigroviridis OLF members were selected
for further analysis. This dataset includes 68 OLF members and the
members were named using the abbreviation of genus and species
name followed by a gene label. The accession numbers and relevant
information of the 68 OLF members are listed in Table 1.

2.2. Multiple alignments and secondary structure analysis
General sequence editing and analysis were performed using the pro-

grams of GCG package (Genetics Computer Group, version 10.0).
Multiple alignments of protein sequences were created by ClustalW
[16] with the default settings. The alignments were then inspected
and formatted using the GeneDoc alignment program [17]. The sec-
ondary structure analysis was carried out using Jpred [18], a server that
integrates information from several programs including PHD, PRED-
ATOR, and ZPRED.

2.3. Phylogenetic tree construction
Phylogenetic trees based on protein sequences were constructed

using the MEGA2 program [19]. The Poisson correction model was
used for distance matrix calculations and the complete deletion op-
tion was set for gaps and missing data. Trees were constructed by
both neighbor-joining [20] and minimum evolution [21] methods.
Trees were also generated using maximum parsimony [22] methods,
as implemented in the MEGA2 program. To assess the confidence
of individual nodes, a bootstrap analysis [23] with 1000 replications
was performed using the same computer package. All three methods
gave virtually identical results for our datasets. Only the neighbor-
joining trees were illustrated in this paper, as the neighbor-joining
method was known to be quite efficient in obtaining reliable trees
from large sets of data [24].

2.4. Expression patterns of human hOLF44 and OLFM1
To characterize the mRNA expression patterns of human hOLF44

and OLFM1, two novel OLF members cloned by our group recently,
Northern blot analysis was carried out on Human Multiple Tissue
Northern Blot (Clontech). Each lane contained approximately 1.0 lg
human poly A+ RNA. The entire open reading frame (ORF) fragments
of hOLF44 and OLFM1 were generated by PCR amplification and
used as templates to generate probes which were labeled with
[a-32P]dCTP. Experiments were conducted according to the manufac-
turer�s instruction. The blot was hybridized sequentially to different
probes after complete striping. The same blot was stripped and re-
hybridized with a 2 kb human b-actin probe to verify that all lanes con-
tained comparable amounts of mRNA.
3. Results

3.1. Simple sequence alignments revealed the similarity but

covered the distinct properties associated with divergent

functions of OLF proteins

To identify conserved regions or motifs in the emerging

group of OLF proteins, multiple sequence alignments were

carried out based on the 68 full-length OLF protein se-

quences. To date, three-dimensional structural information

is not available for any of the OLF proteins, and therefore,

the aligned sequences were submitted to Jpred server [18] to

predict secondary structure. Part of the most conserved align-

ments and the corresponding secondary structure motifs were

shown in Fig. 1. Although the overall amino acid sequences

of the OLF members are relatively divergent, they share sim-

ilar b-strands motif in their OLF domains and the key resi-

dues that stabilize the domain structure are sufficiently

conserved during evolution. For example, the boxed sequence

http://www.fugu-sg.org/


Table 1
The OLF members used in phylogenetic analysis

Accession No. Description Species Name Chro AA Sub-family

NP_055094 Olfactomedin 1 (OLFM1)/hOlfA H. sapiens Hs-OLFM1 9q34.3 467 I
NP_062371 Olfactomedin 1 (OLFM1) M. musculus Mm-OLFM1 2 A3 485
AAF43715 NOELIN-2 Gallus gallus Gg-Noelin 17 457
AAL66226 Noelin-2 Xenopus laevis Xl-Noelin 458
CAF90469 Unnamed protein T. nigroviridis Tn-CAF90469 515
NP_477512 Olfactomedin 2 (OLFM2)/hOlfC H. sapiens Hs-OLFM2 19p13.2 454
NP_776138 Hypothetical protein M. musculus Mm-NP_776138 9 A3 448
AAH84792 Unknown protein X. laevis Xl-AAH84792 448
CAF98141 Unnamed protein T. nigroviridis Tn-CAF98141 18 482
AAQ89084 Olfactomedin 3 (OLFM3) H. sapiens Hs-OLFM3 1p22 478
P63056 Olfactomedin 3 (OLFM3) M. musculus Mm-OLFM3 3 G1 478
XP_422304 Similar to optimedin form A G. gallus Gg-XP_422304 8 458
AAH81110 MGC83418 protein Xenopus laevis Xl-AAH81110 477
CAG07148 Unnamed protein T. nigroviridis Tn-CAG07148 15 433

NP_851376 Latrophilin 3 Bos taurus Bt-Latrophilin-3 1580 II
Q9HAR2 Latrophilin 3 precursor H. sapiens Hs-Latrophilin-3 4q13.1 1447
XP_205556 Latrophilin 3 M. musculus Mm-Latrophilin-3 5 E1 1268
XP_420575 Similar to CL3AA G. gallus Gg-XP_420575 4 2825
CAG02284 Unnamed protein T. nigroviridis Tn-CAG02284 1623
O95490 Latrophilin 2 precursor H. sapiens Hs-Latrophilin-2 1p31.1 1459
NP_851356 Lectomedin 2 B. taurus Bt-Latrophilin-2 1478
XP_131258 Latrophilin 2 M. musculus Mm-Latrophilin-2 3 H3 1218
XP_422382 Similar to latrophilin 2 G. gallus Gg-XP_422382 8 846
CAF98480 Unnamed protein T. nigroviridis Tn-CAF98480 15 1471
BAA74844 KIAA0821 H. sapiens Hs-Latrophilin-1 19p13.2 1566
NP_851382 Latrophilin 1 M. musculus Mm-Latrophilin-1 8 C2 1247
AAD09192 Latrophilin-1 B. taurus Bt-Latrophilin-1 1472
CAG06092 Unnamed protein T. nigroviridis Tn-CAG06092 18 1698

NP_000252 Myocilin H. sapiens Hs-Myocilin 1q23-q24 504 III
NP_034995 Myocilin M. musculus Mm-Myocilin 1 H2.1 490
NP_776543 Myocilin B. taurus Bt-Myocilin 490
XP_422235 Similar to myocilin G. gallus Gg-XP_422235 8 668
CAF89710 Unnamed protein T. nigroviridis Tn-CAF89710 447
CAF97613 Unnamed protein T. nigroviridis Tn-CAF97613 15 454

BAD38864 Photomedin-1 H. sapiens Hs-Photomedin-1 9q33.3 652 IV
NP_766442 Olfactomedin-like 2A M. musculus Mm-NP_766442 2 B 681
CAF90128 Unnamed protein T. nigroviridis Tn-CAF90128 218
XP_415383 Similar to olfactomedin-like G. gallus Gg-XP_415383 17 923
BAD38863 Photomedin-2/hOlfB H. sapiens Hs-Photomedin-2 1q23.3 750
NP_796042 Olfactomedin-like 2B M. musculus Mm-NP_796042 1 H3 746
XP_422209 Similar to olfactomedin-like 2B G. gallus Gg-XP_422209 8 867
CAG01427 Unnamed protein T. nigroviridis Tn-CAG01427 1 262

AAQ88930 GW112/hOlfD H. sapiens Hs-GW112 13q14.3 510 V
XP_354831 pDP4 M. musculus Mm-pDP4 14 D3 531
XP_417022 Similar to pDP4 G. gallus Gg-XP_417022 1 508
ENSP00000332317 Unnamed protein H. sapiens Hs-332317 11 468
NP_766493 E030002O03 M. musculus Mm-NP_766493 7 E2 496
BAB85495 Tiarin X. laevis Xl-Tiarin 467
Q07081 Olfactomedin precursor Rana catesbeiana Rc-Olfactomedin 464
CAG10636 Unnamed protein T. nigroviridis Tn-CAG10636 10 457

BAD18742 Unnamed protein H. sapiens Hs-BAD18742 15q21.2 551 VI
NP_796324 Collomin M. musculus Mm-CRG-L2 9 B 549
XP_425097 Similar to VDLC9339 G. gallus Gg-XP_425097 10 601
CAF99838 Unnamed protein T. nigroviridis Tn-CAF99838 5 611
CAG05536 Unnamed protein T. nigroviridis Tn-CAG05536 13 599
NP_573262 CG6867-PA D. melanogaster Dm-CG6867 X 949
XP_315876 ENSANGP00000004496 Anopheles gambiae Ag-XP_315876 2L 749
AAN60526 Colmedin C. elegans Ce-Colmedin I 486
NP_493598 UNC-122 C. elegans Ce-UNC-122 I 598

XP_426398 Similar to MVAL564 G. gallus Gg-XP_426398 5 380 VII
AAQ88954 MVAL564 H. sapiens Hs-AAQ88954 11p15.4 402
CAG11764 Unnamed protein T. nigroviridis Tn-CAG11764 11 388
CAG03805 Unnamed protein T. nigroviridis Tn-CAG03805 9 260
XP_418008 Similar to Olfactomedin-like 3 G. gallus Gg-XP_418008 26 392
AAH84769 Unknown protein X. laevis Xl-AAH84769 391
NP_598620 Olfactomedin-like 3 M. musculus Mm-NP_598620 3 F2.2 406
AAR88262 hOLF44 H. sapiens Hs-hOLF44 1p13.2 406
NP_999798 Amassin Strongylocentrotus purpuratus Sp-Amassin 495
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Fig. 1. The most conserved part of multiple amino acid sequence alignments of the 68 OLF members (Table 1). Gaps are indicated with dashes.
Identical amino acid residues are dark-shaded and similar residues are shaded at various degrees. The conserved sequence motifs (DExGLW, CG) are
boxed, where x can be any amino acid. The b-strands motif is depicted with arrows.
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motifs (DExGLW, CG) are highly conserved across all the 68

OLF members (Fig. 1). The secondary structure analyses of

the 68 OLF proteins suggested that the N-terminal of OLF

members mainly contains a-helix motif, whereas the C-termi-

nal chiefly contains b-strands and is more conserved than the

N-terminal in evolution (Data not shown), and these findings

were consistent with previous studies done on Olfactomedin

[12], Myocilin [25–27], Noelin and Amassin [28]. Thus, the

multiple sequence alignments cannot efficiently provide valu-

able information on apparent structural features that might

be associated with divergent biological functions of OLF

proteins.
3.2. The OLF family was classified into seven distinct

subfamilies by phylogenetic analysis

The resulting unrooted neighbor-joining tree based on the 68

full-length OLF proteins was presented in Fig. 2. This phylo-

genetic tree strongly suggests that the OLF proteins segregate

into seven evolutionarily distinct subgroups. Furthermore, the

phylogenetic tree topology for all 116 OLF members is also

closely consistent with that outlined in Fig. 2 (Data not

shown). Accordingly, the OLF family was classified into seven

subfamilies (labeled with Roman numerals) (Fig. 2). The pro-

tein sequences used in our analysis are listed in Table 1 and as-

signed to the corresponding subfamilies. Members in different



Fig. 2. Phylogenetic classification of the OLF family. The neighbor-
joining tree is based on the 68 full-length OLF protein sequences
(Table 1). Vertical bars and Roman numerals delineate the seven
subfamilies. Bootstrap values based on 1000 replications are shown
only when they are greater than 50%.
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subfamilies usually contained different domain architectures,

and members with similar domain compositions all fell into

relevant subfamilies. As shown in Fig. 2, OLFM1 was closely
clustered with the characterized Noelin genes (subfamily I),

and in sharp contrast, hOLF44/HNOEL-iso/OLFML3

dropped into a different subfamily (VII) without any Noelin

or OLFM3 genes. Therefore, HNOEL-iso or OLFML3 was

thus far inappropriately annotated in NCBI GenBank data-

base and the biological features of it may differ from that of

Noelin or OLFM3. To clarify this fact, we preferred to use

the name hOLF44 (with a predicted protein molecular weight

of 44 kDa) instead of HNOEL-iso or OLFML3.
3.3. Human OLF members in the segregated OLF subfamilies

showed distinct expression patterns

To investigate whether our phylogenetic classification of

the OLF family has biological relevance to functional impli-

cations, we compared mRNA expression patterns of the char-

acterized OLF genes in different subfamilies, as the tissue or

cellular-specific localization of gene expression is the primary

implication for the function of genes. The analysis showed

that within a same subfamily, OLF members from different

species usually shared relatively conserved expression pat-

terns. For example, in subfamily I, the rat, mouse, chick

and xenopus Noelin (also named OLFM or Pancortin) genes

were almost all exclusively expressed in neural tissues [6,7,29–

32]. OLF members in different subfamilies usually exhibited

relatively divergent expression patterns, for example,

GW112 (also named OhlfD or hGC-1) (subfamily V) was

predominantly expressed in colon and small intestine

[9,10,13], which was greatly different from that of Noelin

genes (subfamily I).

To get a more comprehensive view of the expression patterns

of the typical human OLF members in each subfamily, we spe-

cifically supplemented the available human OLF genes expres-

sion profile data [5,9,10,13,33,34] with the two uncharacterized

genes, OLFM1 and hOLF44, which are the typical human

OLF members in subfamilies I and VII, respectively (Fig. 2).

Our Northern blot analyses revealed that approximately

1.8 kb transcript of hOLF44 was detected abundantly in pla-

centa, and moderate expression was observed in liver and

heart. Fairly weak signals were also detected in skeletal muscle,

small intestine and kidney (Fig. 3, hOLF44). In contrast,

OLFM1 was almost exclusively expressed in brain, and only

very faint signal was detected in skeletal muscle among other

nine tissues examined at this level of sensitivity (Fig. 3,

OLFM1). The expression pattern of OLFM1 is in close agree-

ment with a previous report on hOlfA [13], which is a small

partial sequence of OLFM1. Thus, OLFM1 and hOLF44

exhibited distinct expression patterns, which is consistent with

their quite divergent positions in the OLF subfamily tree

(Fig. 2).

The comprehensive comparison of expression patterns

among the typical human OLF members in different subfami-

lies is listed in Table 2. Human members in each subfamily

exhibited distinct expression patterns, and they were all

selectively expressed in different set of tissues (Table 2). There-

fore, the analysis of our expression profile data and previous

reports suggest that the OLF members in different subfamilies

may have divergent functions in different tissues where they are

expressed, and accordingly, our phylogenetic classification of

the OLF family may have biological relevance to functional

implications. Thus, such distinct expression patterns in turn

strongly supported our classification of the OLF family.



Fig. 3. Distinct mRNA expression patterns of hOLF44 and OLFM1.
Northern blot was sequentially hybridized with [a-32P]dCTP labeled
hOLF44 and OLFM1 probes, as described in Section 2.4. Size
standards and the order of tissues source are marked at the left and
above of the blot, respectively. b-Actin was used as an RNA loading
control, and the strong band below b-actin in the ‘‘skeletal muscle’’
lane is muscle-preferred a-actin.
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3.4. The structural properties of composition and coevolution of

domains within OLF proteins provided strong basis for the

establishment of the OLF subfamily framework

As mentioned above, the OLF members with similar do-

main compositions all fell into relevant subfamilies. For

example, members in subfamily II almost all contain

Gal_Lectin, OLF, HormR, GPS, 7tm_2 and Latrophilin do-

mains. In other words, domain composition is the dominant

contributor for subfamily classification. To explore the phy-

logenetic features of the conserved OLF domains alone in

defining subfamily classification, we extracted the OLF do-

mains from the 68 protein sequences and reconstructed a

second unrooted neighbor-joining tree (Fig. 4B). Interest-

ingly, the tree topology based on the OLF domains alone

(Fig. 4B) was virtually identical with that of the full-length

tree (Fig. 4A). It indicates that the OLF domain has distinct

structural properties in determining the subfamily classifica-

tion in the absence of coupled non-OLF regions. Thus, we
Table 2
Comparisons of the distinct mRNA expression patterns of the typical huma

Sub-family Human
OLF
members

mRNA expression patterns of the typical human

Brain Colon Heart Pancreas Placenta S
in

I OLFM1a +++ – – N/A – –

II Latrophilin-2 +++ + ++ N/A + +
III Myocilin – – ++ – – –
IV Photomedin-

2/hOlfB
– – – ++ – –

V GW112 /
hOlfD

– ++ – – – +

VI CRG-L2 + – – – + –
VII hOLF44b – + ++ N/A +++ +

Signals from hybridizing blots were scored as strong (+++), moderate (++), a
of the preparation of this paper. a and bindicate that this two OLF member
hypothesized that the OLF domain may have the possibility

to coevolve with the non-OLF regions containing domains

unique to different subfamilies. To verify this hypothesis,

we excised the OLF domains from the 68 OLF protein se-

quences and concatenated the remaining two segments for

phylogenetic tree construction, and then another unrooted

neighbor-joining tree for the non-OLF regions was con-

structed. As demonstrated in Fig. 4C, the tree topology

for non-OLF regions was very similar to that based on

OLF domains alone (Fig. 4B), and there is only one remark-

able divergent site between this two trees (labeled with dot).

These data suggest that the OLF domain and the non-OLF

regions of the OLF proteins have coevolved and are likely

to be functionally interdependent.

To extend the analysis on the evolutionary features of each

domain regarding duplication and coevolution, we conducted

an evolutionary analysis on the six separated functional do-

mains (Gal_Lectin, OLF, HormR, GPS, 7tm_2 and Latrophi-

lin ranging from N-terminal to C-terminal) of Latrophilin

proteins within subfamily II (Fig. 5A). To compare with the

full-length tree, we also reconstructed another two phyloge-

netic trees, one was based on the full-length Latrophilins, des-

ignated as Full-length, and the other was based on the

Latrophilins without the OLF domains, designated as OLF-

eliminated. As depicted in Fig. 5B, the tree topology is very

similar between the full-length tree and all the other seven

trees. Except three divergent sites, including one remarkably

divergent site in the tree for Gal_Lectin and another two

slightly divergent sites in the trees for GPS and 7tm_2 domains

(labeled with square, dot and triangle), all the eight phyloge-

netic trees are almost identical in topology. Thus, each func-

tional domain of Latrophilins generally kept the same

phylogenetic feature in defining similar tree topology, and

the OLF domain and the other five functional domains of

the Latrophilins may have coevolved under some functional

constraints.

Taken together, these findings also supported the rationality

of our classification on the OLF family.
3.5. Distinct biological features of characterized OLF members

are consistent with the classification of the OLF family

To make better sense of the complex OLF family, we fur-

ther conducted comparative analysis of the functional and
n members in each OLF subfamily

members References

mall
testine

Liver Skeletal
Muscle

Kidney Retina Spleen

– + – N/A – This report,
Fig. 3

+ N/A ++ N/A + [33]
+ – – ++ – [5,13]
– – – N/A – [13]

++ – – – N/A – [9,10,13]

++ – – N/A – [34]
++ + + N/A – This report,

Fig. 3

nd very weak (+). N/A represents the data is Not Available at the time
s are reported in this paper and illustrated in Fig. 3.



Fig. 4. Comparison of unrooted phylogenetic trees based on the 68 full-length OLF protein sequences (Table 1) (A), the OLF domains alone (B), and
the non-OLF regions (C). The major topology difference between the OLF domains tree (B) and the non-OLF regions tree (C) is labeled with symbol
(dot) in the corresponding position.

Fig. 5. Coevolution of the OLF domain and the other five functional domains of Latrophilin genes (Table 1). (A) The general domain architecture of
Latrophilin protein. (B) Neighbor-joining trees for Latrophilin proteins and different segments of them, respectively. The name of each part is labeled
above the corresponding tree. The difference between the full-length tree topology and the other seven trees are labeled with symbols (square, dot and
triangle) in the corresponding positions. Branch lengths are shown to scale. Bootstrap values based on 1000 replications are shown above the
branches.
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evolutionary aspects of the characterized OLF members in

each subfamily. The results are briefly summarized in Table

3. As presented in Table 3 and Fig. 2, the OLF members with
similar functional/structural characteristics usually fell into

relevant subfamilies, and the topology tree of each subfamily

was generally consistent with the currently accepted view of



Table 3
The characteristic features of characterized OLF members in each subfamily

Subfamily General biological features in each subfamily References

I Dominantly expressed in brain; involved in brain development and function [5–7,29–32], and this report, Fig. 3
II G protein-coupled receptors for a-Latrotoxin, mainly expressed in brain

and heart; related to the control of synaptic vesicle exocytosis
[33,35,47–49]

III Dominantly expressed in retina; associated with primary open angle glaucoma;
the most conserved subfamily in the OLF family

[3,5,13]

IV Expressed in pancreas, prostate, lung, heart, eye; function is unknown, the
mouse members are extracellular proteins

[13,39]

V Containing the first cloned OLF gene, Olfactomedin; mainly expressed in brain,
colon, small intestine; extracellular matrix proteins involved in different
physiological processes

[1,2,9–11,13,37]

VI The most primitive clade in the OLF family, containing invertebrate members;
containing one or two collagen domains preceding the OLF domain of all the members

[8,34,50]

VII Human member hOLF44 may have matrix-related function involved in placental
and embryonic development, or play a similar role in other physiological processes

[38], and this report, Fig. 3
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species tree. Thus these data also strongly supported our phy-

logenetic classification of the OLF family.
4. Discussion

In this paper, we established a comprehensive subfamily

framework for the categorization of all currently available

OLF proteins. The assertion that the OLF family is composed

of seven evolutionarily and functionally distinct subfamilies is

supported by at least five lines of evidence: (1) each was found

in trees generated by all the phylogenetic methods used, and

each tree has reasonably high bootstrap values; (2) our North-

ern blot analysis and reported studies showed that in the same

subfamily, OLF members from different species usually shared

relatively conserved expression patterns; (3) the topology tree

of each subfamily is generally coincident with the currently ac-

cepted view of species tree; (4) the phylogenetic trees for OLF

domains alone and the non-OLF regions of the 68 OLF pro-

teins are either identical or very similar to the full-length tree

representing the unique phylogenetic feature of full-length

OLF proteins and their particular domain composition; (5)

members with similar domain compositions or functional

characteristics usually fell into relevant subfamilies.

Although the emerging OLF family is relatively complex,

our subfamily classification and structural analysis may pro-

vide additional insights into understanding some general char-

acteristics of this family. Firstly, subfamily I majorly includes

the Noelin proteins, which usually shared conserved brain-

preferred expression patterns and therefore functioned in the

nervous system [5–7,29–32]. Secondly, subfamily II consists

of Latrophilin proteins (G protein-coupled-receptor), and all

the three Latrophilins paralogs had similar function related

to the control of synaptic vesicle exocytosis [35]. Thirdly, sub-

family III is composed of the most conservative Myocilin genes

within this family, and the human Myocilin was associated

with the pathogenesis of primary open angle glaucoma [3].

Fourthly, some members in subfamily V clearly demonstrated

extracellular matrix-related functions in different physiological

processes [2,9–11]. Fifthly, subfamily VI represents the most

primitive clade in this family, as some members within this

subfamily belong to invertebrates ranging from C. elegans to

Drosophila melanogaster, whereas members in other subfami-

lies all belong to vertebrates. Finally, most of the OLF proteins
were predicted to possess a signal peptide in their N-terminal,

suggesting they may be secreted proteins (except the Latrophi-

lin proteins). Actually, most of the characterized OLF mem-

bers were demonstrated in vivo or in vitro to secrete out

from the cells [2,5–7,11,36–40], and some of them may have

extracellular matrix-related functions [2,11,38,39].

To analyze the plausible evolutionary scenarios for the OLF

family, we rooted the OLF family phylogenetic tree to C. ele-

gans, as to date, the most primitive organism containing OLF

genes is C. elegans, and this situation should allow an unam-

biguous rooting for the metazoan OLF proteins. The rooted

phylogenetic tree for the OLF family was depicted in Fig. 6,

and the domain architecture of the typical human members

was illustrated at the right of its corresponding subfamilies.

Up to now, there are only one or two OLF members in all

species of invertebrates, such as C. elegans and D. melanogas-

ter, whereas the number of the OLF members in a relatively

early vertebrate T. nigroviridis was remarkably increased and

then maintained in all higher vertebrates. Furthermore, the do-

main architecture of the OLF members in invertebrates is rel-

atively simple, whereas it becomes more complex for some

OLF members in the vertebrates. For example, vertebrate

Latrophilin proteins with OLF domains contain multiple other

functional domains, and their domain architectures are much

more complex than that of the invertebrate OLF members as

well as the invertebrate Latrophilin members without OLF do-

mains. Although it does not exclude the possibility that the

invertebrate lineage has lost the OLF domain from an ancient

Latrophilin, current data suggests one plausible scenario for

the evolution of the OLF family by gene duplication to in-

crease gene content and by domain couplings to produce the

multidomain genes. In this scenario, the entire genome dupli-

cations or individual gene duplication events are thought to

have occurred during vertebrate evolution [41–43]. Actually,

we have found that two human OLF genes (Hs-OLFM2 and

Hs-Latrophilin-1) were mapped to 19p13.2 (Table 1), and

interestingly, their corresponding T. nigroviridis counterparts

(Tn-CAF98141 and Tn-CAG06092) were also found to be lo-

cated in a same chromosome (Table 1). So, the gene duplica-

tion events may have occurred at least several rounds in

early vertebrate leading to more than 10 paralogs in T. nigro-

viridis. These paralogs evolved independently in teleost,

amphibian, fowl, and mammal lineages, and that later gave

rise to the present seven subfamilies.



Fig. 6. Rooted neighbor-joining tree for the 68 full-length OLF members (Table 1) and the domain architecture of the typical human members in
each subfamily. Vertical bars and Roman numerals delineate the seven subfamilies. Domain architecture of the typical human members is illustrated
at the right of its corresponding subfamily. Domain names are noted at the up right corner. Branch lengths are shown to scale. Bootstrap values
based on 1000 replications are shown above the branches.
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It seemed that the basic function of the OLF domain at

molecular level was still retained, such as members in subfam-

ily VI, V, III and I, as some characterized members in these
subfamilies were usually involved in formation of extracellular

matrix. At the same time, some duplicated paralogs also have

gained divergent functions and properties during evolution.
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The members in subfamily IV and VII seemed to acquire new

features to fulfill their tissue or cellular specific functions in dif-

ferent physiological processes. Thus, during the evolution of

vertebrates, especially of mammals, the OLF members have

acquired broader functions and gained more specificity in dif-

ferent aspects. It should be possible to determine more accu-

rate evolutionary history of this family once more relevant

sequences information is available. However, we believe that

the overall topology of the relationships among subfamilies

will not change remarkably from that outlined here.

The inferred subfamily framework here can be used to pre-

dict functional implications of some uncharacterized OLF

members. As we indicated above, biological properties were

usually conserved within the OLF subfamilies, and then the

functions of some uncharacterized OLF proteins could be pre-

dicted by comparison with their identified orthologs or para-

logs in the same subfamily. For example, we predicted that

human OLFM1 may be expressed abundantly in brain and

play an important role in the development of the nervous sys-

tem, as its orthologs (chick and xenopus Noelins) were all spe-

cifically expressed in neural tissues and functioned in nervous

system [6,7]. In fact, our preliminary experimental data have

provided compelling evidence to support some predictions on

OLFM1. For example, our Northern blot analysis revealed

that OLFM1 mRNA was abundantly and almost exclusively

expressed in brain. We believe that such preliminary functional

predictions are also reliable for some other uncharacterized

OLF members by our inferred subfamily structure presented

here.

Making accurate functional predications for uncharacter-

ized genes is very important in many areas of biological re-

search. Almost all functional prediction methods are based

on the sequence similarity, because primary sequence structure

is the basis for biological function. However, sequence similar-

ity cannot always ensure the accurate prediction of functions,

since significant functional diversity usually exists among the

members within large gene family, especially for those contain-

ing multiple functional domains [44,45]. Therefore, in this

study, we utilized phylogenetic method to better characterize

the complex OLF family by grouping the OLF members into

specific subfamilies. Although this method is labor intensive,

we believe it is worth employing if accuracy is the first to be

considered. Furthermore, it is more efficient to make appropri-

ate functional predictions on batch of uncharacterized OLF

members based on the inferred subfamily structure, and the

phylogenetic framework is also useful for putting functional

information into an evolutionary context. Thus, phylogenetic

analysis can greatly benefit the highest-hit methods and serve

to improve the accuracy of such functional predictions [46].
5. Conclusions

The principal results here revealed that the OLF family

comprises seven evolutionarily and functionally distinct

subfamilies, and moreover, the OLF domain and the non-

OLF regions (or coupled domains) of the OLF proteins may

have coevolved and are likely to be functionally interdepen-

dent. We also suggested a plausible, even if still incomplete,

gene duplication and domain couplings scenario for the evolu-

tion of this family. The phylogenetic and subfamily framework
presented here will greatly benefit the preliminary functional

predictions on some uncharacterized OLF genes, and may be

of great value to people studying this biologically important

family of proteins. At the same time, our analyses in this paper

demonstrated a feasible and reliable strategy to categorize no-

vel genes and predict the functional implications of uncharac-

terized proteins based on the comprehensive phylogenetic

classification of the subfamilies and their relevance to prelimin-

ary functional properties.
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