Overinterpolation ${ }^{\hat{*}}$

Dan Coman, Evgeny A. Poletsky *
Department of Mathematics, 215 Carnegie Hall, Syracuse University, Syracuse, NY 13244-1150, USA

Received 12 July 2006
Available online 27 January 2007
Submitted by R.M. Aron

Abstract

In this paper we study the consequences of overinterpolation, i.e., the situation when a function can be interpolated by polynomial, or rational, or algebraic functions in more points than normally expected. We show that in many cases such function has specific forms.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Overinterpolation; Interpolation; Overconvergence

1. Introduction

Let \mathcal{P}_{n} be the space of all polynomials on the complex plane \mathbb{C} whose degree is at most n. Let $\mathcal{R}_{n m}$ be the space of rational functions $R_{n m}=P_{n} / Q_{m}$ where $P_{n} \in \mathcal{P}_{n}$ and $Q_{m} \in \mathcal{P}_{m}$.

If f is a function on a compact set $K \subset \mathbb{C}$, then we denote by $N_{K}(n)$ and $N_{K}(n, m)$ the maximal number of zeros on K of the functions $f-p$, where $p \in \mathcal{P}_{n}$, respectively $p \in \mathcal{R}_{n m}$. Since functions in \mathcal{P}_{n} or $\mathcal{R}_{n m}$ have $n+1$ or, respectively, $n+m+2$ coefficients, $N_{K}(n) \geqslant n+1$ and $N_{K}(n, m) \geqslant n+1$.

In this paper we consider the situations when for a fixed function f we have either polynomial or rational overinterpolation. This means that

$$
\lim _{n \rightarrow \infty} \frac{N_{K}(n)}{n}=\infty \quad \text { or } \quad \lim _{n \rightarrow \infty} \frac{N_{K}(n, m)}{n}=\infty .
$$

[^0]One can expect that in the case of overinterpolation, the function f must be either polynomial or rational. We prove two theorems of this kind. Before we state them, let us introduce some notation.

Let $\Delta_{r} \subset \mathbb{C}$ be the open disk of radius r centered at the origin, and $\Delta \subset \mathbb{C}$ be the open unit disk. We denote by $O\left(\Delta_{r}\right)$ and $O\left(\bar{\Delta}_{r}\right)$ the set of holomorphic functions on Δ_{r}, respectively on neighborhoods of $\bar{\Delta}_{r}$.

The first theorem proved in Section 2 states that for an analytic function f overinterpolation by polynomials implies that f is a polynomial.

Theorem 1.1. Let $f \in O(\Delta)$ and $K=\bar{\Delta}_{r}$, where $r<1$. If $\lim _{n \rightarrow \infty} N_{K}(n) / n=\infty$ then f is a polynomial.

For a function f as above, the second theorem states that overinterpolation in $\mathcal{R}_{n 1}$ implies that either f is entire or it belongs to $\mathcal{R}_{n 1}$.

Theorem 1.2. Let $f \in O(\Delta)$ and $K=\bar{\Delta}_{r}$, where $r<1$. If $\lim _{n \rightarrow \infty} N_{K}(n, 1) / n=\infty$ then either f is entire or $f=P / Q$, where P, Q are polynomials, $\operatorname{deg} Q=1$ and Q does not divide P.

This theorem is proved in Section 3, where we also consider the case of Padé interpolation, i.e. when $K=\{0\}$. For any germ of an analytic function f at 0 and any fixed $m \in \mathbb{N}$, we show that $N_{K}(n, m) \leqslant n+m+1$ for infinitely many n, unless f is the germ of a rational function.

The expected rate of rational approximation of continuous or analytic functions is at most geometric, but in some cases functions can be approximated faster. This phenomenon is called overconvergence. In [6] and [1] Gonchar and Chirka have shown that in this case the functions have specific forms. In Section 4 we prove that overinterpolation implies overconvergence on some circle and, therefore, overinterpolated functions have the same specific forms as in the results of Gonchar and Chirka.

For the entire function $f(z)=\sum 2^{-n!} z^{n}$, its Taylor series is overconvergent but by Theorem $1.1 f$ cannot be overinterpolated by polynomials. Hence overconvergence does not imply overinterpolation.

In the last section we consider the interpolation of a general set S in \mathbb{C}^{2} by algebraic functions, i.e., we are looking for the maximal number $N_{S}^{a}(n)$ of zeros on S of a polynomial of degree n which does not vanish on S. The desirable estimate is $N_{S}^{a}(n) \leqslant A n^{\alpha}$, where A and α are some constants. We show that either S is finite, or $\alpha=1$ and S is contained in an irreducible algebraic curve, or $\alpha \geqslant 2$.

It should be noted that in [2] and [4] we proved for a large class of meromorphic functions f on \mathbb{C} with finitely many poles, including the Riemann ζ-function, that if S is the graph of f over Δ_{r}, then $N_{S}^{a}(n) \leqslant A n^{2} \log r$.

2. Overinterpolation by polynomials

If $f \in O\left(\bar{\Delta}_{R}\right)$ we set

$$
M(r, f)=\max \{|f(z)|:|z|=r\}, \quad r \leqslant R
$$

We will need the following lemmas:

Lemma 2.1. Let $f \in O\left(\bar{\Delta}_{R}\right)$ and $L_{n} f$ denote the Lagrange interpolating polynomial of f at the (not necessarily distinct) points $z_{0}, \ldots, z_{n} \in \bar{\Delta}_{r}$, where $r<R$. If $0<s<R$ then

$$
M\left(s, f-L_{n} f\right) \leqslant M(R, f) \frac{R}{R-s}\left(\frac{s+r}{R-r}\right)^{n+1}
$$

Proof. Let $\omega(z)=\left(z-z_{0}\right) \ldots\left(z-z_{n}\right)$. By [5, p. 59, (1.4)] we have

$$
f(z)-L_{n} f(z)=\frac{1}{2 \pi i} \int_{|t|=R} \frac{\omega(z) f(t)}{\omega(t)(t-z)} d t
$$

The lemma follows since $|\omega(t)| \geqslant(R-r)^{n+1}$ for $|t|=R$, and since $M(s, \omega) \leqslant(s+r)^{n+1}$.
For $R>0$ let

$$
R_{+}=\max \{R, 1\} .
$$

We have the following estimate of Taylor coefficients.
Lemma 2.2. Let $f \in O(\Delta), f(z)=\sum_{k \geqslant 0} f_{k} z^{k}$. Suppose that $0<r<1$ and the function $f-P_{n}$ has N zeros in $\bar{\Delta}_{r}$, where P_{n} is a polynomial of degree at most n. There exist positive constants $A \geqslant 1, a<1$ and δ, depending only on r, with the following property: If $N \geqslant A(n+1)$, then

$$
\left|f_{k}\right| \leqslant \frac{M(R, f)}{R_{+}^{n+1}} a^{N}
$$

for $n<k \leqslant \delta N$ and every $R \geqslant(r+2) / 3$ such that $f \in O\left(\bar{\Delta}_{R}\right)$.
Proof. Let $s=(2 r+1) / 3$ and fix R as in the statement. Let z_{0}, \ldots, z_{N-1} be zeros of $f-P_{n}$ in $\bar{\Delta}_{r}$. Since $N \geqslant n+1$ the polynomial $P_{n}=L_{n} f$ is the Lagrange interpolating polynomial of f at z_{0}, \ldots, z_{n}. Since $f-P_{n}$ has N zeros in $\bar{\Delta}_{r}$, we have by [3, Theorem 2.2] (see the formula on p. 578)

$$
M\left(r, f-P_{n}\right) \leqslant M\left(s, f-P_{n}\right)\left(\frac{2 r s}{r^{2}+s^{2}}\right)^{N}
$$

Hence by Lemma 2.1

$$
\begin{aligned}
M\left(r, f-P_{n}\right) & \leqslant M(R, f) \frac{R}{R-s}\left(\frac{s+r}{R-r}\right)^{n+1}\left(\frac{2 r s}{r^{2}+s^{2}}\right)^{N} \\
& =\frac{M(R, f)}{R^{n+1}} \frac{1}{1-s / R}\left(\frac{s+r}{1-r / R}\right)^{n+1}\left(\frac{2 r s}{r^{2}+s^{2}}\right)^{N} .
\end{aligned}
$$

Notice that

$$
\frac{1}{1-s / R}<\frac{3}{1-r}, \quad \frac{s+r}{1-r / R}<\frac{3}{1-r},
$$

and

$$
a_{1}:=\frac{2 r s}{r^{2}+s^{2}}<1 .
$$

Since $R>2 / 3$ we obtain

$$
\begin{align*}
M\left(r, f-P_{n}\right) & \leqslant \frac{M(R, f)}{R^{n+1}}\left(\frac{3}{1-r}\right)^{n+2} a_{1}^{N} \\
& <\frac{M(R, f)}{R_{+}^{n+1}}\left(\frac{3}{2}\right)^{n+1}\left(\frac{3}{1-r}\right)^{n+2} a_{1}^{N} \\
& <\frac{M(R, f)}{R_{+}^{n+1}}\left(\frac{5}{1-r}\right)^{n+2} a_{1}^{N} \tag{1}
\end{align*}
$$

Let

$$
A=\max \left\{-4 \frac{\log 5-\log (1-r)}{\log a_{1}}, 1\right\} .
$$

As $N \geqslant A(n+1)$ we obtain

$$
M\left(r, f-P_{n}\right) \leqslant \frac{M(R, f)}{R_{+}^{n+1}} a_{2}^{N},
$$

where $a_{2}=a_{1}^{1 / 2}$. Since $k>\operatorname{deg} P_{n}$ it follows by Cauchy's inequalities that

$$
\left|f_{k}\right| \leqslant \frac{M\left(r, f-P_{n}\right)}{r^{k}} \leqslant \frac{M(R, f)}{R_{+}^{n+1}} a_{2}^{N} r^{-k}
$$

We define $a=a_{2}^{1 / 2}$ and δ by $r^{\delta}=a$. If $k \leqslant \delta N$ then

$$
\left|f_{k}\right| \leqslant \frac{M(R, f)}{R_{+}^{n+1}} a^{N}
$$

Proof of Theorem 1.1. Let $f(z)=\sum_{n \geqslant 0} f_{n} z^{n}$. We can find an increasing sequence of integers $N(n) \leqslant N_{K}(n)$ such that $N(n) / n \rightarrow \infty$ and the function $f-P_{n}$ has at least $N(n)$ zeros in $\bar{\Delta}_{r}$, where $P_{n} \in \mathcal{P}_{n}$.

Fix $R \geqslant(r+2) / 3$ so that $f \in O\left(\bar{\Delta}_{R}\right)$. Let $a<1 \leqslant A$ be the constants from Lemma 2.2 and n_{0} be so that $N(n) \geqslant A(n+1)$ if $n \geqslant n_{0}$. Lemma 2.2 implies that for $n \geqslant n_{0}$

$$
\begin{equation*}
\left|f_{n+1}\right| \leqslant \frac{M(R, f)}{R_{+}^{n+1}} a^{N(n)} \tag{2}
\end{equation*}
$$

Therefore $\left|f_{n}\right|^{1 / n} \rightarrow 0$, so f is entire, hence (2) holds for any $R \geqslant 1$. By Cauchy's inequalities we have $\left|f_{n}\right| \leqslant M(R, f) / R^{n}$ for $n \leqslant n_{0}$. Using these estimates of the coefficients, we obtain the following bound for $M(2 R, f), R \geqslant 1$:

$$
\begin{equation*}
M(2 R, f) \leqslant \sum_{n \geqslant 0}\left|f_{n}\right|(2 R)^{n} \leqslant C M(R, f), \tag{3}
\end{equation*}
$$

where

$$
C=\sum_{n=0}^{n_{0}} 2^{n}+\sum_{n=n_{0}}^{\infty} 2^{n+1} a^{N(n)}
$$

is independent on R. Note that

$$
2^{n} a^{N(n)}=\left(2 a^{N(n) / n}\right)^{n} \leqslant 2^{-n},
$$

provided that n is sufficiently large, thus C is finite.

Applying the doubling inequality (3) successively we obtain

$$
M\left(2^{j}, f\right) \leqslant C^{j} M(1, f)
$$

for any $j>0$. Hence

$$
\left|f_{n}\right| \leqslant \frac{C^{j} M(1, f)}{2^{n j}} \rightarrow 0 \quad \text { as } j \rightarrow \infty,
$$

provided that $2^{n}>C$. We conclude that f is a polynomial of degree at most $\log C / \log 2$.
Theorem 1.1 has the following immediate corollary:
Corollary 2.3. Let $\left\{n_{k}\right\}_{k} \geqslant 0$ be an increasing sequence of natural numbers such that $n_{k+1} / n_{k} \leqslant C$ for some constant C. Let $f \in O(\Delta)$ and $K=\bar{\Delta}_{r}$, where $r<1$. If $\lim _{k \rightarrow \infty} N_{K}\left(n_{k}\right) / n_{k}=\infty$ then f is a polynomial.

Proof. Let $N(n)=N_{K}(n)$. If $n_{k} \leqslant n<n_{k+1}$ then

$$
\frac{N(n)}{n}>\frac{N\left(n_{k}\right)}{n_{k+1}} \geqslant \frac{N\left(n_{k}\right)}{C n_{k}} .
$$

3. Overinterpolation by rational functions

We prove here Theorem 1.2. We can find an increasing sequence of integers $N(n) \leqslant N_{K}(n, 1)$ such that $N(n) / n \rightarrow \infty$ and the function $Q_{n} f-P_{n}$ has at least $N(n)$ zeros in $\bar{\Delta}_{r}$, where $P_{n} \in \mathcal{P}_{n}, Q_{n} \in \mathcal{P}_{1}$ and $Q_{n} \neq 0$.

Let us write

$$
f(z)=\sum_{k \geqslant 0} f_{k} z^{k}, \quad Q_{n}(z)=\alpha_{n} z-\beta_{n} .
$$

Let

$$
\rho=\frac{1}{\limsup \left|f_{k}\right|^{1 / k}} \geqslant 1
$$

be the radius of convergence of the power series of f at the origin.
By considering functions $c\left(Q_{n} f-P_{n}\right)$, where $c \in \mathbb{C} \backslash\{0\}$, we can identify Q_{n} with the point $\left[\alpha_{n}: \beta_{n}\right] \in \mathbb{P}^{1}$. Thus

$$
Q_{n}(z)=\alpha_{n} z-1, \quad \alpha_{n} \in \mathbb{C} \quad \text { or } \quad Q_{n}(z)=z
$$

The latter case corresponds to $\alpha_{n}=\infty$ in the extended complex plane.
We begin with a few lemmas.
Lemma 3.1. There exist constants $a<1, \delta<1$ and an integer n_{0}, depending only on r, with the following property: If $n \geqslant n_{0}$, then one of the inequalities

$$
\left|\alpha_{n} f_{k-1}-f_{k}\right| \leqslant \frac{M(R, f)}{R_{+}^{n+1}}\left(\left|\alpha_{n}\right| R_{+}+1\right) a^{N(n)}, \quad\left|f_{k-1}\right| \leqslant \frac{M(R, f)}{R_{+}^{n}} a^{N(n)},
$$

holds for every $k, n<k \leqslant \delta N(n)$, and every $R \geqslant(r+2) / 3$ such that $f \in O\left(\bar{\Delta}_{R}\right)$.

Proof. Let $a<1 \leqslant A, \delta>0$, be the constants from Lemma 2.2, and let $n_{0}=n_{0}(r)$ be an integer such that $N(n) \geqslant A(n+1)$ for $n \geqslant n_{0}$. We fix such an n, and apply Lemma 2.2 to the function $Q_{n} f$ and the polynomial P_{n}. If $Q_{n}(z)=\alpha_{n} z-1$ then

$$
Q_{n}(z) f(z)=-f_{0}+\sum_{k \geqslant 1}\left(\alpha_{n} f_{k-1}-f_{k}\right) z^{k},
$$

and $M\left(R, Q_{n} f\right) \leqslant M(R, f)\left(\left|\alpha_{n}\right| R_{+}+1\right)$. This yields the first inequality of the lemma. The second one is obtained in a similar way, in the case when $Q_{n}(z)=z$ (or by letting $\alpha_{n} \rightarrow \infty$).

Lemma 3.2. If $f \in O\left(\Delta_{s}\right), 1 \leqslant s \leqslant \infty$, and if $\liminf _{n \rightarrow \infty}\left|\alpha_{n}\right|>1 / s$, then f is a polynomial.
Proof. There exist $n_{1} \geqslant n_{0}$ and $\epsilon>0$ such that $\left|\alpha_{n}\right|>1 / s+\epsilon$, for $n \geqslant n_{1}$. Let

$$
c=\left(\frac{1}{s}+\epsilon\right)^{-1}, \quad d=1+c
$$

By Lemma 3.1 with $k=n+1$ we have

$$
\left|f_{n}\right| \leqslant \frac{\left|f_{n+1}\right|}{\left|\alpha_{n}\right|}+\frac{M(R, f)}{R_{+}^{n}}\left(1+\frac{1}{R_{+}\left|\alpha_{n}\right|}\right) a^{N(n)} \leqslant c\left|f_{n+1}\right|+\frac{d M(R, f)}{R_{+}^{n}} a^{N(n)},
$$

for every $R \geqslant(r+2) / 3$ such that $f \in O\left(\bar{\Delta}_{R}\right)$. Note that this estimate obviously holds in the case $\alpha_{n}=\infty$. Applying it successively we obtain

$$
\begin{equation*}
\left|f_{n}\right| \leqslant c^{k}\left|f_{n+k}\right|+\frac{d M(R, f)}{R_{+}^{n}} \sum_{j=0}^{k-1} \frac{c^{j}}{R_{+}^{j}} a^{N(n+j)}, \tag{4}
\end{equation*}
$$

for every $k \geqslant 1$. Fix $s_{1} \geqslant(r+2) / 3$ such that $c<s_{1}<s$. Since $f \in O\left(\Delta_{s}\right)$ we have

$$
\left|f_{n+k}\right| \leqslant\left(\frac{1}{s}+\frac{\epsilon}{2}\right)^{n+k}
$$

for k sufficiently large. Since $N(n)$ is increasing, and if $R \geqslant s_{1}$, we obtain by (4)

$$
\left|f_{n}\right| \leqslant c^{k}\left|f_{n+k}\right|+\frac{d M(R, f)}{R_{+}^{n}} a^{N(n)} \sum_{j=0}^{\infty} \frac{c^{j}}{s_{1}^{j}} \leqslant \frac{\left(\frac{1}{s}+\frac{\epsilon}{2}\right)^{n+k}}{\left(\frac{1}{s}+\epsilon\right)^{k}}+\frac{d s_{1} M(R, f)}{\left(s_{1}-c\right) R_{+}^{n}} a^{N(n)} .
$$

Letting $k \rightarrow \infty$ we conclude that

$$
\left|f_{n}\right| \leqslant \frac{d s_{1} M(R, f)}{\left(s_{1}-c\right) R_{+}^{n}} a^{N(n)}
$$

holds for all $n \geqslant n_{1}$ and $R \geqslant s_{1}$ such that $f \in O\left(\bar{\Delta}_{R}\right)$. This is a similar estimate to (2) from the proof of Theorem 1.1. Therefore, by the same argument as in the proof of Theorem 1.1, it follows that f is entire and $M(2 R, f) \leqslant C M(R, f)$ for every $R \geqslant s_{1}$, where

$$
C=\sum_{n=0}^{n_{1}-1} 2^{n}+\frac{d s_{1}}{s_{1}-c} \sum_{n=n_{1}}^{\infty} 2^{n} a^{N(n)}
$$

is independent on R. Hence f is a polynomial.
Lemma 3.3. $\lim \sup _{n \rightarrow \infty}\left|\alpha_{n}\right| \geqslant 1 / \rho$.

Proof. We assume for a contradiction that there exist $n_{1} \geqslant n_{0}$ and $0<\epsilon<1 / \rho$ such that

$$
\left|\alpha_{n}\right|<c:=\rho^{-1}-\epsilon, \quad n \geqslant n_{1} .
$$

As $c<1$, we obtain by Lemma 3.1, applied with $k=n+1$ and $R=(r+2) / 3<1$, that

$$
\left|f_{n+1}\right| \leqslant\left|\alpha_{n} f_{n}\right|+M\left(\left|\alpha_{n}\right|+1\right) a^{N(n)} \leqslant c\left|f_{n}\right|+2 M a^{N(n)},
$$

where $M=M(R, f)$ and $n \geqslant n_{1}$. Hence

$$
\left|f_{n+k}\right| \leqslant c^{k}\left|f_{n}\right|+2 M \sum_{j=0}^{k-1} c^{j} a^{N(n+k-1-j)} \leqslant c^{k}\left|f_{n}\right|+2 M a^{N(n)} \sum_{j=0}^{\infty} c^{j}
$$

for all $k \geqslant 1$.
Let $C=2 M /(1-c)$. Then for $n \geqslant n_{1}$ we have

$$
\left|f_{2 n}\right| \leqslant c^{n}\left|f_{n}\right|+C a^{N(n)}, \quad\left|f_{2 n+1}\right| \leqslant c^{n+1}\left|f_{n}\right|+C a^{N(n)}
$$

Since, for n large, $\left|f_{n}\right| \leqslant\left(\rho^{-1}+\epsilon\right)^{n}$, it follows that

$$
\begin{aligned}
& \left|f_{2 n}\right|^{1 /(2 n)} \leqslant c^{1 / 2}\left(\rho^{-1}+\epsilon\right)^{1 / 2}+C^{1 /(2 n)} a^{N(n) /(2 n)} \\
& \left|f_{2 n+1}\right|^{1 /(2 n+1)} \leqslant c^{(n+1) /(2 n+1)}\left(\rho^{-1}+\epsilon\right)^{n /(2 n+1)}+C^{1 /(2 n+1)} a^{N(n) /(2 n+1)} .
\end{aligned}
$$

Note that $a^{N(n) / n} \rightarrow 0$. Therefore

$$
\rho^{-1}=\limsup _{j \rightarrow \infty}\left|f_{j}\right|^{1 / j} \leqslant\left(\rho^{-1}-\epsilon\right)^{1 / 2}\left(\rho^{-1}+\epsilon\right)^{1 / 2}
$$

a contradiction.
We continue with the proof of Theorem 1.2 in several steps. We can assume $\rho<\infty$, otherwise f is entire. The radius of convergence of the power series of $f(\rho z)$ at the origin is 1 , and the function $Q_{n}(\rho z) f(\rho z)-P_{n}(\rho z)$ has $N(n)$ zeros in the disk $\bar{\Delta}_{r / \rho}$. Therefore we may assume that $\rho=1$.

Let $R=(r+2) / 3$ and $M=M(R, f)$. By Lemma 3.1, one of the estimates

$$
\begin{equation*}
\left|\alpha_{n} f_{k-1}-f_{k}\right| \leqslant M\left(\left|\alpha_{n}\right|+1\right) a^{N(n)}, \quad\left|f_{k-1}\right| \leqslant M a^{N(n)} \tag{5}
\end{equation*}
$$

holds for $n<k \leqslant \delta N(n)$, provided that $n \geqslant n_{0}$. By Lemma 3.3, $\left|\alpha_{n}\right|>1 / 3$ or $\alpha_{n}=\infty$ for infinitely many n.

Step 1. We show that there exists a sequence $m_{j} \rightarrow \infty$ such that

$$
\alpha_{m_{j}} \in \mathbb{C}, \quad\left|\alpha_{m_{j}}\right|>1 / 3, \quad\left|f_{m_{j}+1}\right|>2^{-m_{j}-2}
$$

Fix any n large with $\left|\alpha_{n}\right|>1 / 3$ or $\alpha_{n}=\infty$. Let $k \geqslant n$ be the smallest integer such that $\left|f_{k}\right|>2^{-k}$. Such k exists since $\rho=1$. If $k>n$ then α_{k-1} is finite. Otherwise by (5)

$$
2^{-k}<\left|f_{k}\right| \leqslant M a^{N(k-1)}
$$

which is impossible as n is large. By the definition of $k,\left|f_{k-1}\right| \leqslant 2^{-k+1}$. We claim that $\left|\alpha_{k-1}\right|>$ $1 / 3$. If not, then using (5)

$$
2^{-k}<\left|f_{k}\right| \leqslant\left|\alpha_{k-1} f_{k-1}\right|+2 M a^{N(k-1)} \leqslant \frac{2^{-k+1}}{3}+2 M a^{N(k-1)},
$$

so $2^{-k}<6 M a^{N(k-1)}$. This is a contradiction since n is large.

If $k=n$, then $\left|f_{n}\right|>2^{-n}>M a^{N(n)}$ shows that $\alpha_{n} \in \mathbb{C}$, so $\left|\alpha_{n}\right|>1 / 3$. We have by (5)

$$
\begin{aligned}
\left|f_{n+1}\right| & \geqslant\left|\alpha_{n} f_{n}\right|-4 M\left|\alpha_{n}\right| a^{N(n)}>\left|\alpha_{n}\right|\left(2^{-n}-4 M a^{N(n)}\right) \\
& >\frac{2^{-n}}{3}\left(1-2^{n+2} M a^{N(n)}\right) \geqslant 2^{-n-2} .
\end{aligned}
$$

This establishes the existence of the desired sequence m_{j} and concludes Step 1.
Since $N(n) / n \rightarrow \infty$ and $\rho=1$, we can find $n_{1} \geqslant n_{0}$ with the property that

$$
\begin{equation*}
2^{3 n+6 k+16} M a^{N(n+k)}<1, \quad\left|f_{n}\right|<2^{n} \tag{6}
\end{equation*}
$$

hold for every $n \geqslant n_{1}$ and for every $k \geqslant 0$. Then we fix $n \geqslant n_{1}$ such that $\alpha_{n} \in \mathbb{C},\left|\alpha_{n}\right|>1 / 3$ and $\left|f_{n+1}\right|>2^{-n-2}$. We have using (5) that

$$
2^{-n-2}\left|\alpha_{n}\right|<\left|\alpha_{n}\right|\left|f_{n+1}\right| \leqslant\left|f_{n+2}\right|+4 M\left|\alpha_{n}\right| a^{N(n)} \leqslant 2^{n+2}+4 M\left|\alpha_{n}\right| a^{N(n)}
$$

so by (6)

$$
\left|\alpha_{n}\right| \leqslant \frac{2^{2 n+4}}{1-2^{n+4} M a^{N(n)}} \leqslant 2^{2 n+5}
$$

Step 2. We will show by induction that for every $k \geqslant 0$

$$
\begin{equation*}
\left|f_{n+k+1}\right|>2^{-n-2} 6^{-k}, \quad \frac{1}{6}+6^{-k-1}<\left|\alpha_{n+k}\right|<2^{2 n+6}-6^{-k-1} \tag{7}
\end{equation*}
$$

Evidently, these inequalities hold for $k=0$. Suppose that they are true for some $k \geqslant 0$. Then using (5)

$$
\begin{aligned}
\left|f_{n+k+2}\right| & \geqslant\left|\alpha_{n+k} f_{n+k+1}\right|-7 M\left|\alpha_{n+k}\right| a^{N(n+k)} \\
& \geqslant 2^{-n-2} 6^{-k-1}+2^{-n-2} 6^{-2 k-1}-2^{2 n+9} M a^{N(n+k)}
\end{aligned}
$$

By (6)

$$
2^{-n-2} 6^{-2 k-1}-2^{2 n+9} M a^{N(n+k)}>0
$$

so we see that $\left|f_{n+k+2}\right|>2^{-n-2} 6^{-k-1}$.
Since $\left|f_{n+k+1}\right|>2^{-n-2} 6^{-k}$, we have in view of (5) and (6) that $\alpha_{n+k+1} \in \mathbb{C}$. Therefore by (5)

$$
\begin{aligned}
& \left|\alpha_{n+k} f_{n+k+1}-f_{n+k+2}\right| \leqslant M\left(\left|\alpha_{n+k}\right|+1\right) a^{N(n+k)} \\
& \left|\alpha_{n+k+1} f_{n+k+1}-f_{n+k+2}\right| \leqslant M\left(\left|\alpha_{n+k+1}\right|+1\right) a^{N(n+k+1)}
\end{aligned}
$$

As $\left|\alpha_{n+k}\right|>1 / 6$ and $N(n)$ is increasing, it follows that

$$
\left|f_{n+k+1}\right|\left|\alpha_{n+k}-\alpha_{n+k+1}\right| \leqslant M\left(13\left|\alpha_{n+k}\right|+\left|\alpha_{n+k+1}\right|\right) a^{N(n+k)}
$$

Hence

$$
\left|\alpha_{n+k+1}\right|\left(1-\frac{M a^{N(n+k)}}{\left|f_{n+k+1}\right|}\right) \leqslant\left|\alpha_{n+k}\right|\left(1+13 \frac{M a^{N(n+k)}}{\left|f_{n+k+1}\right|}\right)
$$

So, by (6) and (7), $\left|\alpha_{n+k+1}\right|<4\left|\alpha_{n+k}\right|$.
Thus

$$
\begin{equation*}
\left|\alpha_{n+k}-\alpha_{n+k+1}\right| \leqslant 17 M 2^{2 n+6} a^{N(n+k)} 2^{n+2} 6^{k} \leqslant 2^{3 n+3 k+13} M a^{N(n+k)}, \tag{8}
\end{equation*}
$$

and by (6)

$$
\left|\alpha_{n+k}-\alpha_{n+k+1}\right| \leqslant 2^{-3 k-3}<6^{-k-1}-6^{-k-2}
$$

Using the bounds for $\left|\alpha_{n+k}\right|$, this yields the desired estimates for $\left|\alpha_{n+k+1}\right|$. The inductive proof of the inequalities (7) and Step 2 are now concluded.

Note that we have shown in (8) that

$$
\left|\alpha_{m}-\alpha_{m+1}\right| \leqslant 2^{3 m+13} M a^{N(m)},
$$

for all $m \geqslant n$. This implies that $\alpha_{m} \rightarrow \alpha \in \mathbb{C}$, and for $m \geqslant n$

$$
\left|\alpha-\alpha_{m}\right| \leqslant 2^{13} M \sum_{j=m}^{\infty} 2^{3 j} a^{N(j)} \leqslant 2^{13} M a^{N(m) / 2} \sum_{j=m}^{\infty} 2^{3 j} a^{N(j) / 2}
$$

Hence

$$
\begin{equation*}
\left|\alpha-\alpha_{m}\right| \leqslant B a^{N(m) / 2}, \quad B=2^{13} M \sum_{j=0}^{\infty} 2^{3 j} a^{N(j) / 2} \tag{9}
\end{equation*}
$$

Let $Q(z)=\alpha z-1$. Lemma 3.3 implies that $|\alpha| \geqslant 1$. If $|\alpha|>1$ then by Lemma $3.2 f$ is a polynomial, which is in contradiction to $\rho=1$. Thus $|\alpha|=1$.

Step 3. We let

$$
P(z)=Q(z) f(z)=\sum_{k \geqslant 0} c_{k} z^{k},
$$

and show that P is a polynomial to conclude the proof of the theorem.
Note that

$$
P(z)-P_{m}(z)=Q_{m}(z) f(z)-P_{m}(z)+\left(\alpha-\alpha_{m}\right) z f(z) .
$$

It follows, using (5)-(7) and (9), that

$$
\begin{aligned}
\left|c_{m+1}\right| & \leqslant\left|\alpha_{m} f_{m}-f_{m+1}\right|+\left|\alpha-\alpha_{m}\right|\left|f_{m}\right| \\
& \leqslant M\left(2^{2 n+6}+1\right) a^{N(m)}+2^{m} B a^{N(m) / 2}
\end{aligned}
$$

for all $m \geqslant n$. This implies that $\left|c_{m}\right|^{1 / m} \rightarrow 0$, hence P is an entire function.
Observe that $Q_{m}(z) P(z)-(\alpha z-1) P_{m}(z)$ has $N(m)$ zeros in $\bar{\Delta}_{r}$. Since P is entire, it follows by Lemma 3.2 that P is in fact a polynomial. So $f=P / Q$, and Q does not divide P since f is not entire. This completes the proof.

Theorem 1.2 has the following corollary, which is proved exactly as Corollary 2.3.
Corollary 3.4. Let $\left\{n_{k}\right\}_{k \geqslant 0}$ be an increasing sequence of natural numbers such that $n_{k+1} / n_{k} \leqslant C$ for some constant C. Let $f \in O(\Delta)$ and $K=\bar{\Delta}_{r}$, where $r<1$. If $\lim _{k \rightarrow \infty} N_{K}\left(n_{k}, 1\right) / n_{k}=\infty$, then either f is entire or $f=P / Q$, where P, Q are polynomials, $\operatorname{deg} Q=1$ and Q does not divide P.

We conclude this section with a remark about Padé overinterpolation. Let f be a germ of a holomorphic function at the origin. A rational function $R \in \mathcal{R}_{n m}$ is called a Padé interpolator (or Padé approximant) of type (m, n) of f if $f-R$ has a zero of the highest possible order at the origin, i.e. of order $N_{K}(n, m)$, where $K=\{0\}$. We prove the following simple fact about overinterpolation in the m th row of the Pade table.

Proposition 3.5. Let f be a holomorphic germ at the origin and $m \in \mathbb{N}$. If, for all $n \geqslant k$, there exist functions $R_{n} \in \mathcal{R}_{n m}$ so that $f-R_{n}$ vanishes to order at least $n+m+2$ at the origin, then $f \in \mathcal{R}_{k m}$.

Proof. Let us write $R_{n}=P_{n} / Q_{n}$, where $P_{n} \in \mathcal{P}_{n}$ and $Q_{n} \in \mathcal{P}_{m}, Q_{n} \neq 0$. For $n \geqslant k$ the function $R_{n}-R_{n+1}$ vanishes to order at least $n+m+2$ at the origin. Since $\operatorname{deg}\left(P_{n} Q_{n+1}-P_{n+1} Q_{n}\right) \leqslant$ $n+m+1$, this implies $R_{n}=R_{n+1}=R \in \mathcal{R}_{k m}$, for $n \geqslant k$. It follows that $f=R$.

4. Overinterpolation and overconvergence

Throughout this section we assume that $f \in O(\bar{\Delta})$ and that $0<r<1$ is fixed. For a compact set $E \subset \mathbb{C}$ and a continuous complex-valued function g on E, we denote by $\|g\|_{E}$ the uniform norm of g on E.

The following theorem shows that, in the presence of overinterpolation, the functions $R_{n m}$ quickly approximate f on some circle $S_{t}=\{z \in \mathbb{C}:|z|=t\}$.

Theorem 4.1. Let $m(n) \in \mathbb{N}$, and $d_{n}>0$ be so that $\sum d_{n}$ converges. Suppose that for every n there are polynomials $P_{n} \in \mathcal{P}_{n}$ and $Q_{m(n)} \in \mathcal{P}_{m(n)}, Q_{m(n)} \neq 0$, so that the function $Q_{m(n)} f-P_{n}$ has $N(n)$ zeros in $\bar{\Delta}_{r}$. There exist positive constants $b<1$, c, depending only on r, and $t \in$ $[r,(1+r) / 2]$, such that

$$
\left\|f-R_{n}\right\|_{S_{t}} \leqslant M\left(\frac{c}{d_{n}}\right)^{m(n)} b^{N(n)}
$$

holds for all n sufficiently large, where $R_{n}=P_{n} / Q_{m(n)}$ and $M=M(1, f)$.

Proof. We may assume that $M\left(r / 2, Q_{m(n)}\right)=1$. Following [3], we define the nth diameter of a set $G \subset \mathbb{C}$ by

$$
\operatorname{diam}_{n}(G)=\inf \left\{r_{1}+\cdots+r_{k}: k \leqslant n, G \subset \bigcup_{j=1}^{k} C_{j}\left(r_{j}\right)\right\},
$$

where $C_{j}\left(r_{j}\right)$ are closed disks of radii $r_{j}>0$. If $H_{n}(z)=Q_{m(n)}(r z / 2)$ then by Lemma 3.3 from [3], for every $0<h \leqslant 1 /(8 e)$, the nth diameter of the set

$$
G^{\prime}=\left\{z \in \mathbb{C}:\left|H_{n}(z)\right| \leqslant\left(\frac{h r^{2}|z|}{(1+r)^{2}}\right)^{m(n)}, 2 \leqslant|z| \leqslant \frac{1+r}{r}\right\}
$$

does not exceed 36 eh . Hence the nth diameter of the set

$$
G=\left\{z \in \mathbb{C}:\left|Q_{m(n)}(z)\right| \leqslant\left(\frac{2 h r|z|}{(1+r)^{2}}\right)^{m(n)}, r \leqslant|z| \leqslant \frac{1+r}{2}\right\}
$$

does not exceed 18 ehr . This means that the measure of the set

$$
F_{n}=\left\{t \in\left[r, \frac{1+r}{2}\right]:\left|Q_{m(n)}(z)\right| \geqslant\left(\frac{2 h r|z|}{(1+r)^{2}}\right)^{m(n)}, \forall z \in S_{t}\right\}
$$

is at least $(1-r) / 2-36 e h r$.
Since $M\left(r / 2, Q_{m(n)}\right)=1$, the classical Bernstein-Walsh inequality implies that

$$
M\left(1, Q_{m(n)}\right) \leqslant\left(\frac{2}{r}\right)^{m(n)}
$$

If $t \in F_{n}$ then by (1) we have

$$
M\left(t, Q_{m(n)} f-P_{n}\right) \leqslant M\left(\frac{2}{r}\right)^{m(n)}\left(\frac{3}{1-t}\right)^{m(n)+2} a_{1}^{N(n)}
$$

where

$$
a_{1}=a_{1}(t)=\frac{12 t^{2}+6 t}{13 t^{2}+4 t+1}<1
$$

The function $a_{1}(t)$ is increasing on $[0,1]$ and, therefore, it does not exceed

$$
b=a_{1}\left(\frac{1+r}{2}\right)
$$

on F_{n}. Hence for $t \in F_{n}$ we have

$$
\left\|f-R_{n}\right\|_{S_{t}} \leqslant \frac{9 M}{(1-t)^{2}}\left(\frac{3(1+r)^{2}}{h r^{2} t(1-t)}\right)^{m(n)} b^{N(n)} \leqslant M\left(\frac{c_{1}}{h}\right)^{m(n)} b^{N(n)},
$$

where c_{1} is a constant depending only on r.
If we let $h=d_{n} /(36 \mathrm{er})$ then the measure of F_{n} is at least $(1-r) / 2-d_{n}$ and for $t \in F_{n}$ we have

$$
\left\|f-R_{n}\right\|_{S_{t}} \leqslant M\left(\frac{c}{d_{n}}\right)^{m(n)} b^{N(n)},
$$

where $c=36 \operatorname{erc}_{1}$. Since $\sum d_{n}<\infty$ there is n_{0} such that the set $F=\bigcap_{n=n_{0}}^{\infty} F_{n}$ is not empty. If $t \in F$ then the conclusion of the theorem holds for t and for all $n \geqslant n_{0}$.

If g is a continuous function on a compact set $E \subset \mathbb{C}$, we let

$$
\rho(n, m)=\inf \|g-R\|_{E},
$$

where the infimum is taken over all $R \in \mathcal{R}_{n m}$. We say that rational functions overconverge to g on E if

$$
\lim _{n \rightarrow \infty} \rho(n, m(n))^{1 / n}=0
$$

for some sequence $m(n) \in \mathbb{N}$.
The following corollary shows that, under suitable conditions, overinterpolation implies overconvergence.

Corollary 4.2. Under the assumptions of Theorem 4.1, suppose that there is a sequence $\left\{a_{n}\right\}$ of positive numbers converging to 0 such that

$$
\sum_{n=1}^{\infty} \frac{b^{N(n) / m(n)}}{a_{n}^{n / m(n)}}<\infty
$$

Then there exists $t \in[r,(1+r) / 2]$ for which

$$
\lim _{n \rightarrow \infty}\left\|f-R_{n}\right\|_{S_{t}}^{1 / n}=0
$$

Proof. For the proof, take $d_{n}=c b^{N(n) / m(n)} / a_{n}^{n / m(n)}$.
The fact that overinterpolation implies overconvergence allows us to use results of Gonchar and Chirka to prove other results about overinterpolation. Let us first recall some definitions from [1]. The class $\mathcal{R}_{n,(m)}$ consists of all rational functions of degree at most n and with at most m geometrically distinct poles. The class \mathcal{A}_{m}^{0} consists of all functions meromorphic on \mathbb{P}^{1} except for at most m singularities of finite order. This means that for every singular point a there is a number p such that $|f(z)|<\exp \left(1 /|z-a|^{p}\right)$ near a.

Theorem 4.3. Let $m \geqslant 0$ be an integer. If for every n there are functions $R_{n} \in \mathcal{R}_{n m}$ such that $f-R_{n}$ has $N(n)$ zeros in $\bar{\Delta}_{r}$, where $N(n) / n \rightarrow \infty$, then f extends to a meromorphic function on \mathbb{C} with at most m poles.

If the functions $R_{n} \in \mathcal{R}_{n,(m)}$ and

$$
\liminf _{n \rightarrow \infty} \frac{N(n)}{n \log n}>-\frac{1}{\log b},
$$

where b is the constant from Theorem 4.1, then f has an extension in \mathcal{A}_{m}^{0}.
Proof. To prove the first statement, we take a number α such that $b<\alpha<1$ and let $a_{n}=$ $\alpha^{N(n) / n}$. By Corollary 4.2, there is $t \in[r,(1+r) / 2]$ for which

$$
\lim _{n \rightarrow \infty}\left\|f-R_{n}\right\|_{S_{t}}^{1 / n}=0
$$

By Theorem 1 from [6], f extends to a meromorphic function to \mathbb{C} with at most m poles.
A result of Chirka and Gonchar (see [1, Theorem 1]) states that if f is analytic in a neighborhood of a compact set $E \subset \mathbb{C}$ of positive capacity then f has an extension in \mathcal{A}_{m}^{0} if and only if there are a sequence of rational functions $R_{n} \in \mathcal{R}_{n,(m)}$ and a number $\lambda>0$ such that

$$
\left\|f-R_{n}\right\|_{E}^{1 / n}<\frac{1}{n^{\lambda}}
$$

for all n sufficiently large. (The theorem is stated for $E=\bar{\Delta}_{s}$, but see the note after the statement.)
Take numbers α and λ such that

$$
\liminf _{n \rightarrow \infty} \frac{N(n)}{n \log n}>\alpha>-\frac{1}{\log b}, \quad 0<\lambda<-1-\alpha \log b .
$$

Let

$$
d_{n}=c b^{\alpha \log n} n^{\lambda}=c n^{\alpha \log b+\lambda}
$$

where c is the constant from Theorem 4.1. Then $\sum d_{n}<\infty$ and by Theorem 4.1 there is $t \in$ $[r,(1+r) / 2]$ such that

$$
\left\|f-R_{n}\right\|_{S_{t}}^{1 / n} \leqslant M^{1 / n} \frac{c}{d_{n}} b^{N(n) / n}=M^{1 / n} \frac{b^{N(n) / n-\alpha \log n}}{n^{\lambda}}<\frac{1}{n^{\lambda}},
$$

for all n sufficiently large. Now the second statement of the theorem follows from the result of Chirka and Gonchar mentioned above.

5. Interpolation by algebraic functions

Proposition 5.1. Let S be an infinite set in \mathbb{C}^{2} with the following property: There exist positive constants $A \geqslant 1$ and $\alpha<2$ such that

$$
|S \cap X| \leqslant A(\operatorname{deg} X)^{\alpha},
$$

for any algebraic curve $X \subset \mathbb{C}^{2}$ not containing S. Then $\alpha \geqslant 1$ and S is contained in an irreducible algebraic curve of degree at most $(2 A)^{1 /(2-\alpha)}$. Moreover,

$$
|S \cap X| \leqslant(2 A)^{1 /(2-\alpha)} \operatorname{deg} X,
$$

for any algebraic curve $X \subset \mathbb{C}^{2}$ not containing S.
Proof. Suppose $\alpha<1$. Assume that $\left\{z_{1}, \ldots, z_{n}\right\} \subseteq S$, where $n \geqslant 2$, and let $L_{j}, 1 \leqslant j<n$, be a complex line passing through z_{j} and not containing z_{n}. If $X=L_{1} \cup \cdots \cup L_{n-1}$, then X does not contain S, hence

$$
n-1 \leqslant|S \cap X| \leqslant A(n-1)^{\alpha}
$$

Thus $|S| \leqslant 1+A^{1 /(1-\alpha)}$, which is a contradiction.
Let k denote the greatest integer in $x=(2 A)^{1 /(2-\alpha)}$. Then

$$
2 A k^{\alpha}=x^{2-\alpha} k^{\alpha}<(k+1)^{2} \leqslant k^{2}+3 k .
$$

Note that the dimension of the space of polynomials in \mathbb{C}^{2} of degree at most n is $(n+1)(n+2) / 2$. Therefore there exists a curve C of degree at most k so that

$$
\begin{equation*}
|S \cap C| \geqslant\left(k^{2}+3 k\right) / 2>A k^{\alpha} . \tag{10}
\end{equation*}
$$

It follows that $S \subseteq C$. Assume that $C=C_{1} \cup \cdots \cup C_{m}$, where C_{j} is an irreducible algebraic curve of degree $k_{j}, k_{1}+\cdots+k_{m} \leqslant k$. If no curve C_{j} contains S then, since $\alpha \geqslant 1$,

$$
|S \cap C| \leqslant \sum_{j=1}^{m}\left|S \cap C_{j}\right| \leqslant A \sum_{j=1}^{m} k_{j}^{\alpha} \leqslant A k^{\alpha},
$$

which contradicts (10). We conclude that S is contained in an irreducible curve Γ of degree at most k. Hence by Bezout's theorem,

$$
|S \cap X| \leqslant|\Gamma \cap X| \leqslant(2 A)^{1 /(2-\alpha)} \operatorname{deg} X
$$

for any algebraic curve $X \subset \mathbb{C}^{2}$ not containing S.

References

[1] E.M. Chirka, Rational approximations of holomorphic functions with singularities of finite order, Mat. Sb . (N.S.) 100 (142) (1976) 137-155.
[2] D. Coman, E.A. Poletsky, Bernstein-Walsh inequalities and the exponential curve in \mathbb{C}^{2}, Proc. Amer. Math. Soc. 131 (2003) 879-887.
[3] D. Coman, E.A. Poletsky, Measures of transcendency for entire functions, Michigan Math. J. 51 (2003) 575-591.
[4] D. Coman, E.A. Poletsky, Transcendence measures and algebraic growth of entire functions, preprint, 2004.
[5] D. Gaier, Lectures on Complex Approximation, Birkhäuser, 1987.
[6] A.A. Gonchar, On a theorem of Saff, Mat. Sb. (N.S.) 94 (136) (1974) 152-157.

[^0]: ${ }^{3}$ Both authors are supported by NSF Grants.

 * Corresponding author.

 E-mail addresses: dcoman@syr.edu (D. Coman), eapolets@ syr.edu (E.A. Poletsky).

