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We consider a problem of minimization of convex function f(x) over the convex
region % where the objective function and the feasible region have a common
direction of recession. In cases when one of these directions is not in the constancy
space of the objective function, then the minimal solution is not achieved even if
the function f(x) is bounded below over the region %. Many algorithms, if applied
to this class of programmes, do not guarantee convergence to the global infimum.
Our approach to this problem leads to derivation of the equation of the feasible
parametrized curve C(¢), such that the infimum of the logarithmic penalty function
along this curve is equal to the global infimum of the objective function over the
region %. We show that if all functions defining the program are analytic, then
C(¢) is also an analytic function. The equation of the curve can be successfully used
to determine the global infimum (in particular, unboundedness) of the convex
constrained programmes in cases when the application of classical methods, such
as the steepest descent method, fails to converge to the global infimum. © 1999

Academic Press

1. INTRODUCTION
We consider the problem

minimize f;(x)

subject to: x €7 = {x e R"|fi(x) <0,i €I ={1,2,...,m}} (1.1)

where f,(x), i € I U {0}, are analytic convex functions with unbounded
level sets. For simplicity of notation the objective function will also be

675

0022-247X /99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82680827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

676 WIESLAWA T. OBUCHOWSKA

referred to as f(x). We assume that int(%#) # . The problem (1.1) either
has a finite infimum (although there may be no such point at which f(x)
achieves its minimum), or the function f(x) is unbounded from below
[2-8].

It is well known [11] that the minimum of the convex problem of the
form (1.1) is not achieved only if the objective function and the feasible
region have a common direction of recession. In this case the convex
program (1.1) is called degenerate. Abrams [1] proposed a method to solve
the degenerate problem of the form (1.1), with the assumption that the
problem is bounded below and that the set

c=N0"f
i=0

of the vectors of recession of the problem is known. The method relies on
replacing the original problem with a reduced problem defined by project-
ing the feasible region % and the epigraph of f(x) onto the orthogonal
complement of the recession cone of the problem. The projection proce-
dure may be repeated in case the reduced problem is still degenerate, until
the objective function and the feasible region of a canonical problem have
no directions in common. One of the difficulties in the above approach is
that it requires knowledge of the cone of recession of the problem (1.1).
Also, the reduction procedure is known in only a few cases: posynomial,
geometric programming and quadratic programming and /,-approximation
[1, 4]. Furthermore, the procedure fails if the objective function strictly
decreases along some direction vector in the cone C. Indeed, if every
vector in C belongs to the constancy space of f, then the problem (1.1)
achieves its infimum, which may be determined by the method in [1]. Our
method of the solution of the problem (1.1) relies on derivation of the
equation of the feasible trajectory such that the infimum of the modified
logarithmic penalty function along this curve is equal to the infimum of
f(x) on . We will call such a curve an infimal trajectory. We do not
impose any restrictions on the cone of recession of the problem (1.1).
However, we assume that the direction vector p € C along which the
function f(x) strictly decreases is given. We also do not impose an
assumption on boundedness of f(x) over %, which implies, in particular,
that the function may be divergent to —oc along the trajectory. The
method proposed in this paper is an extension of the approach proposed in
[10] for the unconstrained minimization problem, where we have derived
the equation of the parametrized analytic curve, along which the objective
function converges monotonically to its global infimum.
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2. PRELIMINARY RESULTS

It is well known that if a closed, proper, convex analytic function is
constant along some half-line with a direction vector d, then it is constant
along any half-line with this direction. The set of vectors with the latter
property forms what is called constancy space of f(x), which is denoted by
Df, [7, 11]. A vector s is called a direction of recession of f(x) if for every
x the function f(x + ts) is a nonincreasing function of ¢ [6, 11]. Since any
proper lower semicontinuous convex function is a closed function, then
Theorem 8.6 [11] implies that if f(x + fs) is nonincreasing for even one
x € R", then it is nonincreasing for every x. We assume in this paper that
the intersection of the cones of recession of f and f;, i € I, denoted by
07f, and 0"f; respectively, is nonempty. The lineality space D of f(x)
may be defined in terms of the set 07 f [11] as

Df={y€eR'ye0'fA —ye0'f}.

DEFINITION 2.1. () We say that the function f(x) decreases asymptot-
ically along the half-line x(¢) =X + ts, ¢t > 0 if it has a finite infimum but
not a minimum along this half-line.

(ii) We say that the vector s € 0*f is an asymptotic direction vector if
f has a finite infimum but not a minimum along every half-line with the
direction s. Let D/ denote the set of all vectors s with the above property.

(iii) We say that the vector s € 0*f is a direction of unboundedness, if
the function f is unbounded below along every half-line with the direction
s. The set of all vectors possessing this property will be denoted by Dy

LEMMA 2.1[9]. () If the convex function f(x) is unbounded below along
the half-line x (t) = a + ts, t > 0, then for every X € R", f(x) is unbounded
below along a half-line x(t ) =X + ts, t > 0 and along a half-line x(¢) = x +
ty, t = 0, for any y € rint(0*f).

(ii) Let us assume that f(x) € C*. Then, if f(x) asymptotically decreases
along a half-line x (1) = a + ts, t > 0, then it also asymptotically decreases
along any half-line with the direction s.

(i) 0*f=D; UD} U DY, and D} N Df = @.

(v) Iff € C” and rint(0"f) N Df # O, then every vector s € rint(0"f)
is an asymptotic direction.

LEMMA 2.2. Let us assume that the function f is convex, and f € C”.
Then f achieves an infimum over % if and only if C C Dy .

Proof. The backward implication follows from Corollary 27.3.3 [11]. To
prove the forward implication, let us assume that x, be the point at which
the objective function achieves minimum over the region .%. Thus for any
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se€C, f(xy+1ts)=f(x,) for t > 0. Since fe C” the latter equation
implies that s € D, , and consequently C < Dy . 1

We assume in the remaining part of this paper that the vector p € Df
N C (Ipll =1 is given. We also assume that D NC = . Otherwise, if
Dy NC # &, we can apply the algorithm in [7] to determine the constancy
space D; NC (or Dy), and consequently replace the original problem by
its orthogonal projection onto the constancy space Di NC (or Dy,
respectively). Since the problem (1.1) has an unattainable infimum, the
cone of recession of the new problem will contain only asymptotic direc-
tions (Df) and possible directions of unboundedness (Dj), for which, by
Lemma 2.1, Df N Dy = . In the lemma below we assume that y, € R",
i=12,...,n — 1, are linearly independent, although more specific as-
sumptions on these vectors will be made later. Let us define Y =
(Vs ¥2reeer V) € RV Let x, € be arbitrary but fixed.

LEMMA 2.3 [10]. Let f: R" — R be a convex function assuming finite
values for all x € R". If there exists a sequence {x'} such that lim, _, ||x'|| = «
and

lim sup f(x') < o, (2.1)

[— ®©

then an arbitrary cluster point of the sequence {x'/||x'|}} belongs to 07 f.

Proof. We will prove the lemma by contradiction. First we note that
since f is finite at all x € R”, then it is a proper, closed convex function of
x. Let {x'} satisfy lim,_, .(x'/|lx'|) = £. Clearly, if £ & 07f, then it belongs
to the open set R"\ 0Ff. We will prove first that the latter fact and the
above properties of f(x) imply that the function f is unbounded from
above along any half-line with the direction X. To this end let us assume
that the opposite is true, that is, 3, such that f(x) is bounded from above
along the half-line x(¢) =X + £, t > 0. Since £ & 0*f, then 37 > 0, such
that f(x) is increasing along the half-line ¥(¢), for ¢ > 7. Therefore we
have

liminf f(Xx + ££) < oo,
f— o0

Since f is a proper, closed convex function, then by the second part of
Theorem 8.6 in [11], f(x) is a nonincreasing function of ¢ along any line
x + & for every x € dom f. So, £ € 07f, which contradicts the assumption
and proves that f(x) is unbounded from above along any half-line with the
direction %.



CONVEX PROGRAMMES WITH UNATTAINED INFIMA 679

Now, we observe that
X
350>0, <xA,n>21—80 = X$0+f.
X

Therefore, any vector x satisfying the latter relation has the property that
along any half-line with the direction vector x, f is unbounded from above.
Let f,; = liminf,_ . f(x’). By assumption (2.1) it follows that there exists
a subsequence {x"} of the sequence {x'} such that lim, . f(x") = f,;.
Without loss of generality we will use the symbol {x} for the subsequence
satisfying the latter equation. Let us define the half-line £(7) = 7%, 7 > 0.
Since lim, _, ,, f(£(7)) = o, then for an arbitrarily large (but fixed) number
W > 0, such that

W > max{f(0) + 2, fi.; + 3}, (2.2)

there exists such 7, > 0 that f(£(7,)) = W. (In the case when f,; = —o»,

the latter inequality is equivalent to W > f(0) + 2.) By continuity of f we
have that

e, > 0, [x —2(rp)|<e, = flx)=W—-1. (23)

We assume that €, is a sufficiently small number, so that x = 0 does not

satisfy the inequality [|x — X(7};,)|l < €. In the case when this assumption

is not satisfied, we can simply decrease the value €,. We obtain the
following implication:

X
Be[0,1], [x—-%(p)|<e = <£,m>21—5. (2.4)

The value &, which satisfies the latter implication, is not unique, and we
define

8inf=inf{8|5€[0,1], [x =)< = <£,ﬁ>21—5}.
X

The value 6;,; is well defined, because the infimum is defined over the set
of values &, which by relation (2.4) is nonempty and bounded. From the

fact that the sequence {x'/||x'|}} converges to £, it follows that

xi
3l5inf’ Vi> l5inf’ <x7 m> >1- 8inf' (25)
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Let i, be such that i, > i; and

el > [ £(ry ) || + €, (2.6)
(such an i, exists because {[|lx"[} is an unbounded sequence).
In the case when f; ; = —, we determine 7, > i,, such that x" satisfies
f(x™) <0. (2.7)
In the case when f;; > —oo, the index i, > i, is determined so that x'
satisfies
f(x") < fir + 1. (2.8)

From (2.5), we conclude that

x'
<x, ] > >1— 6. (2.9)

The latter inequality implies that any point x defined by x = 7x%, 0 < 7

< 1, satisfies
X,— )=1—-06,;.
[l xl ot

B(£(my), &) = {xl]|x = 2(7p) || < €}

it follows that

Let us denote

From the definition of &,

B(%(1y),€) C {x|< il > >1-3§, } (2.10)

and that for € > ¢,

B(%(1y).€) ¢ {x|< T ”>z 1 —5mf}. (2.11)

The inequalities (2.6) and [lx%|| > [|x"|| imply x™ & B(£(r},), €,). The
inclusions (2.9), (2.10), and (2.11) imply that

(0, x) N B(X(7y), €) # 3.
The latter relation can be written equivalently as

3r, € (0,1), suchthat x, = 7ox™,  |xg —£(7y)]| < €.
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So, relation (2.3) yields
Fxg) =W — 1. (2.12)

From the convexity of f we obtain

f(rox™) < (1 = 79)f(0) + 7o f(x™). (2.13)

Let us first consider the case when f, , = —o. Taking into account Eqgs.
(2.7, (2.2), and (2.12) in the inequality (2.13) results in the following
double inequality

W—=1<f(x) <1~-7)(W-2),

which yields 7, < 0. The latter conclusion is inconsistent with our earlier
assumption that 7, € (0, 1). This ends the proof of the lemma in the case
when f, ;= —c.

Now suppose that f; ; is finite. Taking into account Egs. (2.8), (2.2), and
(2.12) in the inequality (2 13) results in the following inequality:

W—=1<f(x)) <(1=71)(W—=2) + 7(fine + 1)-

Simple calculations along with the use of the inequality (2.2) yields the
contradiction W — 1 < W — 2, which establishes the proof of Lemma 2.3.
1

LEmMMA 2.4. Let fi: R" — R, i€V {0} be convex functions. If there
exists an unbounded sequence {x'} € %#, such that

lim sup f(x') < o, (2.14)

[—
then an arbitrary cluster point of the sequence {x' /|| x'l}} belongsto N™, 0" f.

Proof. We will prove the lemma by contradiction. Let {x'} satisfy
m,_ (x'/llx']) = £. We note that {x'} €% implies that limsup, _, ., ]‘j(xi)
< =, j € I. Therefore all functions f;, j € I U {0}, satisfy hypotheses of
Lemma 2.3 and consequently £ € N7, 07f,. 1

Remark 1. We note that the result of Lemma 2.4 may be used to
generate a vector p € Df N C assuming that the sequence {x,} €% along
which the objective function decrease is given.

From now on we assume that y,, i = 1,2,...,n — 1, is the orthonormal
basis for the subspace Vf(x,)*, which will be denoted by Y. The symbol Y
will be also used to denote the matrix in R~ D*" formed by the vectors
yoi=1,...,n—1,and é€=(&,..., & D
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LEMMA 2.5. Let us assume that f is convex and f € C”.

(1) Then the function
G(&)=f(xg+1tp+Y'E) (2.15)
achieves a minimum over the region
B, ={EIGI(&) =f(xp+p +YE) <0, i=1,...,m} (2.16)

foranyt > 0.
If in addition D; = (J, then the function G(&) achieves a unique mini-
mum over %,.

(i) If CNDf =, then the set of the optimal solutions to the
problem (2.15)—(2.16) is bounded.

(iii) If &€(¢) is an optimal solution to the problem (2.15)—(2.16), then
lim G,(£(t)) = inf f(x).
t— o xR

Proof. (i) We observe that C,, the cone of recession of the problem
(2.15)—(2.16), is given by C,={¢é<€ R" 'Y € C}. Since y, L Vf(x,),
Vi=1,...,n—1, then Y4 & C implies Yé € D; and ¢€ D;. The
latter conclusion can be written as C, C Dg , so from Lemma 2.2 we
obtain that the problem (2.15)—(2.16) attains its minimum. We note that
this part of the lemma remains valid without assumption that f € C”. This
is because the Lemma 2.2 can be easily restated without assumption that f
is an analytic function.

(ii) Part (i) of the lemma implies that the function G,(¢) achieves its
minimum over the set .%,, at some point £'. We will show that the set T of
the optimal solutions to this problem is bounded. If not, then the convexity
of the set T implies that there exists a half-line n(r) = ¢ + 77, 7> 0,
n € N, 0"G/, contained in T C.%,. Thus the relations Y'n € N, 0*f,
and C N D; = & imply that either Yy € D} U D or Y'n & 07f. If the
first case holds, then f(x) strictly decreases along the half-line x(7) = x,,
+ tp + Yq(r), which contradicts the assumption that &' € T. If Y &
0"f then the function f(x) strictly increases along this half-line, which
contradicts the inclusion n(7) € T, 7 > 0.

(iii) We will show first that f(x, + tp + Y’¢(¢)) monotonically de-
creases with respect to 7. Let £, > ;. Then, since p € Dy, we have

f(xo+t,p+YE(1))) > f(xg+1,p +YE(t))) 2 f(x+1,p +YE(2,)).
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Suppose that the sequence {x,} €.% is minimizing for f(x), that is,
lim f(x;) = inf f(x). (2.17)
i— xeX

Each x, can be represented uniquely as x, =x, + t,p + Y, with
t, €ER.

We will show that there exists a subsequence {tk} of the sequence {tk}
such that {tk} — o, Let us suppose that the opposne is true, that is,
M = sup, t, < . Since p € 0*f, then

f(xo+ 1 p+YER) = f(xg +Mp+YEX) > f(x, +Mp+Y'E(M)), Vk,

where ¢(M) = argmméfeﬁ f(x, + Mp + Y¢). Taking k — o« yields
lim, . f(xo +t,p + Y€)= f(x, + Mp + Y'E(M)). Since p € Df, then
f(xy + Mp + YE(M)) >f(x0 + (M + Dp + Y'6(M)). The latter two in-
equalities and the equation (2.17) give

xigéf(x) >f(x0 +(M+1)p+ YTf(M)).

Since p € C, then x, + (M + Dp + Y'¢(M) belongs to #,,,, C.%#, which
contradicts the definition of the infimum of f(x) over #. This completes
the proof of the statement that there exists {tk} — oo, Without loss of
generality, we will use the symbol {z,} to denote the subsequence {tk}
divergent to +oo. It follows from part (i) of the lemma that the problem

min(G, (¢)Ié €%, },
where G,(¢) and %, are defined in (2.15) and (2.16), respectively, has a

solution for every f,. Let us define £(z,) = argmm{G | e, } We ob-
serve that x; = x, + f, p + Y'¢* %, implies

f(xo + 1 +YE(1)) <f(x), Ve =0. (2.18)

Taking the limit with k — o, of both sides of the inequality (2.18), proves
that

inf f(x) = lim G,(£(10)).

which along with the fact that G,(£(¢)) strictly decreases with respect to ¢
completes the proof of the lemma. |
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3. INFIMAL TRAJECTORY

The problem of minimizing the function (2.15) with respect to the
constraints (2.16) is clearly a parametric program. We observe that to find
an approximate infimum of f(x), it is sufficient to solve the problem
(2.15)—(2.16) for a sufficiently large value of the parameter . We will
prove that the sequence of the optimal solutions to the problem
(2.15)-(2.16) can be approximated by the points on the trajectory C(t)
along which the logarithmic penalty function converges to the global
infimum of f(x) with respect to the set %.

Our analysis of the infimal trajectory will be based upon the uncon-
strained minimization technique which exploits the logarithmic penalty
function. Let us define the functions

L(t,67) = Gi(€) = r ¥ In(~G(£)) (3.1)

and

1
3(%5)=L(f,§’f)=Gt(§)_TZIH(_G5(5))- (32)

i=1

LEMMA 3.1. Assume that the functions f: R" - R, i €U {0} are
convex and analytic and C N Dy = . Let us define the function

F(t) = min {Z(t,¢)}, t€R,. (3.3)
13

ER”71

Then

(1) F(t) is well defined, that is, F(t) > —o, Yt > 0, and the minimum
of the function on the right side of (3.3) exists and is unique for every t > 0.

(i1) F(¢) is a strictly monotonically decreasing function of t, for t > 0.

Proof. (1) Lemma 2.5 (ii) assures that the set of points that solve the
problem of minimizing of G,(¢) subject to ¢ €.%, is bounded (in particu-
lar, if Dy = J, then part (i) of the lemma states that the set of optimal
solutions consists of one point only); thus the conditions of Theorem 25 in
[5] are satisfied. Part (i) of this theorem implies that the function L(z, &,r)
has a finite unconstrained mlnlmum &(r) with respect to & for every
r >0, and ¢ > 0. Letting r = - ~ proves the existence of the minimum of
A1, &), for every t > 0.

To prove the uniqueness of the solution we will show that the Hessian
matrix of (¢, £) is strictly positive definite. To this end we will use the
result proved in [12], that any analytic convex function f,(x) can be
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represented as
fi(x) = F(c; + Bx) + {a;,x) +d,,

where F; is strictly convex analytic function, B; € R?*", ¢, € R?i, and
a; € R". It has also been shown in [12] that

where #(+) denotes the nullspace of the matrix (-). It follows directly that
the Hessian of (¢, ¢) is given by the formula

Vi (1, &)
1 YBIV3F(c, + Bix)BY'
= YB"V?F(c + Bx)BY" — — ) et )
Lz fi(x)
I (VyF(c;+Bx)BYT+Ya,) (V,F(c,+Bx)BY +Ya,)
t i=1 fiz(‘x) ’

where x =x, + pt + Y’¢, and y' € RPi, i € I U {0}. Since fi(x) <0, Vx
€%, i € I, then all three terms in the expression on the right side of the
latter equation are nonnegative. Thus the Hessian matrix V;fZ(t, &) is not
strictly definite (semidefinite) only if there exists a nonzero vector &
satisfying the system of equations

BYT§=0, VieIu {0}, [V,F(c,+Bx)BY"+Ya|E=0, Viel

Note that equation B,YT £ = 0 implies that ;Y7 & = 0, Vi, so
_ » (B
vEe N 1| = NDr. (3.4)
! a; ) i

Since the raws of the matrix Y are orthogonal to Vf(x,), then [V, F(c +

Bxy)B + al’ Y& =0, which along with the equation BY”¢= O yields
a’YT&=0. Thus YTgeD , which along with (3.4) contradicts the
assumption that C N Dy = @, and establishes part (i) of the lemma.
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(i) We will show that F(¢,) < F(t,) if ¢, > ¢,. It follows from Theorem
25 (vi) in [5] that

xeR"!

1
>  min L(tl,f, )
t

1
min L t],f,
1 £ER"™ 1

Let &1, £2, and &3 be such that

1 1
L(t],gl,—) = min L(tl,g,—), (3.5)
tl §€R"71 tl
1 1
L(t,&* —|= min L|t,¢&, — (3.6)
b geR"! b
and
1 1
L(t,, €% —|= min L|t,,¢& —|. (3.7)
2 geR"! b
We will prove first that
1 1
L(t,, &%, — | <L|¢t, €2 —|. (3.8)
b b
To this end we will show that
1
L(tz,gz, t—) =f(xg +t,p + YE?) — — Zln( fi(xg + t,p + YE? ))
2 21 1
<f(x0+t1p+YT§2)——Zln( fi(xo +t,p +YE?))
21 1
1
=L|t, &% — (3.9)
2
We observe that assumption that p € C N Df implies
f(xo +tp+ YT§2) <f()cO +4p+ Ysz) (3.10)
and
filxg +t,p +YE?) < fi(xg +1,p + YE?), (3.11)

i =1,2,...,m. Furthermore, the equation (3.6) and Theorem 25 (i) in [5]
imply that ¢° € int %, , which yields

filxo+t,p +YE?) <0, j=1,...,m. (3.12)
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The inequalities (3.10)—(3.12) prove that inequality (3.9), and consequently
inequality (3.8), holds. Now, by Theorem 25 (vi) in [5], we have

1 1
L(t1> §2>_ <L tl) gla_)- (313)
t2 tl
The definition of £* gives
1 1
L|ty,, £, — | <L|ty, %, — . (3.14)
t 4

Relations (3.3), (3.5), and (3.7) yield

1 1
F(t;) = min L(tl,g,—) =L(t1,§1,t—),

geR"! 51
_ 1 1

F(t,) = min L|t,,¢,— | =L|t,, &% —].
geRm! t, t

Now inequalities (3.14), (3.8), and (3.13) imply

<L

: 1
t],f ’l‘_ 5

1

3 1
L t2a§ ’t_

2

which can be written equivalently as F(¢,) < F(¢)). |
We note that the equality

1m :
F(1) =2(1,€) = G(¢) = - LIn(=Gi(¢))
i=1
holds if and only if ¢ satisfies the equation

ViZ(t,6) =YV, f(xg+tp+YE) =0.

7 YV fi(xo+1p+ YY)
o1 filxotp +YE)

l

(3.15)

For every value of ¢ the equation (3.15) consists of n — 1 equations with
n — 1 unknown variables &,...,&,_;.

In the remaining part of the paper we assume that the function (¢, £)
satisfies the following second order sufficiency condition

ViER,, VEER", V,Z(1,€)=0 = ¢TV2IZ(1,£)E>0, VE#O,



688 WIESEAWA T. OBUCHOWSKA

which can be expressed in terms of the function f(x) and its derivatives as

Yy, X €R", y # 0, IV, f(x sz())}
1 m V(%) F(X) = V()Y fF(x)
TIV2f(%) —72 A )f;(;)ﬁ( ARARY ]y>0, (3.16)
i=1 i

where ¥ =x, + tp + Y.

We note that the Lemma 3.1 remains valid if the assumption that
Di N C = I is replaced with the less restrictive condition (3.16).

In the theorem below we will prove that there exists an analytic function
x(#) = C(¢), such that the infimum of f(x) along the curve is equal to the
global infimum of f(x) over .

THEOREM 3.1. () Iff;, i € I U {0} are convex and analytic, then there
exists a unique analytic function h(t), which is a trajectory of unconstrained
minima of (t, ¢). Furthermore, derivatives of all orders of h(t) can be
obtained by subsequent differentiation of V. Z(t, h(t)) = 0 with respect to t.

(ii) The parametrized curve C(t) = x, + tp + YTh(t) satisfies

lim F(1) = lim | F(C(1)) - ;gln(—ﬁ»(cm» = lim (¢, (1))
= Xlélégf(x) (3.17)

Proof. (i) The condition (3.16) implies that the Hessian matrix of
LAt ) is positive definite at the point (¢, ¢) satisfying Eq. (3.15). Since the
system of (n — 1) equations in n variables £,...,&,_,, ¢ in (3.15) has an
invertible Jacobian matrix Vziﬂ(t £), then by the implicit function theo-
rem [13] there exist open sets UeR" and WCR,, with (&,1) € U and
t € W, having the following property: To every ¢ € W, there corresponds a
unique ¢ such that (£,¢) € U and V, Z(¢, ¢) = 0. Furthermore, if this ¢ is
defined to be A(t), then & is a Cl—mappmg of Winto R"™ !, h(t) = &, and

V. Z(t,h(t)) =0, Yiew.
Differentiating the latter equation with respect to ¢ yields
1 YV fi(hy(1))
220 fi(ho(t))
n VA (ho(D)fi(ho(1)) = Vifi(ho(0) Vufi(ho(1))”

ot i; f2(ho(2))

X(Y'h'(t) +p) =0, (3.18)

YVZf(ho(t))(YTh'(1) +p) +
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where hy(t) = x, + tp + YTh(¢). By the assumption (3.16) the matrix

VEL(1,€) = Y| V2fi(hy(1))

1§t WMD) = Ve (ha(0) Ve (ho(1)) ]
t ,

i=1 f2(ho(1))

has an inverse, so the equation (3.18) can be solved for A'(¢)

W(t) = —(V22(1,€)) | YV2(ho(1))

—lY m VI fi(ho(2))fi(ho(2)) — Vf(ho(t)) Vf(ho(t))
A P f2(ho(2))

12 SA(0)
5 filhe(0) |

This proves that the derivative of A(z) with respect to ¢ exists for t € W

and is a C'-mapping of W into R". (We note that the existence and

continuity of 4'(z) follows also from the implicit function theorem; how-

ever, for the completeness of the proof we include this argument as well.)
Now, differentiation of Eq. (3.18) with respect to ¢ yields

dVEZ (1, h(1)) d[YV2f(ho(1))]
dt

h'(t) + VZZ(t, h(t))h" (1) +

dt
L[ o 928 Fi(ho(6)) = Vufiro(0) Vi ho(1))
‘7Hy? F2h(0) } }
1 YA)]
”[r%_zl Fi(ho(0)) l/‘” 0

The existence of A”(¢) is assured by the existence of the inverse of the
Hessian matrix V2#(z, h(¢)). Continuing the above process it is possible to
obtain exphcltly all derivatives A*)(¢) in terms of the derivatives h®
(i=1,. — 1), and partial derivatives of the functions f;, j € I U {0},
of degrees i =1,....k + 1. Since f; € C”, then part 6)) of the theorem
follows.
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(i) In Lemma 2.5 (ii) we proved that the set of optimal solutions to the
problem (2.15)-(2.16) is bounded for every ¢. Thus the assumptions of
Theorem 25 (iv) of [5] are satisfied, which yields that for any fixed ¢, > 0

1
lim L(zk,gk(z), ?) - min G,(¢), (3.19)
t— o ée

I

where &%(¢) denotes the point of unconstrained minimum of L(t,, &, %)
with respect to &. Lemma 2.5 (iii) shows that

. T .
kh_Ich(xO +o,p+Y%E(L)) = xlggf(x),

where £(¢) is an optimal solution to the problem (2.15)—(2.16).
It follows from the latter equation that

inf f = lim min G , 3.20
Xlg (x) kl - §6H1 tk('f) ( )
which, using Eq. (3.19), yields

1
lim lim L(tk,gk(t),?) = in;f(x).

k—>®© t—®

It follows from the equation (3.20) that

Ve>0, 3k, Vk=k, 0< ;2;? G, — inf f(x) <e. (321)

Equation (3.19), along with the fact that for every fixed t,, L(t,, £(2), é) is
monotonically decreasing with respect to ¢ (see Theorem 25 (vi) in [5]),
yields

1
V6 > 0, At,, Vi>t;, 0 gL(tk,fk(t), 7) — min G, <.
Eg?tk K

(3.22)

Taking 6 = € in (3.22) and adding inequalities in (3.21) and (3.22) gives
_ _ 1
Ve > 0,3k, 3t ,Vk >k, Vi >1_,0 < L(tk, EX(1), 7) — inf f(x) < 2e.
xeA#

If for given €> 0, ; > ¢., then we substitute 7, = fz; otherwise, ie., if
t; <t., we find the smallest index k, such that ¢; > ¢_, and take k := k.
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The latter modification leads to the relation
_ _ 1 )
Ve>0, 3Jk, Vk=k, O0<L|t,& (), —|— inf f(x) <2e,
t; xXER

which proves that
lim Z(t,, £%(t,)) = inf .
kl ! (> €5(10)) xlg f(x)

Since F(t,) =Z(t,, £¥(t,)) and F(t) is a strictly decreasing function of ¢
(see Lemma 3.1(ii)), and lim,, _, , f, = %, then lim, _, . F(z,) = lim, _, . F(¢),
which implies

lim F(¢) = inf .
lim (1) xlgg?f(X)

This completes the proof of the equalities in (3.17). |

In the lemma below we will show that the curve x = C(¢) does not
depend on the choice of the vector p, as long as the vector p is in the cone
of recession C and it belongs to Df.

Let

H(t) ={xeR'lx=xy+mp,+ Y%}, =12 >0

Let C,(¢) and C,(¢) denote two parametrized curves constructed for two
different vectors py, p, € C N D/. It follows that

C(t) =x,+1tp; + YThi(t), i=1,2, (3.23)
where

hi(1) =argmin{Z(1, )€€ H (1) Nint #} = argmin{Z(t, £)|é€R"},
(3.24)

where

3

1
St ) = f(x+ 1, + YE) = 7 L In(=f(x, + 5, + VE)).

1

J

LEMMA 3.2. (D) If py, p, € C N Df, then C\(t) and C,(t) defined in
(3.23)—(3.24) are equivalent representations of the same parametrized curve.
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(i) For a given x, € # and p € C N Df there is exactly one curve
satisfying C(t) = x, + tp + Y h(t) € where

h(t) =argmin{Z(z, £)|é€H,(1) Nint #} = argmin{Z (1, £)|E€R" 1},

with Ht) ={x e R"|x =x, + tp + Y&, £ € R" '}, t > 0, passing through
xy. The curve satisfies Eq. (3.17).

Proof. (i) Note that for a fixed value of ¢, H(¢), i = 1,2, represents a
linear manifold and

Vi, eR_, d:, eR., H\(t,) = Hy(t,). (3.25)
Equalities (3.23)—(3.25) yield

Ci(t,) = Cy(1,)

so Cy(¢) and C,(¢) are equivalent representations of the same parametrized
curve. Since relation (3.25) is symmetric with respect to ¢, and ¢,, it follows
that there is a unique correspondence between the points on the curves
C,(#) and C,(¢). This ends the proof of part (i) of the lemma.

(i) Lemma 2.1 (ii) implies that f(x) is strictly decreasing along a
half-line x,(¢) =x, + #p, t = 0, for any x, € R". Therefore replacing the
initial point x, with another point x, requires one to redefine the vectors
Yis--+5 Yy as the orthonormal basis for the subspace {Vf(x,)}* . Thus all
results proved for x, remain valid for the function G,(¢) = f(x, + ip +
Y’¢) and respectively modified functions #(¢, £), F(t) and C(¢), and the
linear manifold H(¢). Furthermore, since C N Dy = J, Lemma 3.1 im-
plies that the curve C(¢) is uniquely defined. |

4. EXAMPLE AND CONCLUDING REMARKS

We will illustrate the method proposed in Section 3 with the example of
the problem with two constraints in two variables.
Let us consider the problem

min f(x) =

x,+1
subject to
fi(x) = —x; +x, <1
fo(x) = —x, < =2
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We have p = (1,0)7, x, = (0,0)7, V£(0) = (—1,0)7, Y = (0, 1). Therefore,

1 1
min Z(¢,§) = min —71n(1+t—§)—7ln(§—2) ,

greR"! ¢ \t+1
1 1
(1+t—-¢&) 1(6-2)

V. 2(1, &) = 0.

The latter equation yields

1
E=h(t) = 5(r+ 3).

Finally C(¢) = (¢, 2(t + 3))7, which yields lim, _, , Z(¢, h(¢)) = 0 and con-
sequently inf, _ ,(1/(x; + 1)) = 0.

Concluding, the aim of this paper is to show that for a convex program
(1.1) with unattained infimum and for a given initial feasible point, there
exists a unique parametrized curve C(¢), along which the logarithmic
penalty function converges to the infimum of the function f(x) over the
region %. We show that if all functions defining the program are analytic,
then C(¢) is an analytic function as well. We also prove that an approxi-
mate solution to the degenerate program (1.1) can be determined by
solving the auxiliary parametric problem, defined in Lemma 2.5, for a
sufficiently large value of the parameter ¢.

The performance of the proposed method was investigated on a number
of convex constrained problems with unattained minimum. The application
of the classical methods, such as the steepest descent or the gradient
projection methods, fails to provide a sequence convergent to the con-
strained infimum in these problems. The results obtained for all tested
problems seem to be promising, which suggests that the method proposed
in this paper deserves more study both from the theoretical and the
computational points of view.
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