
Journal of Advanced Research (2012) 3, 149–165

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Cairo University

Journal of Advanced Research
ORIGINAL ARTICLE
An alternative differential evolution algorithm

for global optimization
Ali W. Mohamed a,*, Hegazy Z. Sabry b, Motaz Khorshid c
a Department of Operations Research, Institute of Statistical Studies and Research, Cairo University, Giza, Egypt
b Department of Mathematical Statistics, Institute of Statistical Studies and Research, Cairo University, Giza, Egypt
c Department of Decision Support, Faculty of Computers and Information, Cairo University, Giza, Egypt
Received 20 November 2010; revised 12 June 2011; accepted 21 June 2011
Available online 23 July 2011
*

E-

20

El

Pe

do
KEYWORDS

Differential evolution;

Directed mutation;

Global optimization;

Modified BGA mutation;

Dynamic non-linear

crossover
Corresponding author. Tel.:

mail address: aliwagdy@gma

90-1232 ª 2011 Cairo Un

sevier B.V. All rights reserve

er review under responsibilit

i:10.1016/j.jare.2011.06.004

Production and h
+20 105

il.com (A

iversity.

d.

y of Cair

osting by E
Abstract The purpose of this paper is to present a new and an alternative differential evolution

(ADE) algorithm for solving unconstrained global optimization problems. In the new algorithm,

a new directed mutation rule is introduced based on the weighted difference vector between the best

and the worst individuals of a particular generation. The mutation rule is combined with the basic

mutation strategy through a linear decreasing probability rule. This modification is shown to

enhance the local search ability of the basic DE and to increase the convergence rate. Two new scal-

ing factors are introduced as uniform random variables to improve the diversity of the population

and to bias the search direction. Additionally, a dynamic non-linear increased crossover probability

scheme is utilized to balance the global exploration and local exploitation. Furthermore, a random

mutation scheme and a modified Breeder Genetic Algorithm (BGA) mutation scheme are merged to

avoid stagnation and/or premature convergence. Numerical experiments and comparisons on a set

of well-known high dimensional benchmark functions indicate that the improved algorithm outper-

forms and is superior to other existing algorithms in terms of final solution quality, success rate,

convergence rate, and robustness.
ª 2011 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
157657.

.W. Mohamed).

Production and hosting by

o University.

lsevier
Introduction

For several decades, global optimization has received wide

attention from researchers, mathematicians as well as profes-
sionals in the field of Operations Research (OR) and Computer
Science (CS). Nevertheless, global optimization problems, in

almost fields of research and real-world applications, have
many different challenging features such as high nonlinearity,
non-convexity, non-continuity, non-differentiability, and/or
multimodality. Therefore, classical nonlinear optimization

techniques have difficulties or have always failed in dealing with
complex high dimensional global optimization problems. As a

https://core.ac.uk/display/82680822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aliwagdy@gmail.com
http://dx.doi.org/10.1016/j.jare.2011.06.004
http://dx.doi.org/10.1016/j.jare.2011.06.004

150 A.W. Mohamed et al.
result, the challenges mentioned above have motivated

researchers to design and improve many kinds of efficient,
effective and robust algorithms that can reach a high quality
solution with low computational cost and high convergence
performance. In the past few years, the interaction between

computer science and operations research has become very
important in order to develop intelligent optimization tech-
niques that can deal with such complex problems. Conse-

quently, Evolutionary Algorithms (EAs) represent the
common area where the two fields of OR and CS interact.
EAs have been proposed to meet the global optimization chal-

lenges [1]. The structure of (EA) has been inspired from the
mechanisms of natural evolution. Generally, the process of
(EAs) is based on the exploration and the exploitation of the

search space through selection and reproduction operators
[2]. Differential Evolution (DE) is a stochastic population-
based search method, proposed by Storn and Price [3]. DE is
considered the most recent EAs for solving real-parameter opti-

mization problems [4]. DE has many advantages including sim-
plicity of implementation, is reliable, robust, and in general is
considered an effective global optimization algorithm [5].

Therefore, it has been used in many real-world applications
[6], such as in the chemical engineering field [7], machine intel-
ligence applications [8], pattern recognition studies [9], signal

processing implementations [10], and in the area of mechanical
engineering design [11]. In a recent study [12], DE was evalu-
ated and compared with the Particle Swarm Optimization
(PSO) technique and other EAs in order to test its capability

as a global search technique. The comparison was based on
34 benchmark problems and DE outperformed other recent
algorithms. DE, nevertheless, also has the shortcomings of all

other intelligent techniques. Firstly, while the global explora-
tion ability of DE is considered adequate, its local exploitation
ability is regarded weak and its convergence velocity is too low

[13]. Secondly, DE suffers from the problem of premature
convergence, where the search process may be trapped in local
optima in multimodal objective function and losing its diversity

[6]. Additionally, it also suffers from the stagnation problem,
where the search process may occasionally stop proceeding
toward the global optimum even though the population has
not converged to a local optimum or any other point [14].

Moreover, like other evolutionary algorithms, DE performance
decreases as search space dimensionality increases [6]. Finally,
DE is sensitive to the choice of the control parameters and it

is difficult to adjust them for different problems [15]. Therefore,
in order to improve the global performance of basic DE, this
research uses a new directed mutation rule to enhance the local

exploitation ability and to improve the convergence rate of the
algorithm. Two scaling factors are also introduced as uniform
random variables for each trial vector instead of keeping them

as a constant to cover the whole search space. This will advance
the exploration ability as well as bias the search in the direction
of the best vector through generations. Furthermore, a dy-
namic non-linear increased crossover probability scheme is pro-

posed to balance exploration and exploitation abilities. In order
to avoid the stagnation and the premature convergence issues
through generations, modified BGA mutation and random

mutation are embedded into the proposed ADE algorithm.
Numerical experiments and comparisons conducted in this
research effort on a set of well-known high dimensional bench-

mark functions indicate that the proposed alternative differen-
tial evolution (ADE) algorithm is superior and competitive to
other existing recent memetic, hybrid, self-adaptive and basic

DE algorithms particularly in the case of high dimensional
complex optimization problems. The remainder of this paper
is organized as follows. The next section reviews the related
work. Then, the standard DE algorithm and the proposed

ADE algorithm are introduced. Next, the experimental results
are discussed and the Final section concludes the paper.
Related work

Indeed, due to the above drawbacks, many researchers have

done several attempts to overcome these problems and to im-
prove the overall performance of the DE algorithm. The choice
of DE’s control variables has been discussed by Storn and

Price [3] who suggested a reasonable choice for NP (population
size) between 5D and 10D (D being the dimensionality of the
problem), and 0.5 as a good initial value of F (mutation scaling

factor). The effective value of F usually lies in the range be-
tween 0.4 and 1. As for the CR (crossover rate), an initial good
choice of CR = 0.1; however, since a large CR often speeds
convergence, it is appropriate to first try CR as 0.9 or 1 in or-

der to check if a quick solution is possible. After many exper-
imental analysis, Gämperle et al. [16] recommended that a
good choice for NP is between 3D and 8D, with F= 0.6

and CR lies in [0.3,0.9]. On the contrary, Rönkkönen et al.
[17] concluded that F= 0.9 is a good compromise between
convergence speed and convergence probability. Additionally,

CR depends on the nature of the problem, so CR with a value
between 0.9 and 1 is suitable for non-separable and multi-
modal objective functions, while a value of CR between 0
and 0.2 when the objective function is separable. Due to the

contradiction claims that can be seen from the literature, some
techniques have been designed to adjust control parameters in
a self-adaptive or adaptive manner instead of using manual

tuning. A Fuzzy Adaptive Differential Evolution (FADE)
algorithm was proposed by Liu and Lampinen [18]. They
introduced fuzzy logic controllers to adjust crossover and

mutation rates. Numerical experiments and comparisons on
a set of well known benchmark functions showed that the
FADE Algorithm outperformed basic DE algorithm. Like-

wise, Brest et al. [19] described an efficient technique for self-
adapting control parameter settings. The results showed that
their algorithm is better than, or at least comparable to, the
standard DE algorithm, (FADE) algorithm and other evolu-

tionary algorithms from the literature when considering the
quality of the solutions obtained. In the same context, Salman
et al. [20] proposed a Self-adaptive Differential Evolution

(SDE) algorithm. The experiments conducted showed that
SDE generally outperformed DE algorithms and other evolu-
tionary algorithms. On the other hand, hybridization with

other heuristics or local different algorithms is considered as
the new direction of development and improvement. Noman
and Iba [13] recently proposed a new memetic algorithm (DEa-

hcSPX), a hybrid of crossover-based adaptive local search pro-
cedure and the standard DE algorithm. They also investigated
the effect of the control parameter settings in the proposed
memetic algorithm and realized that the optimal values for

control parameters are F= 0.9, CR = 0.9 and NP =D. The
presented experimental results demonstrated that (DEahcSPX)
performs better, or at least comparable to classical DE algo-

rithm, local search heuristics and other well-known evolution-

An alternative differential evolution algorithm for global optimization 151
ary algorithms. Similarly, Xu et al. [21] suggested the NM-DE

algorithm, a hybrid of Nelder–Mead simplex search method
and basic DE algorithm. The comparative results showed that
the proposed new hybrid algorithm outperforms some existing
algorithms including hybrid DE and hybrid NM algorithms in

terms of solution quality, convergence rate and robustness.
Additionally, the stochastic properties of chaotic systems are
used to spread the individuals in the search spaces as much

as possible [22]. Moreover, the pattern search is employed to
speed up the local exploitation. Numerical experiments on
benchmark problems demonstrate that this new method

achieved an improved success rate and a final solution with less
computational effort. Practically, from the literature, it can be
observed that the main modifications, improvements and

developments on DE focus on adjusting control parameters
in self-adaptive manner and/or hybridization with other local
search techniques. However, a few enhancements have been
implemented to modify the standard mutation strategies or

to propose new mutation rules so as to enhance the local
search ability of DE or to overcome the problems of stagna-
tion or premature convergence [6,23,24]. As a result, proposing

new mutations and adjusting control parameters are still an
open challenge direction of research.

Methodology

The differential evolution (DE) algorithm

A bound constrained global optimization problem can be de-

fined as follows [21]:

min fðXÞ; X ¼ ½x1; . . . ; xn�; S:t: xj 2 ½aj; bj�; j ¼ 1; 2; . . . n;

ð1Þ

where f is the objective function,X is the decision vector consist-

ing of n variables, and aj and bj are the lower and upper bounds
for each decision variable, respectively. Virtually, there are sev-
eral variants of DE [3]. In this paper, we use the scheme which

can be classified using the notation as DE/rand/1/bin strategy
[3,19]. This strategy is most often used in practice. A set of D
optimization parameters is called an individual, which is repre-

sented by aD-dimensional parameter vector. A population con-
sists of NP parameter vectors xG

i , i = 1, 2, . . ., NP. G denotes
one generation. NP is the number of members in a population.

It is not changed during the evolution process. The initial pop-
ulation is chosen randomly with uniform distribution in the
search space. DE has three operators: mutation, crossover and
selection. The crucial idea behind DE is a scheme for generating

trial vectors. Mutation and crossover operators are used to gen-
erate trial vectors, and the selection operator then determines
which of the vectors will survive into the next generation [19].

Initialization

In order to establish a starting point for the optimization
process, an initial population must be created. Typically, each
decision parameter in every vector of the initial population is as-
signed a randomly chosen value from the boundary constraints:

x0
ij ¼ aj þ randj � ðbj � ajÞ ð2Þ

where randj denotes a uniformly distributed number
between [0,1], generating a new value for each decision param-
eter. aj and bj are the lower and upper bounds for the jth deci-

sion parameter, respectively.

Mutation

For each target vector xG
i , a mutant vector vGþ1i is generated

according to the following:

vGþ1i ¼ xG
r1
þ F � ðxG

r2
� xG

r3
Þ; r1–r2–r3–i ð3Þ

with randomly chosen indices and r1, r2, r3 e {1, 2, . . ., NP}.
Note that these indices must be different from each other

and from the running index i so that NP must be at least four.

F is a real number to control the amplification of the difference
vector ðxG

r2
� xG

r3
Þ. According to Storn and Price [4], the range

of F is in [0,2]. If a component of a mutant vector goes off the

search space, then the value of this component is generated
anew using (2).

Crossover

The target vector is mixed with the mutated vector, using the
following scheme, to yield the trial vector uGþ1i :

uGþ1ij ¼
vGþ1ij ; randðjÞ 6 CR or j ¼ randnðiÞ;
xG
ij ; randðjÞ > CR and j–randnðiÞ;

(
ð4Þ

where j = 1, 2, . . ., D, rand(j) e [0, 1] is the jth evaluation of a
uniform random generator number. CR e [0, 1] is the crossover
probability constant, which has to be determined by the user.

rand n(i) e {1, 2, . . ., D} is a randomly chosen index which
ensures that uGþ1i gets at least one element from vGþ1i ; otherwise
no new parent vector would be produced and the population

would not alter.

Selection

DE adapts a greedy selection strategy. If and only if the trial
vector uGþ1i yields a better fitness function value than xG

i , then
uGþ1i is set to xGþ1

i . Otherwise, the old vector xG
i is retained. The

selection scheme is as follows (for a minimization problem):

xGþ1
i ¼

uGþ1i ; fðuGþ1i Þ < fðxG
i Þ;

xG
i ; fðuGþ1i ÞP fðxG

i Þ:

�
ð5Þ
An alternative differential evolution (ADE) algorithm

All evolutionary algorithms, includingDE, are stochastic popu-
lation-based searchmethods. Accordingly, there is no guarantee

to reach the global optimal solution all the times. Nonetheless,
adjusting control parameters such as the scaling factor, the
crossover rate and the population size, alongside developing
an appropriate mutation scheme, can considerably improve

the search capability ofDE algorithms and increase the possibil-
ity of achieving promising and successful results in complex and
large scale optimization problems. Therefore, in this paper, four

modifications are introduced in order to significantly enhance
the overall performance of the standard DE algorithm.

Modification of mutations

A success of the population-based search algorithms is based

on balancing two contradictory aspects: global exploration

152 A.W. Mohamed et al.
and local exploitation [6]. Moreover, the mutation scheme

plays a vital role in the DE search capability and the conver-
gence rate. However, even though the DE algorithm has good
global exploration ability, it suffers from weak local exploita-
tion ability as well as its convergence velocity is still too low as

the region of the optimal solution is reached [23]. Obviously,
from the mutation equation (3), it can be observed that three
vectors are chosen at random for mutation and the base vector

is then selected at random among the three. Consequently, the
basic mutation strategy DE/rand/1/bin is able to maintain
population diversity and global search capability, but it slows

down the convergence of DE algorithms. Hence, in order to
enhance the local search ability and to accelerate the conver-
gence of DE techniques, a new directed mutation scheme is

proposed based on the weighted difference vector between
the best and the worst individual at a particular generation.
The modified mutation scheme is as follows:

vGþ1i ¼ xG
r þ Fl � ðxG

b � xG
wÞ ð6Þ

where xG
r is a random chosen vector and xG

b and xG
w are the best

and worst vectors in the entire population, respectively. This
modification is intended to keep the random base vector xG

r1

in the mutation equation (3) as it is and the remaining two vec-
tors are replaced by the best and worst vectors in the entire

population to yield the difference vector. In fact, the global
solution can be easily reached if all vectors follow the same
direction of the best vector besides they also follow the oppo-

site direction of the worst vector. Thus, the proposed directed
mutation favors exploitation since all vectors of population are
biased by the same direction but are perturbed by the different

weights as discussed later on. As a result, the new mutation
rule has better local search ability and faster convergence rate.
It is worth mentioning that the proposed mutation is inspired

from nature and human behavior. Briefly, although all the
people in a society are different in many ways such as aims,
cultures, thoughts and so on, all of them try to significantly im-
prove themselves by following the same direction of the other

successful and superior people and similarly they tend to avoid
the direction of failure in whatever field by competition and/or
co-operation with others. The new mutation strategy is embed-

ded into the DE algorithm and it is combined with the basic
mutation strategy DE/rand/1/bin through a linear decreasing
probability rule as follows:

If

uð0; 1ÞP 1� G

GEN

� �� �
ð7Þ

Then

vGþ1i ¼ xG
r þ Fl � ðxG

b � xG
wÞ ð8Þ

Else

vGþ1i ¼ xG
r1 þ Fg � ðxG

r2
� xG

r3
Þ ð9Þ

where Fl and Fg are two uniform random variables, u(0, 1) re-

turns a real number between 0 and 1 with uniform random
probability distribution and G is the current generation num-
ber, and GEN is the maximum number of generations. From
the above scheme, it can be realized that for each vector, only

one of the two strategies is used for generating the current trial
vector, depending on a uniformly distributed random value

within the range (0, 1). For each vector, if the random value
is smaller than ð1� G

GEN
Þ; then the basic mutation is applied.

Otherwise, the proposed one is performed. Of course, it can

be seen that, from Eq. (7), the probability of using one of
the two mutations is a function of the generation number, so
ð1� G

GEN
Þ can be gradually changed form 1 to 0 in order to

favor, balance, and combine the global search capability with

local search tendency.
The strength and efficiency of the above scheme is based on

the fact that, at the beginning of the search, two mutation rules

are applied but the probability of the basic mutation rule to be
used is greater than the probability of the new strategy. So, it
favors exploration. Then, in the middle of the search, through

generations, the two rules are approximately used with the
same probability. Accordingly, it balances the search direction.
Later, two mutation rules are still applied but the probability

of the proposed mutation to be performed is greater than the
probability of using the basic one. Finally, it enhances exploi-
tation. Therefore, at any particular generation, both explora-
tion and exploitation aspects are done in parallel. On the

other hand, although merging a local mutation scheme into
a DE algorithm can enhance the local search ability and speed
up the convergence velocity of the algorithm, it may lead to a

premature convergence and/or to get stagnant at any point of
the search space especially with high dimensional problems
[6,24]. For this reason, random mutation and a modified

BGA mutation are merged and incorporated into the DE algo-
rithm to avoid both cases at early or late stages of the search
process. Generally, in order to perform random mutation on
a chosen vector xi at a particular generation, a uniform ran-

dom integer number jrand between [1, D] is first generated
and than a real number between (bj � aj) is calculated. Then,
the jrand value from the chosen vector is replaced by the new

real number to form a new vector x0. The random mutation
can be described as follows.

x0j ¼
aj þ randjðbj � ajÞ j ¼ jrand;

xj otherwise;

�
j ¼ 1; . . . ;D ð10Þ

Therefore, it can be deduced from the above equation that ran-
dom mutation increases the diversity of the DE algorithm as

well decreases the risk of plunging into local point or any other
point in the search space. In order to perform BGA mutation,
as discussed Mühlenbein and Schlierkamp Voosen [25], on a

chosen vector xi at a particular generation, a uniform random
integer number jrand between [1, D] is first generated and then a
real number between 0.1 Æ (bj � aj) Æ a is calculated. Then, the

jrand value from the chosen vector is replaced by the new real
number to form a new vector x0i: The BGA mutation can be
described as follows.

x0j ¼
xj þ 0:1 � ðbj � ajÞ � a j ¼ jrand;

xj otherwise;

�
j ¼ 1; . . . ;D ð11Þ

The + or � sign is chosen with probability 0.5. a is computed

from a distribution which prefers small values. This is realized
as follows:

a ¼
X15
k¼0

ak � 2�k; ak 2 f0; 1g ð12Þ

An alternative differential evolution algorithm for global optimization 153
Before mutation, we set ai = 0. Afterward, each ai is mutated

to 1 with probability pa = 1/16. Only ak contributes to the sum
as in Eq. (12). On average, there will be just one ak with value
1, say am, then a is given by a = 2�m. In this paper, the mod-

ified BGA mutation is given as follows:

x0j ¼
xj � randj � ðbj � ajÞ � a j ¼ jrand;

xj otherwise;

�
j ¼ 1; . . . ;D ð13Þ

where the factor of 0.1 in Eq. (11) is replaced by a uniform ran-
dom number in (0, 1], because the constant setting of
0.1 Æ (bj � aj) is not suitable. However, the probabilistic setting

of randj Æ (bj - aj) enhances the local search capability with small
random numbers besides it still has an ability to jump to an-
other point in the search space with large random numbers so
as to increase the diversity of the population. Practically, no

vector is subject to both mutations in the same generation,
and only one of the above two mutations can be applied with
the probability of 0.5. However, both mutations can be per-

formed in the same generation with two different vectors.
Therefore, at any particular generation, the proposed algo-
rithm has the chance to improve the exploration and exploita-

tion abilities. Furthermore, in order to avoid stagnation as well
as premature convergence and to maintain the convergence
rate, a newmechanism for each solution vector is proposed that

satisfies the following condition: if the difference between two
successive objective function values for any vector except the
best one at any generation is less than or equal a predetermined
level d for predetermined allowable number of generations

K, then one of the two mutations is applied with equal proba-
bility of (0.5). This procedure can be expressed as follows:

If jfc � fpj 6 d for K generations; then ð14Þ

If ðuð0; 1ÞP 0:5Þ, then

x0j ¼
aj þ randj � ðbj � ajÞ j ¼ jrand;

xj otherwise;

�
j ¼ 1; . . . ;D ðRandom mutationÞ

Else

x0j ¼
xj � randj � ðbj � ajÞ � a j ¼ jrand;

xj otherwise;

�
j ¼ 1; . . . ;DðModified BGA mutationÞ

where fc and fp indicate current and previous objective function
values, respectively.After many experiments, in order to make

a comparison with other algorithms with 30 dimensions, we
observed that d =E�07 and K= 75 generations are the best
settings for these two parameters over all benchmark problems

and these values seem to maintain the convergence rate as well
as avoid stagnation and/or premature convergence in case they
occur. Indeed, these parameters were set to their mean values

as we observed that if d and K are approximately less than
or equal to E0�5 and 50, respectively then the convergence
rate deteriorated for some functions. On the other hand, if d
and K are nearly greater than or equal E�10 and 100, respec-
tively, then it could be stagnated. For this reason, the mean
values of E�07 for d and 75 for K were selected for all dimen-
sions as default values. In this paper, these settings were fixed

for all dimensions without tuning them to their optimal values
that may attain good solutions better than the current results
and improve the performance of the algorithm over all the

benchmark problems.
Modification of scaling factor

In the mutation Eq. (3), the constant of differentiation F is a
scaling factor of the difference vector. It is an important

parameter that controls the evolving rate of the population.
In the original DE algorithm [4], the constant of differentiation
F was chosen to be a value in [0, 2]. The value of F has a con-

siderable influence on exploration: small values of F lead to
premature convergence, and high values slow down the search
[26]. However, to the best of our knowledge, there is no opti-
mal value of F that has been derived based on theoretical and/

or systematic study using all complex benchmark problems. In
this paper, two scaling factors Fl and Fg are proposed for the
two different mutation rules, where Fl and Fg indicate scaling

factor for the local mutation scheme and the scaling factor
for global mutation scheme, respectively. For the difference
vector in the mutation equation (8), we can see that it is a di-

rected difference vector from the worst to the best vectors in
the entire population. Hence, Fl must be a positive value in or-
der to bias the search direction for all trial vectors in the same

direction. Therefore, Fl is introduced as a uniform random var-
iable in (0, 1). Instead of keeping F constant during the search
process, Fl is set as a random variable for each trial vector so as
to perturb the random base vector by different directed

weights. Therefore, the new directed mutation resembles the
concept of gradient as the difference vector is oriented from
the worst to the best vectors [26]. On the other hand, for the

difference vector in the mutation equation (9), we can see that
it is a pure random difference as the objective function values
are not used. Accordingly, the best direction that can lead to

good exploration is unknown. Therefore, in order to advance
the exploration and to cover the whole search space Fg is intro-
duced as a uniform random variable in the interval
(�1, 0) [(0, 1), unlike keeping it as a constant in the range

[0, 2] as recommended by Feoktistov [26]. Therefore, the new
enlarger random variable can perturb the random base vector
by different random weights with opposite directions. Hence,

Fg is set to be random for each trial vector. As a result, the pro-
posed evolutionary algorithm is still a random search that can
enhance the global exploration performance as well as ensure

the local search ability. The illustration of the process of the
basic mutation rule, the new directed mutation rule and mod-
ified basic mutation rule with the constant scaling factor and

the two new scaling factors are illustrated in Fig. 1(a)–(c).
From this figure it can be clearly noticed that i is the mutation
vector generated for individual xi using the associated muta-
tion constant scaling factor F in (a). However, i is the new

scaled directed mutation vector generated for individual xi
using the associated mutation factor Fl in (b). Moreover, i is
the mutation vector generated for individual xi using the asso-

ciated mutation factor Fg.

Modification of the crossover rate

The crossover operator, as in Eq. (4), shows that the constant
crossover (CR) reflects the probability with which the trial
individual inherits the actual individual’s genes [26]. The con-

stant crossover (CR) practically controls the diversity of the
population. If the CR value is relatively high, this will increase
the population diversity and improve the convergence speed.

Nevertheless, the convergence rate may decrease and/or the
population may prematurely converge. On the other hand,

Fig. 1 (a) An illustration of the DE/rand/1/bin a basic DE mutation scheme in two-dimensional parametric space. (b) An illustration of

the new directed mutation scheme in two-dimensional parametric space (local exploitation). (c) An illustration of the modified DE/rand/1/

bin basic DE mutation scheme in two-dimensional parametric space (global exploration).

154 A.W. Mohamed et al.

An alternative differential evolution algorithm for global optimization 155
small values of CR increase the possibility of stagnation and

slow down the search process. Additionally, at the early stage
of the search, the diversity of the population is large because
the vectors in the population are completely different from
each other and the variance of the whole population is large.

Therefore, the CR must take a small value in order to avoid
the exceeding level of diversity that may result in premature
convergence and slow convergence rate. Then, through gener-

ations, the variance of the population will decrease as the vec-
tors in the population become similar. Thus, in order to
advance diversity and increase the convergence speed, the

CR must be a large value. Based on the above analysis and dis-
cussion, and in order to balance between the diversity and the
convergence rate or between global exploration ability and

local exploitation tendency, a dynamic non-linear increased
crossover probability scheme is proposed as follows:

CR ¼ CRmax þ ðCRmin � CRmaxÞ � ð1� G=GENÞk ð16Þ

where G is the current generation number, GEN is the maxi-
mum number of generations, CRmin and CRmax denote the

minimum and maximum value of the CR, respectively, and k
is a positive number. The optimal settings for these parameters
are CRmin = 0.1, CRmax = 0.8 and k= 4. The algorithm

starts at G= 0 with CRmin = 0.1 but as G increases toward
GEN, the CR increases to reach CRmax = 0.8. As can be seen
from Eq. (16), CRmin = 0.1 is considered as a good initial rate
in order to avoid high level of diversity in the early stage as dis-

cussed earlier and in Storn and Price [4]. Additionally,
CRmax = 0.8 is the maximum value of crossover that can bal-
ance between exploration and exploitation. However, beyond

this value, mutation vector Gþ1
i has more contribution to the

trial vector uGþ1i . Consequently, the target vector xG
i is de-

stroyed greatly and the individual structure with better func-

tion values is destroyed rapidly. On the other hand, k
balances the cross over rate which results in changing the
CR from a small value to a large value in a dramatic curve.

k was set to its mean value as it was observed that if it is
approximately less than or equal to 1 or 2 then the diversity
of the population deteriorated for some functions and it might
have caused stagnation. On the other hand, if it is nearly great-

er than 6 or 7 it could cause premature convergence as the
diversity sharply increases. The mean value of 4 was thus se-
lected for dimensions 30 with all benchmark problems and is

also fixed for all dimensions as the default value.
Results and discussions

In order to evaluate the performance and show the efficiency
and superiority of the proposed algorithm, 10 well-known

benchmark problems are used. The definition, the range of
the search space, and the global minimum of each function
are presented in Appendix 1 [13]. Furthermore, to evaluate
and compare the proposed ADE algorithm with the recent dif-

ferential evolution algorithms, the proposed ADE was com-
pared with Basic DE and memetic DEahcSPX algorithm
proposed by Noman and Iba [13], and the recent hybrid

NM-DE algorithm proposed by Xu et al. [21]. Secondly, the
proposed ADE was tested and compared with the recent
memetic DEahcSPX algorithm and Basic DE against the

growth of dimensionality. Thirdly, the performance of the pro-
posed ADE algorithm was studied by comparing it with other
memetic algorithms proposed by Noman and Iba [13]. Finally,

the proposed ADE algorithm was compared with two well-
known self-adaptive evolutionary algorithms, namely CEP
and FEP proposed by Yao et al. [27] and with the recent
self-adaptive jDE and SDE1 algorithms proposed by Brest

et al. [19] and Salman et al. [20], respectively, as well as with
another hybrid CPDE1 algorithm proposed by Wang and
Zhang [22]. The best results are marked in bold for all prob-

lems. The experiments were carried out on an Intel Pentium
core 2 due processor 2200 MHz and 2 GB-RAM. The algo-
rithms were coded and realized in Matlab language using Mat-

lab version 8. The description of the ADE algorithm is
demonstrated in Fig. 2. These various algorithms are listed
in Table 1.

Comparison of ADE with DEahcSPX, basic DE and NM-DE

algorithms

In order to make a fair comparison for evaluating the perfor-
mance of the algorithms, the performance measures and exper-
imental setup [13,21] were used. The comparison was

performed on the benchmark problems, listed in Appendix 1,
at dimension D= 30, where D is the dimension of the prob-
lem. The maximum number of function evaluations was

10000 · D. For each problem, all of the above algorithms are
independently run 50 times. The population size NP was set
to D (NP = 30). Moreover, an accuracy level e is set as
1.0E�06. That is, a test is considered as a successful run if

the deviation between the obtained function value by the algo-
rithm and the theoretical optimal value is less than the accu-
racy level [21]. For all benchmark problems at dimension

D= 30, the resulted average function values and the standard
deviation values of ADE, basic DE, DEahcSPX and NM-DE
algorithms are listed in Table 2(a). Furthermore, the average

function evaluation times and the time of successful run (data
within parenthesis) of these algorithms are presented in Table
2(b). Finally, Fig. 3 presents the convergence characteristics of

ADE in terms of the average fitness values of the best vector
found during generations for selected benchmark problems.
From Table 2(a), it is clear that the proposed ADE algorithm
is superior to all other competitor algorithms in terms of aver-

age values and standard deviation. Furthermore, the results
showed that ADE algorithm outperformed the basic DE
algorithm in all functions. Moreover, it also outperformed

DEahcSPX algorithm in all functions except for Ackley and
Salomon functions (they are approximately the same). Addi-
tionally, the ADE algorithm outperformed the NM-DE

algorithm in all functions except for the Sphere function. It
is worth mentioning that the ADE algorithm considerably im-
proves the final solution quality and it is extremely robust since

it has a small standard deviation on all functions. From Table
2(b), it can be observed that the ADE algorithm costs much
less computational effort than the basic DE and DEahcSPX
algorithms while the ADE implementation requires more com-

putational effort than NM-DE algorithm. Therefore, as a low-
er number of function evaluations corresponds to a faster
convergence [6], the NM-DE algorithm is the fastest one

among all competitor algorithms. However, it clearly suffered
from premature convergence, since it absolutely did not
achieve the accuracy level in all runs with Rastrigin, Schwefel,

Salomon and Whitley functions. Additionally, the time of suc-
cessful runs of the NM-DE and DEahcSPX algorithms was

Fig. 2 Description of ADE algorithm.

Table 1 The list of various algorithms in this paper.

Algorithm Reference

An alternative differential evolution algorithm for global optimization (ADE) This paper

Standard differential evolution (DE) [13]

Accelerating differential evolution using an adaptive local search (DEahcSPX) [13]

Enhancing differential evolution performance with local search for high dimensional function optimization (DEfirSPX) [13]

Accelerating differential evolution using an adaptive local search (DExhcSPX) [13]

An effective hybrid algorithm based on simplex search and differential evolution for global optimization(NM-DE) [21]

Evolutionary programming made faster (FEP,CEP) [27]

Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems (jDE) [19]

Empirical analysis of self-adaptive differential evolution (SDE1) [20]

Global optimization by an improved differential evolutionary algorithm (CPDE1) [22]

156 A.W. Mohamed et al.

Table 2 (a) Comparison of the ADE, basic DE, DEahcSPX and NM-DE Algorithms D = 30 and population size = 30. (b)

Comparison of the ADE, basic DE, DEahcSPX and NM-DE Algorithms in terms of average evaluation times and time of successful

runs D= 30 and population size = 30.

Function DE [13] DEahcSPX [13] NM-DE [21] ADE

(a)

Sphere 5.73E�17 ± 2.03E�16 1.75E�31 ± 4.99E�31 4.05E�299 ± 0.00E+00 2.31E�149 ± 1.25E�148
Rosenbrock 5.20E+01 ± 8.56E+01 4.52E+00 ± 1.55E+01 9.34E+00 ± 9.44E+00 4.27E�11 ± 2.26E�10
Ackley 1.37E�09 ± 1.32E�09 2.66E�15 ± 0.00E+00 8.47E�15 ± 2.45E�15 2.66E�15 ± 0.00E+00

Griewank 2.66E�03 ± 5.73E�03 2.07E�03 ± 5.89E�03 8.87E�04 ± 6.73E�03 0.00E+00 ± 0.00E+00

Rastrigin 2.55E+01 ± 8.14E+00 2.14E+01 ± 1.23E+01 1.41E+01 ± 5.58E+00 0.00E+00 ± 0.00E+00

Schwefel 4.90E+02 ± 2.34E+02 4.70E+02 ± 2.96E+02 3.65E+03 ± 7.74E+02 0.00E+00 ± 0.00E+00

Salomon 2.52E�01 ± 4.78E�02 1.80E�01 ± 4.08E�02 1.11E+00 ± 1.91E�01 1.93E�01 ± 2.39E�02
Whitely 3.10E+02 ± 1.07E+02 3.06E+02 ± 1.10E+02 4.18E+02 ± 7.06E+01 2.65E+01 ± 2.97E+01

Penalized 1 4.56E�02 ± 1.31E�01 2.07E�02 ± 8.46E�02 8.29E�03 ± 2.84E�02 1.58E�32 ± 7.30E�34
Penalized 2 1.44E�01 ± 7.19E�01 1.71E�31 ± 5.35E�31 2.19E�04 ± 1.55E�03 1.77E�32 ± 2.69E�32

(b)

Sphere 148650.8 (50) 87027.4 (50) 8539.4 (50) 15928.8 (50)

Rosenbrock – 299913.0 (2) 74124.9 (40) 189913.8 (50)

Ackley 215456.1 (50) 129211.6 (50) 13574.7 (29) 22589.4 (50)

Griewank 190292.5 (38) 121579.2 (43) 9270.2 (36) 16887.446809 (50)

Rastrigin – – – 62427 (50)

Schwefel – – – 41545.6 (50)

Salomon – – – –

Whitely – – – 82181.538462 (13)

Penalized 1 160955.2 (43) 96149.0 (46) 7634.3 (44) 14685.6 (50)

Penalized 2 156016.9 (48) 156016.9 (50) 7996.1 (42) 16002 (50)

–: None of the algorithms achieved the desired accuracy level e < 10�6.

An alternative differential evolution algorithm for global optimization 157
very close in other functions and they exhibited unstable per-
formance with the predefined level of accuracy. Contrarily,
The ADE algorithm achieved the accuracy level in all 50 runs
with all functions except for Salomon and was the only algo-

rithm that reached the accuracy level in all runs with Rastrigin
and Schwefel problems as well as in many runs with Whitley
function. Moreover, the number of successful runs was also

greatest for the ADE algorithm over all functions. Thus, this
indicates the higher robustness of the proposed algorithm as
compared to other algorithms and also proves the capability

in maintaining higher diversity with an improved convergence
rate. Similarly, consider the convergence characteristics of
selected functions presented in Fig. 3, it is clear that the con-
vergence speed of the ADE algorithm is fast at the early stage

of the optimization process for all functions with different
shapes, complexity and dimensions. Furthermore, the conver-
gence speed is dramatically decreased and its improvement is

found to be significant at the middle and later stages of the
optimization process especially with Sphere and Rosenbrock
functions. Additionally, the convergent figure suggests that

the ADE algorithm can reach the true global solution in all
problems in a fewer number of generations less than the max-
imum predetermined number of generations. Therefore, the

proposed ADE algorithm is proven to be an effective, power-
ful approach for solving unconstrained global optimization
problems. In general, the mean fitness values obtained by the
ADE algorithm show that it has the most significant and effi-

cient exploration and exploitation capabilities. Therefore, it is
concluded that the new CR rule besides the proposed two new
scaling factors greatly balance the two processes. The ADE

algorithm was able to also reach the global optimum and
escape from local ones in all runs in almost all functions. This
indicates the importance of the new directed mutation scheme
as well as the random and modified BGA mutations in improv-
ing the searching process quality and their significance in

advancing exploitation process. On the other hand, in order
to investigate the sensitivity of all algorithms to population
size, the effect of population size on the performance of algo-

rithms is studied with the fixed total evaluation times
(3.0E+05) [21]. The results were reported in Table 3. From
this table, it can be concluded that as the population size

increases, the performance of the basic DE and DEahcSPX
algorithms rapidly deteriorates whereas the performance of
NM-DE algorithm slightly decreases. Additionally, the results
show that the proposed ADE algorithm outperformed the ba-

sic DE and DEahcSPX techniques in all functions by remark-
able difference while it outperformed the NM-DE algorithm in
most test functions, for various population sizes. The perfor-

mance of the ADE algorithm shows relative deterioration with
the growth of population size, which suggests that the ADE
algorithm is more stable and robust on population size.

Scalability comparison of ADE with DEahcSPX and basic DE

algorithms

The performance of most of the evolutionary algorithms
deteriorates with the growth of dimensionality of the search
space [6]. As a result, in order to test the performance of the

ADE, DEahcSPX and basic DE algorithms, the scalability
study was conducted. The benchmark functions were studied
at D = 10, 50, 100, 200 dimensions. The population size was

chosen as NP= 30 for D= 10 dimensions and for all other

0 0.5 1 1.5 2 2.5 3
x 10

5

-200

-150

-100

-50

0

50
Sphere Function

F
it

ne
ss

 (
L

O
G

)

Number of Function Calls

0 0.5 1 1.5 2 2.5 3
x 10

5

-20

-10

0

10

20

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rosenbrock's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-20

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Griewank's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rastrigin's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-6

-4

-2

0

2

4

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Schwefel's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-20

-10

0

10

20

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Whitley's Function

Fig. 3 Average best fitness curves of the ADE algorithm for

selected benchmark functions for D = 30 and population

size = 30.

158 A.W. Mohamed et al.
dimensions, it was selected as NP = D [13]. The resulted

average function values and standard deviation using
10000 · D are listed in Table 4(a). Convergence Figs. 4–7
for D= 10, 50, 100, 200 dimensions, respectively, present
the convergence characteristics of the proposed ADE algo-

rithm in terms of the average fitness values of the best vec-
tor found during generations for selected benchmark
problems. For D = 10 dimensions, the average function

evaluation times and the time of successful run (data within
parenthesis) of these algorithms are presented in Table 4(b).
Similarly, to the previous subsection, the performance of the

basic DE and DEahcSPX algorithms shows completely dete-
rioration with the growth of the dimensionality. From Table
4(a), it can be clearly concluded that the ADE algorithm

outperformed the basic DE and DEahcSPX algorithms by
a significant difference especially with 50, 100, and 200
dimensions and in all functions. Moreover, with these high
dimensions, the ADE algorithm still could reach the global

solution in most functions. As discussed earlier, the perfor-
mance of the ADE algorithm slightly diminishes with the
growth of the dimensionality, while still more stable and ro-

bust for solving problems with high dimensionality. More-
over, consider the convergence characteristics of selected
functions presented in Figs. 4–7; it is clear that the proposed

modifications play a vital role in improving the convergence
speed for most problems in all dimensions. The ADE algo-
rithm has still the ability to maintain its convergence rate,
improve its diversity as well as advance its local tendency

through a search process. Accordingly, it can be deduced
that the superiority and efficiency of the ADE algorithm is
due to the proposed modifications introduced in the previ-

ous sections. From Table 4(b), for D= 10 dimensions, it
can be observed that the ADE algorithm reached the global
solution in all runs in all functions except with the Salomon

function and the time of successful runs was also greatest
for the ADE algorithm over all functions. Moreover, the
ADE implementation costs much less computational efforts

than the basic DE and DEahcSPX algorithms, so ADE
algorithm is the fastest one among all competitor
algorithms.

Comparison of the ADE with DEfirSPX and DExhcSPX
algorithms

The performance of the proposed ADE algorithm was also
compared with two other memetic versions of the DE algo-
rithm, as discussed in Noman and Iba [13]. The comparison

was performed on the same benchmark problems at dimen-
sions D = 30 and population size NP = 30. The average re-
sults of 50 independent runs are reported in Table 5(a). The

average function evaluation times and the time of successful
run (data within parenthesis) of these algorithms are presented
in Table 5(b). The comparison shows the superiority of the
ADE algorithm in terms of average values and standard devi-

ation in all functions. Therefore, the minimum average and
standard deviation values indicate that the proposed ADE
algorithm is of better searching quality and robustness. Addi-

tionally, from Table 5(b), it can be observed that the ADE
algorithm requires less computational effort than the other
two algorithms, so it remained the fastest one besides it still

has the greatest time of successful runs over all functions.

Table 3 Comparison of the ADE, basic DE, DEahcSPX and NM-DE algorithms D= 30 with different population size, after

3.0E+05 function evaluation.

Function DE [13] DEahcSPX [13] NM-DE [21] ADE

Population size = 50

Sphere 2.31E�02 ± 1.92E�02 6.03E�09 ± 6.86E�09 8.46E�307 ± 0.00E+00 1.45E�92 ± 6.11E�92
Rosenbrock 3.07E+02 ± 4.81E+02 4.98E+01 ± 6.22E+01 2.34E+00 ± 1.06E+01 1.76E�09 ± 4.17E�09
Ackley 3.60E�02 ± 1.82E�02 1.89E�05 ± 1.19E�05 8.26E�15 ± 2.03E�15 2.66E�15 ± 0.00E+00

Griewank 5.00E�02 ± 6.40E�02 1.68E�03 ± 4.25E�03 2.12E�03 ± 5.05E�03 0.00E+00 ± 0.00E+00

Rastrigin 5.91E+01 ± 2.65E+01 2.77E+01 ± 1.31E+01 1.54E+01 ± 4.46E+00 0.00E+00 ± 0.00E+00

Schwefel 7.68E+02 ± 8.94E+02 2.51E+02 ± 1.79E+02 3.43E+03 ± 6.65E+02 0.00E+00 ± 0.00E+00

Salomon 8.72E�01 ± 1.59E�01 2.44E�01 ± 5.06E�02 1.16E+00 ± 2.36E�01 1.95E�01 ± 1.97E�02
Whitely 8.65E+02 ± 1.96E+02 4.58E+02 ± 7.56E+01 3.86E+02 ± 8.39E+01 4.93E+01 ± 4.15E+01

Penalized 1 2.95E�04 ± 1.82E�04 1.12E�09 ± 2.98E�09 4.48E�28 ± 1.64E�31 1.59E�32 ± 1.02E�33
Penalized 2 9.03E�03 ± 2.03E�02 4.39E�04 ± 2.20E�03 6.59E�04 ± 2.64E�03 1.50E�32 ± 2.35E�33

Population size = 100

Sphere 3.75E+03 ± 1.14E+03 3.11E+01 ± 1.88E+01 1.58E�213 ± 0.00E+00 1.12E�38 ± 3.16E�38
Rosenbrock 4.03E+08 ± 2.59E+08 1.89E+05 ± 1.47E+05 2.06E+01 ± 1.47E+01 3.57E�5 ± 8.90E�5
Ackley 1.36E+01 ± 1.48E+00 3.23E+00 ± 5.41E�01 8.12E�15 ± 1.50E�15 2.66E�15 ± 0.00E+00

Griewank 3.75E+01 ± 1.26E+01 1.29E+00 ± 1.74E�01 3.45E�04 ± 1.73E�03 0.00E+00 ± 0.00E+00

Rastrigin 2.63E+02 ± 2.79E+01 1.64E+02 ± 2.16E+01 1.24E+01 ± 5.80E+00 0.00E+00 ± 0.00E+00

Schwefel 6.56E+03 ± 4.25E+02 6.30E+03 ± 4.80E+02 3.43E+03 ± 6.65E+02 0.00E+00 ± 0.00E+00

Salomon 5.97E+00 ± 6.54E�01 1.20E+00 ± 2.12E�01 8.30E�01 ± 1.27E�01 1.93E�01 ± 2.39E�2
Whitely 1.29E+14 ± 1.60E+14 3.16E+08 ± 4.48E+08 4.34E+02 ± 5.72E+01 1.72E+02 ± 9.62E+01

Penalized 1 6.94E+04 ± 1.58E+05 2.62E+00 ± 1.31E+00 6.22E�03 ± 2.49E�02 1.57E�32 ± 5.52E�48
Penalized 2 6.60E+05 ± 7.66E+05 4.85E+00 ± 1.59E+00 6.60E�04 ± 2.64E�03 1.35E�32 ± 2.43E�34

Population size = 200

Sphere 4.01E+04 ± 6.26E+03 1.10E+03 ± 2.98E+02 5.05E�121 ± 2.44E�120 1.08E�16 ± 1.19E�16
Rosenbrock 1.53E+10 ± 4.32E+09 1.49E+07 ± 7.82E+06 2.04E+01 ± 8.49E+00 8.70E+00 ± 1.09E+00

Ackley 2.02E+01 ± 2.20E�01 9.11E+00 ± 7.81E�01 7.83E�15 ± 1.41E�15 5.29E�10 ± 2.53E�10
Griewank 3.73E+02 ± 6.03E+01 1.08E+01 ± 2.02E+00 3.45E�04 ± 1.73E�03 1.07E�15 ± 1.78E�15
Rastrigin 3.62E+02 ± 2.12E+01 2.05E+02 ± 1.85E+01 1.23E+01 ± 6.05E+00 2.93E�01 ± 5.11E�01
Schwefel 6.88E+03 ± 2.55E+02 6.72E+03 ± 3.24E+02 4.61E+03 ± 6.73E+02 0.00E+00 ± 0.00E+00

Salomon 1.34E+01 ± 8.41E�01 3.25E+00 ± 4.55E�01 6.36E�01 ± 9.85E�02 1.94E�01 ± 2.14E�02
Whitely 2.29E+16 ± 1.16E+16 5.47E+10 ± 6.17E+10 4.16E+02 ± 5.40E+01 3.20E+02 ± 4.61E+01

Penalized 1 2.44E+07 ± 7.58E+06 9.10E+00 ± 2.42E+00 4.48E�28 ± 1.55E�31 5.68E�17 ± 1.36E�16
Penalized 2 8.19E+07 ± 1.99E+07 6.18E+01 ± 6.30E+01 4.29E�28 ± 2.59E�31 2.19E�16 ± 3.65E�16

Population size = 300

Sphere 1.96E+04 ± 2.00E+03 6.93E+02 ± 1.34E+02 5.55E�86 ± 7.59E�86 3.51E�11 ± 5.21E�11
Rosenbrock 3.97E+09 ± 8.92E+08 5.35E+06 ± 2.82E+06 2.25E+01 ± 1.16E+01 1.73E+01 ± 6.91E�01
Ackley 1.79E+01 ± 3.51E�09 7.23E+00 ± 4.50E�01 7.19E�15 ± 1.48E�15 9.81E�08 ± 2.65E�08
Griewank 1.79E+02 ± 1.60E+01 7.26E+00 ± 1.74E+00 6.40E�04 ± 3.18E�03 1.76E�10 ± 1.67E�10
Rastrigin 2.75E+02 ± 1.27E+01 2.03E+02 ± 1.49E+01 1.30E+01 ± 7.48E+00 1.00E+01 ± 5.65E+00

Schwefel 6.87E+03 ± 2.72E+02 6.80E+03 ± 3.37E+02 4.41E+03 ± 6.41E+02 2.30E�05 ± 6.30E�05
Salomon 1.52E+01 ± 5.43E�01 3.59E+00 ± 4.54E�01 5.32E�01 ± 8.19E�02 2.00E�01 ± 5.92E�03
Whitely 2.96E+16 ± 1.09E+16 1.83E+11 ± 1.72E+11 4.28E+02 ± 5.47E+01 3.72E+02 ± 1.80E+01

Penalized 1 3.71E+07 ± 1.29E+07 1.09E+01 ± 3.76E+00 4.48E�28 ± 1.64E�31 1.44E�11 ± 1.08E�11
Penalized 2 1.03E+08 ± 1.87E+07 3.42E+02 ± 4.11E+02 4.29E�28 ± 5.44E�43 6.34E�11 ± 5.07E�11

An alternative differential evolution algorithm for global optimization 159
Comparison of the ADEalgorithm with the CEP, FEP, CPDE1,
jDE and SDE1 algorithms

In order to demonstrate the efficiency and superiority of the
proposed ADE algorithm, the CEP and FEF [27], CPDE1
[22], SDE1 [19] and jDE [20] algorithms are used for compar-
ison. All algorithms tested on the common benchmark func-

tions set listed in Table 6 with dimensionality of D= 30 and
population size was set to NP = 100. The maximum numbers
of generations used are presented in Table 7 [19]. From Table

7(a), it can be seen that the ADE algorithm is superior to the
CEP and FEP algorithms in all functions in terms of average
values and standard deviation values but the ADE and FEP
algorithms attained the same result in step function f6(x). Fur-
thermore, the results showed that the ADE algorithm outper-
formed the CPDE1 algorithm in all multimodal functions by

significant difference, except for two unimodal functions
f1(x) and f2(x) where it achieved competitive results. On the
other hand, the results in Table 7(b) show that the ADE algo-

rithm outperformed the SDE1 algorithm in f5(x), f8(x) and
f9(x) functions which are complex and multimodal functions.
Finally, it can be observed that the performance of the ADE

and jDE algorithms are almost the same and they approxi-
mately achieved the same results in all functions. Last but

Table 4 (a) Scalability comparison of the ADE, basic DE and DEahcSPX algorithms. (b) Comparison of the ADE, basic DE,

DEahcSPX and NM-DE in terms of average evaluation times and time of successful runs D = 10 and population size = 30.

Function DE [13] DEahcSPX [13] ADE

(a)

D= 10 and population size = 30

Sphere 3.26E�28 ± 5.83E�28 1.81E�38 ± 4.94E�38 0.00E+00 ± 0.00E+00

Rosenbrock 4.78E�01 ± 1.32E+00 3.19E�01 ± 1.10E+00 1.59E�29 ± 2.61E�29
Ackley 8.35E�15 ± 8.52E�15 2.66E�15 ± 0.00E+00 5.32E�16 ± 1.77E�15
Griewank 5.75E�02 ± 3.35E�02 4.77E�02 ± 2.55E�02 4.43E�4 ± 1.77E�03
Rastrigin 1.85E+00 ± 1.68E+00 1.60E+00 ± 1.61E+00 0.00E+00 ± 0.00E+00

Schwefel 14.21272743 ± 39.28155167 4.73766066 ± 23.68766692 0.00E+00 ± 0.00E+00

Salomon 0.107873375 ± 0.027688791 0.099873361 ± 3.47E�08 0.09987335 ± 7.60E�12
Whitely 18.11229734 ± 15.85783313 18.00697444 ± 13.11270338 0.00E+00 ± 0.00E+00

Penalized 1 3.85E�29 ± 7.28E�29 4.71E�32 ± 1.12E�47 4.711634E�32 ± 1.11E�47
Penalized 2 1.49E�28 ± 2.20E�28 1.35E�32 ± 5.59E�48 1.34E�32 ± 1.10E�47

D= 50 and population size = 50

Sphere 5.91E�02 ± 9.75E�02 8.80E�09 ± 2.80E�08 6.40E�94 ± 2.94E�93
Rosenbrock 1.13E+10 ± 2.34E+10 1.63E+02 ± 3.02E+02 9.27E�06 ± 2.00E�05
Ackley 2.39E�02 ± 8.90E�03 1.69E�05 ± 8.86E�06 5.15E�15 ± 1.64E�15
Griewank 7.55E�02 ± 1.14E�01 2.96E�03 ± 5.64E�03 0.00E+00 ± 0.00E+00

Rastrigin 6.68E+01 ± 2.36E+01 3.47E+01 ± 9.23E+00 0.00E+00 ± 0.00E+00

Schwefel 1.07E+03 ± 5.15E+02 9.56E+02 ± 2.88E+02 0.00E+00 ± 0.00E+00

Salomon 1.15E+00 ± 1.49E�01 4.00E�01 ± 1.00E�01 2.27E�01 ± 4.53E�02
Whitely 1.43E+05 ± 4.10E+05 1.41E+03 ± 2.90E+02 3.01E+02 ± 2.12E+02

Penalized 1 3.07E�02 ± 7.93E�02 2.49E�03 ± 1.24E�02 1.42 E�32 ± 1.35E�32
Penalized 2 2.24E�01 ± 3.35E�01 2.64E�03 ± 4.79E�03 4.85E�32 ± 5.57E�32

D= 100 and population size = 100

Sphere 4.28E+03 ± 1.27E+03 5.01E+01 ± 8.94E+01 6.37E�45 ± 1.12E�44
Rosenbrock 3.33E+08 ± 1.67E+08 1.45E+05 ± 1.11E+05 8.90E+01 ± 3.46E+01

Ackley 8.81E+00 ± 8.07E�01 1.91E+00 ± 3.44E�01 6.21E�015 ± 0.00E+00

Griewank 3.94E+01 ± 8.01E+00 1.23E+00 ± 2.14E�01 0.00E+00 ± 0.00E+00

Rastrigin 8.30E+02 ± 6.51E+01 4.75E+02 ± 6.55E+01 0.00E+00 ± 0.00E+00

Schwefel 2.54E+04 ± 2.15E+03 2.48E+04 ± 2.14E+03 0.00E+00 ± 0.00E+00

Salomon 1.02E+01 ± 7.91E�01 3.11E+00 ± 5.79E�01 3.03E�01 ± 1.97E�02
Whitely 5.44E+15 ± 5.07E+15 4.06E+10 ± 6.57E+10 7.70E+02 ± 8.69E+02

Penalized 1 6.20E+05 ± 7.38E+05 4.34E+00 ± 1.75E+00 9.18E�33 ± 8.09E�33
Penalized 2 4.34E+06 ± 2.30E+06 7.25E+01 ± 2.44E+01 6.40E�32 ± 5.87E�32

D= 200 and population size = 200

Sphere 1.26E+05 ± 1.06E+04 7.01E+03 ± 1.07E+03 4.28E�22 ± 4.50E�22
Rosenbrock 2.97E+10 ± 3.81E+09 1.11E+08 ± 2.63E+07 2.33E+02 ± 2.52E+01

Ackley 1.81E+01 ± 2.26E�01 8.45E+00 ± 4.13E�01 7.12E�13 ± 3.44E�13
Griewank 1.15E+03 ± 9.22E+01 6.08E+01 ± 9.30E+00 2.37E�16 ± 2.03E�16
Rastrigin 2.37E+03 ± 7.24E+01 1.53E+03 ± 8.31E+01 1.03E+01 ± 3.59E+00

Schwefel 6.66E+04 ± 1.32E+03 6.61E+04 ± 1.44E+03 0.00E+00 ± 0.00E+00

Salomon 3.69E+01 ± 1.80E+00 1.10E+01 ± 4.38E�01 4.33E�01 ± 4.78E�02
Whitely 3.13E+18 ± 9.48E+17 4.21E+13 ± 1.74E+13 1.26E+03 ± 8.07E+02

Penalized 1 3.49E+08 ± 7.60E+07 2.27E+01 ± 5.73E+00 1.31E�20 ± 2.83E�20
Penalized 2 8.08E+08 ± 1.86E+08 6.24E+04 ± 4.77E+04 1.31E�20 ± 1.36E�20

(b)

Sphere 31639.7 (50) 22926.4 (50) 6061.8 (50)

Rosenbrock 73803.8 (43) 59275.7 (46) 54590.4 (50)

Ackley 48898.2 (50) 36389 (50) 9033.6 (50)

Griewank – – 13891.836735 (49)

Rastrigin 94089 (13) 84309 (18) 9582 (50)

Schwefel – – 7921.2 (50)

Salomon – – –

Whitely – – 16525.714286 (50)

Penalized 1 28885.8 (50) 20543.5 (50) 5321.4 (50)

Penalized 2 30812.6 (50) 21633.5 (50) 5603.4 (50)

160 A.W. Mohamed et al.
not least, it is clear that the proposed ADE algorithm performs
well with both unimodal and multimodal functions so it
greatly balances the local optimization speed and the global
optimization diversity.

0 0.5 1 1.5 2 2.5 3
x 10

5

-400

-300

-200

-100

0

100

Number of Function Calls

 F
it

ne
ss

 (
L

O
G

)
Sphere Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-30

-20

-10

0

10

Number Of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rosenbrock's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-15

-10

-5

0

5

Number of Functions Calls

F
it

ne
ss

 (
L

O
G

)

Ackley's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-1.5

-1

-0.5

0

0.5

1

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Salomon's Function

0 0.5 1 1.5 2 2.5 3
x 105

-20

-10

0

10

20

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Whitley's Function

0 0.5 1 1.5 2 2.5 3
x 10

5

-40

-30

-20

-10

0

10

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Penalized Function 1

Fig. 4 Average best fitness curves of the ADE algorithm for

selected benchmark functions for D = 10 and population size =

30.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

-100

-75

-50

-25

0

25

50

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Sphere Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

-10

-5

0

5

10

15

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rosenbrock's Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

-20

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Griewank's Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rastrigin's Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

-4

-2

0

2

4

6

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Schwefel's Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

-20
-15
-10

-5
0
5

10
15
20

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Whitley's Function

Fig. 5 Average best fitness curves of the ADE algorithm for

selected benchmark functions for D = 50 and population size =

50.

An alternative differential evolution algorithm for global optimization 161

0 1 2 3 4 5 6 7 8 9 10
x 10

5

0

2

4

6

8

10

12

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rosenbrock's Function

0 1 2 3 4 5 6 7 8 9 10
x 10

5

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Ackley's Function

0 1 2 3 4 5 6 7 8 9 10
x10

5

-20

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Griewank's Function

0 1 2 3 4 5 6 7 8 9 10
x 10

5

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rastrigin's Function

0 1 2 3 4 5 6 7 8 9 10
x 10

5

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Schwefel's Function

0 1 2 3 4 5 6 7 8 9 10
x 10

5

-40

-30

-20

-10

0

10

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Penalized Function 2

Fig. 6 Average best fitness curves of the ADE algorithm for

selected benchmark functions for D = 100 and population size =

100.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

6

2

4

6

8

10

12

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rosenbrock's Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

6

-20

-15

-10

-5

0

5

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Griewank's Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x10

6

0

1

2

3

4

Number of Function Calls

F
it

ne
ss

 (
L

O
G

)

Rastrigin's Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

6

-10

-5

0

5

10

Number of Function Calls

F
it

ne
ss

 (L
O

G
)

Schwefel's Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

6

-0.5

0

0.5

1

1.5

2

Number of Function Calls

F
it

ne
ss

 (L
O

G
)

Salomon's Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

6

0

5

10

15

20

Number of Function Calls

F
it

ne
ss

 (L
O

G
)

Whitley's Function

Fig. 7 Average best fitness curves of the ADE algorithm for

selected benchmark functions for D = 200 and population size =

200.

162 A.W. Mohamed et al.

Table 5 (a) Comparison of the ADE, DEfirSPX and DExhcSPX algorithms D = 30 and population size = 30. (b) Comparison of the

ADE, DEfirSPX and DExhcSPX algorithms in terms of average evaluation times and time of successful runs D= 30 and population

size = 30.

Function DEfirSPX [25] DExhcSPX [13] ADE

(a)

Sphere 1.22E�27 ± 2.95E�27 7.66E�29 ± 1.97E�28 2.31E�149 ± 1.25E�148
Rosenbrock 4.84E+00 ± 3.37E+00 5.81E+00 ± 4.73E+00 4.27E�11 ± 2.26E�10
Ackley 8.35E�15 ± 1.03E�14 5.22E�15 ± 2.62E�15 2.66E�15 ± 0.00E+00

Griewank 3.54E�03 ± 7.55E�03 3.45E�03 ± 7.52E�03 0.00E+00 ± 0.00E+00

Rastrigin 2.27E+01 ± 7.39E+00 1.86E+01 ± 7.05E+00 0.00E+00 ± 0.00E+00

Schwefel 5.23E+02 ± 3.73E+02 4.91E+02 ± 4.60E+02 0.00E+00 ± 0.00E+00

Salomon 1.84E�01 ± 7.46E�02 1.92E�01 ± 4.93E�02 1.93E�01 ± 2.39E�02
Whitely 3.11E+02 ± 9.38E+01 2.84E+02 ± 1.10E+02 2.65E+01 ± 2.97E+01

Penalized 1 3.24E�02 ± 3.44E�02 2.49E�02 ± 8.61E�02 1.58E�32 ± 7.30E�34
Penalized 2 1.76E�03 ± 4.11E�03 4.39E�04 ± 2.20E�03 1.77E�32 ± 2.69E�32

(b)

Sphere 96588.2 (50) 92111.4 (50) 15928.8 (50)

Rosenbrock – – 189913.8 (50)

Ackley 142169.88 (50) 139982.1 (50) 22589.4 (50)

Griewank 146999.76 (38) 153119.1 (37) 16887.446809 (50)

Rastrigin – – 62427 (50)

Schwefel – – 41545.6 (50)

Salomon – – –

Whitely – – 82181.538462 (13)

Penalized 1 126486.56 (44) 122129.1 (44) 14685.6 (50)

Penalized 2 135395.48 (43) 106820.1 (48) 16002 (50)

–: None of the algorithms achieved the desired accuracy level e < 10�6.

Table 6 Benchmark functions.

Gen. no Test function D S fmin

1500 f1ðxÞ ¼
PD

i¼1x
2
i 30 [�100,100]D 0

2000 f2ðxÞ ¼
PD

i¼1jxij þ
QD

i¼1jxij 30 [�10,10]D 0

20000 f5ðxÞ ¼ ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� 30 [�30,30]D 0

1500 f6ðxÞ ¼
PD

i¼1ðbxi þ 0:5cÞ2 30 [�100,100]D 0

9000 f8ðxÞ ¼
PD

i¼1 � xi sinð
ffiffiffiffiffiffiffi
jxij

p
Þ 30 [�500,500]D �12569.486

5000 f9ðxÞ ¼
PD

i¼1½x2i � 10 cosð2pxiÞ þ 10� 30 [�5.12,5.12]D 0

1500 f10ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1x

2
i

q� �
� exp 1

D

PD
i¼1 cos 2pxi

� �
þ 20þ e 30 [�32,32]D 0

2000 f11ðxÞ ¼ 1
4000

PD
i¼1x

2
i¼1 �

QD
i¼1 cos

xiffi
i
p
� �

þ 1 30 [�600,600]D 0

An alternative differential evolution algorithm for global optimization 163
Conclusions and future work

In this paper, a new and an Alternative Differential Evolution

algorithm (ADE) is proposed for solving unconstrained global
optimization problems. In order to enhance the local search
ability and advance the convergence rate, a new directed muta-

tion rule was presented and it is combined with the basic muta-
tion strategy through a linear decreasing probability rule. Also,
two new global and local scaling factors are introduced as two

new uniform random variables instead of keeping them con-
stant through generations so as to globally cover the whole
search space as well as to bias the search direction to follow

the best vector direction. Additionally, a dynamic non-linear
increased crossover probability scheme is formulated to bal-
ance the global exploration and the local exploitation. Further-
more, a modified BGA mutation and a random mutation

scheme are successfully merged to avoid stagnation and/or pre-
mature convergence. The proposed ADE algorithm has been
compared with the basic DE and other recent two hybrids,
three memetic and four self-adaptive DE algorithms that are
designed for solving unconstrained global optimization
problems on a set of difficult unconstrained continuous opti-

mization benchmark problems. The experimental results and
comparisons have shown that the ADE algorithm performs
better in global optimization especially with complex and high

dimensional problems; it performs better with regard to the
search process efficiency, the final solution quality, the conver-
gence rate, and success rate, when compared with other algo-

rithms. Moreover, the ADE algorithm shows robustness and
stability for large population size and high dimensionality.
Finally yet importantly, the performance of the ADE algo-
rithm is superior and competitive to other recent well-known

memetic, self-adaptive and hybrid DE algorithms. Current re-
search efforts focus on how to modify the ADE algorithm to
solve constrained and engineering optimization problems.

Additionally, future research will investigate the performance

Table 7 (a) Comparison of the ADE, CEP, FEP and CPDE1 algorithms D= 30 and population size = 100. (b) Comparison of the

ADE, jDE and SDE1 algorithms D = 30 and population size = 100.

Gen. no. Function CEP [22] FEP [22] CPDE1 [22] ADE

(a)

1500 f1(x) 0.00022 ± 0.00059 0.00057 ± 0.00013 0.00E+00 ± 0.00E+00 1.61E�20 ± 1.70E�20
2000 f2(x) 2.6E�03 ± 1.7E�04 8.1E�03 ± 7.7E�04 0.00E+00 ± 0.00E+00 3.38E�21 ± 1.43E�21
20000 f5(x) 6.17 ± 13.6 5.06 ± 5.87 1.5E�06 ± 2.2E�06 2.08E�29 ± 2.51E�29
1500 f6(x) 577.76 ± 1125.76 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

9000 f8(x) �7917.1 ± 634.5 �12554.5 ± 52.6 �12505.5 ± 97 �12569.5 ± 1.85E�12
5000 f9(x) 89 ± 23.1 0.046 ± 0.012 4.5 ± 24.5 0.00E+00 ± 0.00E+00

1500 f10(x) 9.2 ± 2.8 0.018 ± 0.0021 5.3E�01 ± 6.6E�02 6.93E�11 ± 3.10E�11
2000 f11(x) 0.086 ± 0.12 0.016 ± 0.022 1.7E�04 ± 2.4E�02 0.00E+00 ± 0.00E+00

Gen. no. Function jDE [19] SDE1 [20] ADE

(b)

1500 f1(x) 1.1E�28 ± 1.0E�28 0.00E+00 ± 0.00E+00 1.61E�20 ± 1.70E�20
2000 f2(x) 1.0E�23 ± 9.7E�24 0.00E+00 ± 0.00E+00 3.38E�21 ± 1.43E�21
20000 f5(x) 0.00E+00 ± 0.00E+00 2.641954 ± 1.298528 2.08E�29 ± 2.51E�29
1500 f6(x) 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

9000 f8(x) �12569.5 ± 7.0E�12 �12360.245 ± 157.628 �12569.5 ± 1.85E�12
5000 f9(x) 0.00E+00 ± 0.00E+00 1.0358020 ± 0.911946 0.00E+00 ± 0.00E+00

1500 f10(x) 7.7E�15 ± 1.4E�15 0.00E+00 ± 0.00E+00 6.93E�11 ± 3.10E�11
2000 f11(x) 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

164 A.W. Mohamed et al.
of the ADE algorithm in solving multi-objective optimization
problems and real world applications.
Appendix 1

Definitions of the benchmark problems are as follows:
Sphere function:

fðxÞ ¼
XD
i¼1

x2
i ; �100 6 xi 6 100; f� ¼ fð0; . . . ; 0Þ ¼ 0

Rosenbrock’s function:

fðxÞ ¼ ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2�; �100 6 xi 6 100;

f� ¼ fð1; . . . ; 1Þ ¼ 0

Ackley’s function:

fðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD
i¼1

x2
i

vuut
0
@

1
A� exp

1

D

XD
i¼1

cos 2pxi

 !

þ 20þ e; �32 6 xi 6 32; f� ¼ fð0; . . . ; 0Þ ¼ 0:

Griewank’s function:

fðxÞ ¼ 1

4000

XD
i¼1

x2
i¼1 �

YD
i¼1

cos
xiffiffi
i
p
� �

þ 1; �600 6 xi

6 600; f� ¼ fð0; . . . ; 0Þ ¼ 0:

Rastrigin’s function:

fðxÞ ¼
XD
i¼1
½x2

i � 10 cosð2pxiÞ þ 10�; �5:12 6 xi 6 5:12;

f� ¼ fð0; . . . ; 0Þ ¼ 0:
Schwefel’s function:

fðxÞ ¼ 418; 9829D�
XD
i¼1

xi sinð
ffiffiffiffiffiffiffi
jxij

p
Þ; �500 6 xi 6 500;

f� ¼ fð420:9687; . . . ; 420:9687Þ ¼ 0:

Salomon’s function:

fðxÞ ¼ � cos 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

x2
i

vuut
0
@

1
Aþ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

x2
i

vuut þ 1; �100 6 xi

6 100; f� ¼ fð0; . . . ; 0Þ ¼ 0

Whitley’s function:

fðxÞ ¼
XD
i¼1

XD
i¼1

y2i;j
4000

� cosðyi;jÞ þ 1

 !
; �100 6 xi 6 100;

f� ¼ fð1; . . . ; 1Þ ¼ 0

Penalized function 1:

fðxÞ ¼ p
D

10 sin2ðpy1Þ þ
XD�1
i¼1
ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ�

(

þðyD � 1Þ2
)
þ
XD
i¼1

uðxi; 10; 100; 4Þ;

where

yi ¼ 1þ 1

4
ðxi þ 1Þ and uðxi; a; k;mÞ

¼
kðxi � aÞm; xi > a;

0; �a 6 xi 6 a;

kð�xi � aÞm; xi < a:

8><
>:
� 50 6 xi 6 50; f� ¼ fð�1; . . . ;�1Þ ¼ 0

An alternative differential evolution algorithm for global optimization 165
Penalized function 2:

fðxÞ ¼ 0:1 sin2ð3px1Þ þ
XD�1
i¼1
ðxi � 1Þ2½1þ 3 sin2ðpxiþ1Þ�

(

þðxD � 1Þ2½1þ sin2ð2pxDÞ�
)
þ
XD
i¼1

uðxi; 5; 100; 4Þ;

where

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi > a;

0; �a 6 xi 6 a;

kð�xi � aÞm; xi < a:

8><
>:
� 50 6 xi 6 50; f� ¼ fð1; . . . ; 1Þ ¼ 0
References

[1] Jie J, Zeng J, Han C. An extended mind evolutionary

computation model for optimizations. Appl.Math.Comput.

2007;185(2):1038–49.

[2] Engelbrecht AP. Computational intelligence: an

introduction. Wiley-Blackwell; 2002.

[3] Storn R, Price K. Differential evolution – a simple and efficient

adaptive scheme for global optimization over continuous spaces,

1995; Technical Report TR-95-012. ICSI.

[4] Storn R, Price K. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. J

Global Optim 1997;11(4):341–59.

[5] Price K, Storn R, Lampinen J. Differential evolution – a

practical approach to global optimization. Berlin: Springer;

2005.

[6] Das S, Abraham A, Chakraborty UK, Konar A. Differential

evolution using a neighborhood-based mutation operator. IEEE

Trans Evol Comput 2009;13(3):526–53.

[7] Wang FS, Jang HJ. Parameter estimation of a bio-reaction

model by hybrid differential evolution. 2005 IEEE Congr Evol

Comput 2000;1:410–7.

[8] Omran MGH, Engelbrecht AP, Salman A. Differential

evolution methods for unsupervised image classification. The

2005 IEEE Congress on Evolutionary Computation, vol. 2, Sep

2–5; 2005. p. 966–73.

[9] Das S, Abraham A, Konar A. Automatic clustering using an

improved differential evolution algorithm. IEEE Trans Syst

Man Cybern A Syst Hum 2008;38(1):218–37.

[10] Das S, Konar A. Design of two dimensional IIR filters with

modern search heuristics: A comparative study. Int J Comput

Intell Appl 2006;6(3):329–55.

[11] Joshi R, Sanderson AC. Minimal representation multisensor

fusion using differential evolution. IEEE Trans Syst Man

Cybern A Syst Hum 1999;29(1):63–76.
[12] Vesterstrøm J, Thomson R. A comparative study of differential

evolution, particle swarm optimization and evolutionary

algorithms on numerical benchmark problems. In: Proceedings

of Sixth Congress on Evolutionary Computation: IEEE Press;

2004.

[13] Noman N, Iba H. Accelerating differential evolution using an

adaptive local search. IEEE Trans Evol Comput

2008;12(1):107–25.

[14] Lampinen J, Zelinka I. On stagnation of the differential

evolution algorithm. In: Ošmera P, editor. Proceedings of 6th

International Mendel Conference on Soft Computing; 2000. p.

76–83.

[15] Liu J, Lampinen J. On setting the control parameter of the

differential evolution algorithm. In: Matousek R, Osmera P,

editors. Proceedings of the 8th International Mendel Conference

on Soft Computing, 2002. p. 11–8.

[16] Gämperle R, Müller SD, Koumoutsakos P. A parameter study

for differential evolution. In: Grmela A, Mastorakis N, editors.

Advances in Intelligent Systems, Fuzzy Systems, Evolutionary

Computation: WSEAS Press; 2002. p. 293–8.

[17] Rönkkönen J, Kukkonen S, Price K. Real-parameter

optimization with differential evolution. IEEE Congr Evol

Comput 2005:506–13.

[18] Liu J, Lampinen J. A fuzzy adaptive differential evolution

algorithm. Soft Comput 2005;9(6):448–62.

[19] Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-

adapting control parameters in differential evolution: a

comparative study on numerical benchmark problems. IEEE

Trans Evol Comput 2006;10(6):646–57.

[20] Salman A, Engelbrecht AP, Omran MGH. Empirical analysis of

self-adaptive differential evolution. Eur J Oper Res

2007;183(2):785–804.

[21] Xu Y, Wang L, Li L. An effective hybrid algorithm based on

simplex search and differential evolution for global

optimization. International Conference on Intelligent

Computing, 2009. p. 341–350.

[22] Wang YJ, Zhang JS. Global optimization by an improved

differential evolutionary algorithm. Appl Math Comput

2007;188(1):669–80.

[23] Fan HY, Lampinen J. A trigonometric mutation operation to

differential evolution. J Global Optim 2003;27(1):105–29.

[24] Das S, Konar A, Chakraborty UK. Two improved differential

evolution schemes for faster global search. In: GECCO ‘05

Proceedings of the 2005 conference on Genetic and evolutionary

computation; 2005. p. 991–8.

[25] Mühlenbein H, Schlierkamp Voosen D. Predictive models for

the breeder genetic algorithm: I. Continuous parameter

optimization. Evol Comput 1993;1(1):25–49.

[26] Feoktistov V. Differential evolution: In search of solutions. 1st

ed. Springer; 2006.

[27] Yao X, Liu Y, Lin G. Evolutionary programming made faster.

IEEE Trans Evol Comput 1999;3(2):82–102.

	app20
	An alternative differential evolution algorithm for global optimization
	Introduction
	Related work
	Methodology
	The differential evolution (DE) algorithm
	Initialization
	Mutation
	Crossover
	Selection
	An alternative differential evolution (ADE) algorithm
	Modification of mutations
	Modification of scaling factor
	Modification of the crossover rate

	Results and discussions
	Comparison of ADE with DEahcSPX, basic DE and NM-DE algorithms
	Scalability comparison of ADE with DEahcSPX and basic DE algorithms
	Comparison of the ADE with DEfirSPX and DExhcSPX algorithms
	Comparison of the ADE algorithm with the CEP, FEP, CPDE1, jDE and SDE1 algorithms

	Conclusions and future work
	Appendix 1
	References

