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Abstract An analytical solution for MHD boundary layer flow of a viscous incompressible fluid

over an exponentially stretching sheet is developed in this study. The effect of thermal radiation

is included in the energy equation. Through suitable similarity transformations, the governing equa-

tions are transformed into a system of nonlinear ordinary differential equations. Homotopy anal-

ysis method (HAM) has been used to get accurate and complete analytic solution. This study

reveals that the governing parameters, namely, the magnetic and the radiation parameters have

major effects on the flow field, skin friction coefficient, and the heat transfer rate. The magnetic field

enhances the dimensionless temperature inside the thermal boundary layer whereas reduces the

dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate becomes low

with magnetic and radiation parameters while the friction factor is increased with magnetic field.

Moreover, a comparative study between the previously published and the present results in special

cases is conducted and an excellent agreement is found between them.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The boundary layer flow and heat transfer of a viscous fluid
over flat surfaces have been investigated in several technolog-
ical processes such as hot rolling, metal extrusion, continuous

stretching of plastic films and glass-fiber, polymer extrusion,
wires drawing and metal spinning. Various researchers are
engaged in this rich area. Sakiadis (1961) is the pioneer for
investigation of boundary layer flow over a stretched surface
moving with a constant velocity and developed the boundary

layer equations for axisymmetric flows in two-dimensions.
Erickson et al. (1966) extended the work of Sakiadis (1961)
with addition of suction and injection at a stretched surface

moving with constant velocity and investigated the effects on
flow and heat transfer. Numerous physical phenomena related
to stretched sheet moving with constant velocity under various

thermal conditions have been investigated by Carragher and
Crane (1982), Grubka and Bobba (1985) and Magyari and
Keller (2000).

A good effort has been made to gain insight information
regarding the stretching flow problem in various situations.
Such situations include considerations of porous surfaces,
MHD fluids, heat and mass transfer, slip effects etc.

Mukhopadhyay (2013) examined slip effects on MHD
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Figure 1 Flow configuration and coordinate system.
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boundary layer flow over an exponentially stretching sheet.
The thermal boundary layer of a power law fluid over a
stretching surface was studied by Ali (1995). A new dimension

is added to this investigation by Elbashbeshy (2001) who
examined the flow and heat transfer characteristics over an
exponentially stretching permeable surface. Magyari and

Keller (1999) investigated the steady boundary layers on an
exponentially stretching continuous surface with an exponen-
tial temperature distribution. Some recent attempts in this

direction are described in El-Aziz (2009), Ishak (2011),
Cortell (2012), Fang (2004), Rashad (2007), Khan and Pop
(2011).

The study of magneto-hydrodynamic (MHD) flow of an

electrically conducting fluid is of considerable interest in mod-
ern metallurgical and metal-working processes. The process of
fusing of metals in an electrical furnace by applying a magnetic

field and the process of cooling of the wall inside a nuclear
reactor containment vessel are good examples of such fields
(Ibrahim et al., 2013). Some important applications of radia-

tive heat transfer include MHD accelerators, high temperature
plasmas, power generation systems and cooling of nuclear
reactors. Many processes in engineering areas occur at high

temperatures and knowledge of radiation heat transfer
becomes very important for the design of pertinent equipment
(Seddeek, 2003). In controlling momentum and heat transfers
in the boundary layer flow of different fluids over a stretching

sheet, applied magnetic field may play an important role
(Turkyilmazoglu, 2012). Kumaran et al. (2009) investigated
that magnetic field makes the streamlines steeper which results

in the velocity boundary layer being thinner. The heat transfer
analysis of boundary layer flow with radiation is also impor-
tant in electrical power generation, astrophysical flows, solar

power technology, space vehicle re-entry and other industrial
areas. Raptis et al. (2004) reported the effect of thermal radia-
tion on the MHD flow of a viscous fluid past a semi-infinite

stationary plate.
The present paper provides an analytical solution of MHD

boundary layer flow over an exponentially stretching sheet in
the presence of radiation, which has not been considered

before. The governing equations for the MHD boundary layer
flow have been simplified with some suitable transformations
and then solved analytically via HAM technique (Liao, 2005;

Abbasbandy, 2007; Sajid and Hayat, 2008; Rashidi et al.,
2013; Rashidi et al., 2014). The convergence of the series solu-
tion has been discussed by plotting ⁄-curves. The effects of

controlling parameters on MHD flow and heat transfer char-
acteristics are discussed and shown graphically.

The paper is structured as: The problem formulation and
quantities of physical interest are presented in Sections 2

and 3. HAM solution for the proposed problem is incorporated
in Section 4. In Section 5 we have provided the convergence of
the HAM solution. Sections 6 and 7 are reserved for the results,

discussion and concluding remarks respectively.

2. Problem formulation

We consider a steady, two dimensional flow of an incompress-
ible, viscous and electrically conducting fluid caused by a
stretching sheet. Assume that the plate with surface tempera-

ture Tw is placed in a quiescent fluid of uniform ambient tem-
perature T1 as shown in Fig. 1. A variable magnetic field B(x)
is applied normally to the sheet surface while the induced mag-

netic field is negligible, which can be justified for MHD flow at
small magnetic Reynolds number. Under boundary layer
approximations, the flow and heat transfer with radiation

effects are governed by the following dimensional form of
equations

@u

@x
þ @v
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¼ 0; ð1Þ
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where u and v are the components of the velocity in the x-, y-
directions respectively, m is the kinematic viscosity, a is thermal

diffusivity, T is the fluid temperature in the boundary layer, q
is fluid density, qr is the radiative heat flux, cp is the specific
heat at constant pressure.

By the use of Rosseland approximation for radiation, we

have

qr ¼ �
4r
3k�

@T4

@y
; ð4Þ

where r is Stefan–Boltzman constant, and k* is the absorption
coefficient.

We assume the temperature difference within the flow such
that T4 may be expanded in a Taylor series about T1, (the free
stream temperature) and neglecting terms of higher order, we

have

T4 � 4T3
1T� 3T4

1:

Therefore, Eq. (4) becomes

u
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�
@2T
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The hydrodynamic boundary conditions are (Ishak, 2011)

u ¼ UwðxÞ; v ¼ 0 at y ¼ 0; ð6Þ
u! 0 as y!1: ð7Þ

where Uw(x) = U0e
x/L is the stretching velocity, U0 is the ref-

erence velocity, L is the characteristic length.
The thermal boundary conditions are

T ¼ Tw ¼ T1 þ T0e
x
2L at y ¼ 0 and T! T1 as y!1; ð8Þ
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where Tw is the variable temperature at the sheet with T0 being

a constant.
It is assumed that the magnetic field B(x) is of the form:

BðxÞ ¼ B0e
x
2Lð Þ , where B0 is a constant magnetic field.

The continuity Eq. (1) is satisfied by introducing a stream
function w such that:

u ¼ @w
@y

and v ¼ � @w
@x

:

For nondimensionalized form of momentum and energy equa-
tions as well as boundary conditions, the following transfor-
mations are introduced (Sajid and Hayat, 2008):

g ¼ y

ffiffiffiffiffiffiffiffi
U0

2mL

r
e

x
2L; u ¼ U0e

x
Lf 0ðgÞ;

v ¼ �
ffiffiffiffiffiffiffiffi
mU0

2L

r
e

x
2L fðgÞ þ g f 0ðgÞf g; T ¼ T1 þ T0e

x
2LhðgÞ: ð9Þ

where g is the similarity variable, f(g) is the dimensionless
stream function, h(g) is the dimensionless temperature and
prime denote differentiation with respect to g .

Using Eq. (9), the momentum and energy equations can be
reduced into ordinary differential equations:

f 000 þ ff 00 � 2f 02 �Mf 0 ¼ 0;

1þ 4
3
R

� �
h00 þ Pr fh0 � f 0hð Þ ¼ 0:

(
ð10Þ

The transformed boundary conditions of the problem are:

fð0Þ ¼ 0; f 0ð0Þ ¼ 1; f 0ð1Þ ¼ 0; hð0Þ ¼ 1; hð1Þ ¼ 0; ð11Þ

where M ¼ 2rB2
0
L

qU0
is the magnetic parameter, Pr ¼ m

a is Prandtl

number R ¼ 4rT3
1

k�k is the radiation-conduction parameter.

3. Physical quantities

Quantities of physical interest are the local friction factor, Cfx

and the local Nusselt number, Nux. Physically, Cfx represents
the wall shear stress, Nux defines the heat transfer rate.

1ffiffi
2
p Cfx

ffiffiffiffiffiffiffiffi
Rex
p

¼ f 00ð0Þ; Nuxffiffiffiffiffiffi
Rex
p ¼ �h0ð0Þ, where Rex ¼ Uwx

m is the

local Reynolds number.

4. HAM solutions

In the view of boundary conditions Eq. (11), the dimensionless
velocity f(g) and temperature h(g) can be expressed by the set
of base functions

gk expð�ngÞjk P 0; n P 0
� �

; ð12Þ

in the form of following series

fðgÞ ¼ a00;0 þ
X1
n¼0

X1
k¼0
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X1
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X1
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8>>>><
>>>>:

ð13Þ

where akm;n; b
k
m;n are the coefficients. We follow the rule of solu-

tion expression for determining the initial approximations, aux-
iliary linear operators, and the auxiliary functions. According

to the rule of solution expression, we choose the initial guesses
f0 (g),h0(g) based on boundary condition (11) and linear oper-
ators L1 and L2 in the following way
f0ðgÞ ¼ 1� e�g; h0ðgÞ ¼ e�g; ð14Þ

L1ðfÞ ¼
d3f

dg3
� df

dg
; L2ðhÞ ¼

d2h
dg2
� h: ð15Þ

The operators L1, L2 have the following properties:

L1ðC1 þ C2e
�g þ C3e

gÞ ¼ 0;L2ðC4e
�g þ C5e

gÞ ¼ 0; ð16Þ

where Ci(i = 1 � 5) are arbitrary constants. Let q 2 [0,1] rep-

resent an embedding parameter and ⁄„0 be the auxiliary
parameter to adjust the convergence rate of the perturbation
series. Then we construct the following zeroth order deforma-
tion of the problem as

ð1� qÞ L1½ f̂ðg; qÞ � f0ðgÞ� ¼ q�hf N1½ f̂ðg; qÞ�; ð17Þ
ð1� qÞ L2½ĥðg; qÞ � h0ðgÞ� ¼ q�hh N2½ĥðg; qÞ; f̂ðg; qÞ�; ð18Þ
subject to the conditions

f̂ð0; qÞ ¼ 0; f̂ 0ð0; qÞ ¼ 1; f̂ 0ð1; qÞ ¼ 0; ð19Þ
ĥð0; qÞ ¼ 1; ĥð1; qÞ ¼ 0; ð20Þ

where the non-linear operators are defined as
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For q= 0 and q = 1 we have

f̂ðq; g; 0Þ ¼ f0ðq; gÞ; f̂ðq; g; 1Þ ¼ fðq; gÞ; ð23Þ
ĥðq; g; 0Þ ¼ h0ðq; gÞ; ĥðq; g; 1Þ ¼ hðq; gÞ: ð24Þ
Defining

fmðgÞ ¼
1

m!

@mfðg; qÞ
@gm

				
q¼0
; hmðgÞ ¼

1

m!

@mhðg; qÞ
@gm

				
q¼0
; ð25Þ

and expanding f̂ðq; gÞ; ĥðq; gÞ by means of Taylor’s theorem
with respect to q , we obtain

f̂ðq; gÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞqm; ð26Þ

ĥðq; gÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞqm: ð27Þ

The auxiliary parameters are properly chosen so that series

(26) and (27) converges at q= 1 and thus

fðgÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞ; ð28Þ

hðgÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞ: ð29Þ

The resulting problems at the mth-order deformation are

L1½ fmðgÞ � Xm fm�1ðgÞ� ¼ �hf R
f
mðgÞ; ð30Þ

L2½hmðgÞ � Xmhm�1ðgÞ� ¼ �hh Rh
mðgÞ; ð31Þ
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Figure 3 The h� curves of f 00(0) obtained by 20th order

approximation of HAM for different values of M when R= 1,

Pr = 1

Figure 4 The h� curves of h0(0) obtained by 20th order

approximation of HAM for different values of R when M= 1,

Pr = 1
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The general solution of Eqs. (30) and (31) is

fmðgÞ ¼ f �mðgÞ þ C1 þ C2e
�g þ C3e

g; ð36Þ
hmðgÞ ¼ h�mðgÞ þ C4e

�g þ C5e
g; ð37Þ

where f �mðgÞ and h�mðgÞ are the particular solutions and the

constants are to be determined by the boundary condition
Eq. (32).

5. Convergence of homotopy solution

The convergence rate of approximation of the HAM solution
strongly depends on the values of non-zero auxiliary parame-

ter ⁄, which is mentioned by Liao (2005). As, Eqs. (36) and
(37) involve ⁄f and ⁄h, so we can adjust the convergence of
our HAM solution. To compute the range of admissible values

of ⁄f and ⁄h, we display the ⁄-curves of the function f 00(0) and
h0(0) for different order of approximations. Fig. 2 depicts that
range for the admissible values of ⁄f and ⁄h which are

�0.8 6 ⁄f 6 � 0.3, � 0.9 6 ⁄h 6 � 0.2. We observed that the
series presented in Eqs. (28) and (29) converge in the whole
region of g when ⁄f = ⁄h = � 0.62. Figs. 3 and 4 show the
⁄-curves for the dimensionless velocity and temperature for

various values of controlling parameters. Convergence of the
series solution up to 50th order of approximations for ⁄f
= ⁄h = �0.62 is presented in Table 1. It is found from Table 1

that the convergence is achieved up to 32nd order of approxi-
mation. In order to check the accuracy of the method, we have
shown the residual errors in Fig. 5.

4. Results and discussion

The approximate analytical solutions are obtained using

homotopy analysis method (HAM) for different values of
the governing parameters, namely, the magnetic parameter
(M), The Prandtl number (Pr), and the radiation parameter

(R). Effects of M, Pr, and R on the steady MHD boundary
layer flow, and heat transfer over exponential stretching sheet
are discussed in detail. Figs. 6–10 have been plotted to illus-
trate the effect of controlling parameters on the flow field

and heat transfer characteristics. To ensure the HAM accu-
Figure 2 Combined h-curves for f 00(0) and h0(0) at 10th order of

approximations.

Table 1 Convergence of HAM solutions for different order of

approximations whenM = 0.4, R= 0.3, Pr = 1.5 and ⁄f = ⁄h

= �0.62.
Order of approximation f 00(0) �h0(0)

1 �1.33067 1.03000

5 �1.43025 0.96504

10 �1.43157 0.95827

15 �1.43157 0.95728

25 �1.43157 0.95699

32 �1.43157 0.95697

35 �1.43157 0.95697

40 �1.43157 0.95697

50 �1.43157 0.95697
racy, the values of �h0(0) are compared with the previous pub-
lished data in Table 2 and are found in excellent agreement.
Thus, we are very much confident that the present HAM
results are accurate.
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Table 2 Comparison of �h0(0) for several values of magnetic, radiation parameters and Prandtl number.

R M Pr Magyari and Keller (1999) El-Aziz (2009) Ishak (2011) Mukhopadhyay (2013) HAM solution

0 0 1 0.9548 0.9548 0.9548 0.9547 0.95478

2 – – 1.4715 1.4714 1.47151

3 1.8691 1.8691 1.8691 1.8691 1.86909

5 2.5001 2.5001 2.5001 2.5001 2.50012

10 3.6604 3.6604 3.6604 3.6603 3.66039

1 0 1 – – 0.5312 0.5312 0.53121

0 1 – – 0.8611 0.8610 0.86113

0.5 0 2 – 1.0735 – 1.0734 1.07352

3 – 1.3807 – 1.3807 1.38075

1 – 1.1214 – 1.1213 1.12142

1 1 – – 0.4505 – 0.45052

MHD flow over exponential radiating stretching sheet 73
We now continue to discuss the results obtained by using

HAM method. The dimensionless velocity f 0(g), and tempera-
ture h (g) for various values of magnetic parameter M are
shown in Figs. 6 and 7. The dimensionless velocity reduces
with an increase in magnetic parameter, as the magnetic field

opposes the transport phenomena. Physically, an increase in
magnetic parameter M leads to an increase in the Lorentz
force. While the dimensionless temperature increases with M.

The Lorentz force has the tendency to increase the temperature
and consequently, the thermal boundary layer thickness
becomes thicker for stronger magnetic field. It is also noticed

from Fig. 7 that the dimensionless temperature increases with
an increase in radiation parameter R. The variation of dimen-
sionless temperature with various Prandtl numbers is given in
Fig. 8 which shows that increasing values of Prandtl number

imply the decrease in the thermal boundary layer thickness
which increases the heat transfer rate.

We now discuss the variations of the physical quantities of

engineering importance, that is, the local skin friction coeffi-
cient Cf , and the local Nusselt number Nux. The values of
local skin friction coefficient �f 00(0) verses M are displayed

in Fig. 9. It is noticed that for stronger magnetic field the value
of � f 00(0) increases monotonically. From physical viewpoint,
it can be noticed that the Lorentz force increases the values of

local skin friction coefficient. The variation of the Nusselt
number � h0(0) is presented for various values of M, Pr, and
R in Fig. 10. The heat transfer rate decreases with an increase
in both radiation and magnetic parameters. The Nusselt num-

ber increases with an increase in the Prandtl number. This is
due to the fact that a higher Prandtl number reduces the ther-
mal boundary layer thickness and increases the surface heat

transfer rate. Also high Prandtl number implies more viscous
fluid which tends to retard the motion. But Prandtl number
has no effects on skin-friction coefficient as the momentum

boundary layer equation is independent of h.
5. Conclusion

Homotopy analysis method (HAM) is employed to investigate
the effects of radiation on MHD boundary layer flow over
exponential stretching sheet. The HAM results are in good

agreement with those reported in open literature. The solutions
for dimensionless velocity, temperature, skin friction coeffi-
cient, and the dimensionless heat transfer rate for various
values of governing parameters were obtained and have been
illustrated in graphical form. The findings of the analysis can

be summarized as follows.

a) Due to stronger magnetic field the dimensionless veloc-
ity decreases and temperature increases.

b) The dimensionless temperature is enhanced with
radiation.

c) Due to magnetic filed the skin friction coefficient

increases monotonically.
d) Increasing the Prandtl number results in reduction of

thermal boundary layer thickness. Consequently, the

dimensionless heat transfer rate increases with Pr.
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