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A knot in S3 is said to have crosscap number two if it bounds a once-punctured Klein
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number two hyperbolic (1,2)-knots with tunnel number one which are neither 2-bridge
nor (1,1)-knots. An explicit infinite family of such knots is discussed in detail.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a knot in the 3-sphere S3 with exterior XK = S3 \ int N(K ) (where N(·) denotes regular neighborhood). For r
a slope in ∂ XK , we let K (r) = XK ∪∂ S1 × D2 denote the manifold obtained by performing surgery on K along the slope r,
so that r bounds a disk in S1 × D2. A Seifert Klein bottle for K is a once-punctured Klein bottle P properly embedded
in XK which has integral boundary slope; such a surface P is unknotted if cl(XK \ N(P )) is a genus two handlebody.
We say that K has crosscap number two if K has a Seifert Klein bottle and its exterior contains no properly embedded
Moebius band. The knot K has tunnel number one if there is a properly embedded arc τ in XK such that cl(XK \ N(τ )) is
a (genus two) handlebody. We also say that the knot K admits a (g,n) decomposition, or that K is a (g,n)-knot, if there is
a Heegaard splitting surface S in S3 of genus g which intersects K transversely and bounds handlebodies H, H ′ , such that
both K ∩ H ⊂ H and K ∩ H ′ ⊂ H ′ are trivial n-string arc systems. Finally, we will use the notation S2(a,b, c) to represent
any small Seifert fibered space over a 2-sphere with three singular fibers of indices a,b, c.

Any (1,1)-knot has tunnel number one; the converse, however, does not hold in general. It is therefore remarkable that
for genus one hyperbolic knots the properties of having tunnel number one, admitting a (1,1) decomposition, or being
2-bridge are all mutually equivalent; this is the content of the Goda–Teragaito conjecture, which is the main result of [13].
Since a genus one knot bounds a once punctured torus, which is the orientable homotopy equivalent of a once punctured
Klein bottle, one might expect crosscap number two hyperbolic knots to exhibit similar behavior, i.e. with having tunnel
number one, admitting a (1,1) decomposition, and being 2-bridge are all equivalent conditions. That this is not the case
follows from [11, Theorem 1.1], which shows that crosscap number two hyperbolic (1,1)-knots are in general not 2-bridge.
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Fig. 1. The knot K (0,0) ⊂ ∂H .

Fig. 2. A (1,2) decomposition of the knot K (0,1).

One may still ask if, for crosscap number two hyperbolic knots, having tunnel number one is equivalent to admit a (1,1)

decomposition. In this paper we show this is not the case by constructing explicit examples of crosscap number two
hyperbolic knots that have tunnel number one but do not admit (1,1) decompositions; moreover, all such knots admit a
(1,2) decomposition. The construction of such examples is based on the classification of the nontrivial crosscap number
two (1,1)-knots in S3 given in [11]. Explicit examples of general tunnel number one knots without (1,1) decompositions
were first given by Morimoto, Sakuma and Yokota [10], and more recently by Eudave-Muñoz [4] (see also [6]).

Our family of examples is constructed starting from the trivial knot K (0,0) shown in Fig. 1, which lies in the bound-
ary ∂ H of an unknotted genus two handlebody H standardly embedded in S3. We obtain a two-parameter infinite family
of knots K (p,q) ⊂ ∂ H , for any integers p,q, by Dehn-twisting K (0,0) p-times along ∂ D0 and q-times along ∂ D1, where
D0, D1 is the complete meridian system for H shown in the figure; the Dehn-twists are carried out by cutting ∂ H along ∂ Di ,
obtaining a 4-punctured 2-sphere F0, and then twisting only the two ‘bottom’ boundary circles of F0 indicated by the ar-
rows of the figure the required number of times (in the direction of the arrows for p,q > 0, see e.g. the knot K (−1,1) in
Fig. 11).

It is not hard to see that each knot K (p,q) is a (1,2)-knot. Fig. 2 shows a pair of parallel unknotted tori S0, S1 in S3,
with the region between S0 and S1 a product of the form S0 × I; in the figure, the knot K (0,1) is represented as the union
of 4 pairs of arcs: one pair on each S0, S1 and two pairs of arcs in S0 × I , with each arc in the latter pairs intersecting each
level torus S0 × {t}, t ∈ I , transversely in one point. It is well known (and easy to prove) that under such conditions the
given representation is in fact a (1,2) decomposition of K (0,1) relative to either S0 or S1. A (1,2) decomposition for the
knot K (p,q) can be obtained by Dehn twisting the knot K (0,1) p-times along the disk D0 in Fig. 2 (following our previous
convention) and varying the number q of full twists on the top pair of strands that run between S0 and S1 (with q > 0
corresponding to q positive full twists on the strands).

On the other hand, it is not easy to see that most of the knots K (p,q) are not (1,1)-knots. Our main result is the
following:

Theorem 1.1. The (1,2)-knot K (p,q) is trivial iff (p,q) = (0,0), (0,1), and a torus knot iff p = 0 and q �= −1,0 (with K (0,q) =
T (2,2q − 1)) or (p,q) = (−1,1) (with K (−1,1) = T (5,8)); in all other cases,

(a) K (p,q) is a hyperbolic tunnel number one knot which is not 2-bridge;
(b) K (p,q) bounds an unknotted Seifert Klein bottle P (p,q) of boundary slope r = 4q − 36p;
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(c) K (p,q) is a (1,1)-knot iff (p,q) is a pair of the form (p,1), (p,2), (1,q), or (−1,0);
(d) with the exception of K (−1,2)(r) = S2(2,2,3), K (−2,1)(r) = S2(2,2,7), and K (p,0)(r) = S2(2,2, |6p − 1|), the manifold

K (p,q)(r) is irreducible and toroidal.

In particular, there are infinitely many hyperbolic (1,2)-knots with crosscap number two and tunnel number one which admit no
(1,1) decompositions.

Proof. We have already seen that each K (p,q) is a (1,2)-knot; all other claims follow from Lemmas 4.3, 4.4, and 4.6. �
We remark that the family of knots K (p,q) is one of the simplest families that can be obtained following our method of

construction, which is quite general. The paper is organized as follows. In Section 2 we provide definitions and background
results, and develop several specific properties of circles embedded in the boundary of a genus two handlebody, in both
algebraic and topological versions, which will be needed in later sections. Section 3 contains, among many other miscel-
laneous results, the criteria used to determine if a crosscap number two knot with an unknotted Seifert Klein bottle has
tunnel number one, and if so whether or not it admits a (1,1) decomposition; such criteria are given in decidable algebraic
terms involving primitive or power words in a rank two free group. Finally, in Section 4 we apply these criteria to prove
Lemmas 4.3, 4.4 and 4.6, which establish the properties of the family of knots K (p,q) given in Theorem 1.1.

2. Preliminaries

2.1. Once-punctured Klein bottles

Let P denote a once-punctured Klein bottle. Any circle embedded in P is, up to isotopy, of one of the following types
(cf. [12, §2]):

(i) a meridian circle m: this is an orientation preserving circle which cuts P into a pair of pants;
(ii) a center c: this is an orientation reversing circle whose regular neighborhood in P is a Moebius band;

(iii) a longitude �: this is an orientation preserving circle which separates P into two components, one of which is a Moebius
band.

The meridian circle of P is unique, while there are infinitely many isotopy classes of center and longitude circles (cf. [16,
Lemma 3.1]). This contrasts with the situation in a closed Klein bottle, where up to isotopy there is only one longitude circle
and two center circles.

Denote by P ×̃ I the orientable twisted I-bundle over P , where I = [0,1]. P ×̃ I is a genus two handlebody; the pair
(P ×̃ I, ∂ P ) can be seen in Fig. 4, up to homeomorphism. In particular, if N(P ) is the regular neighborhood of a once-
punctured Klein bottle which is properly embedded in an orientable 3-manifold with boundary, then (N(P ), P ) ≈ (P ×̃
I, P ×̃ 1

2 ), where ≈ denotes homeomorphism.

2.2. Lifts of meridian, center, and longitude circles

Let T P be the twice punctured torus ∂N(P ) \ int N(∂ P ) ⊂ ∂N(P ). For any meridian circle m or longitude circle � of P ,
the restriction of the I-bundle N(P ) to m, � is a fibered annulus A(m), A(�), respectively, properly embedded in N(P ),
which intersects P transversely in m, �, respectively; if c is a center circle of P , the restriction of N(P ) to c is a fibered
Moebius band B(c) which intersects P transversely in c. Notice that A(m), A(�), and B(c) are all unique up to isotopy
in N(P ) (i.e., any annulus (A, ∂ A) ⊂ (N(P ), T P ) intersecting P in m is isotopic to A(m), etc.), and that the boundary circles
∂ A(m), ∂ A(�), ∂ B(c) may all be assumed to lie in T P . We call the circles ∂ A(m), ∂ A(�), ∂ B(c), respectively, the lifts of m, �, c
to T P ; thus m has two distinct nonparallel lifts m0 
 m1 = ∂ A(m), while c has a unique lift. Each longitude � also has a
unique lift, of which ∂ A(�) gives two parallel copies. In fact, if � splits off a Moebius band from P with center c� , then the
lifts of c� and � are isotopic in T P : for A(�) is isotopic to the frontier of the regular neighborhood in N(P ) of the Moebius
band B(c�). Thus, the set of lifts of centers of P coincides with the set of lifts of longitudes of P .

2.3. Seifert Klein bottles

Let P ⊂ XK be a Seifert Klein bottle for a knot K ⊂ S3, and let N(P ) ≈ P ×̃ I be a small regular neighborhood of P in XK .
We define the exterior of P in S3 as the manifold X(P ) = S3 \ int N(P ); we thus have

S3 = N(P ) ∪∂ X(P ) (2.1)

with ∂ P ⊂ ∂N(P ) = ∂ X(P ). We will identify the twice punctured torus T P ⊂ ∂N(P ) with the frontier in XK of N(P ), so that
T P ⊂ N(P ) ∩ ∂ X(P ).
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Given that K and ∂ P are isotopic in S3, the translation of properties of K ⊂ S3 or P ⊂ XK into properties involving the
decomposition given in (2.1) can be easily carried out. For instance, it is easy to see that P is unknotted in S3 iff X(P ) is a
handlebody.

2.4. Companion annuli and multiplicity

Let M be an orientable, irreducible, and geometrically atoroidal 3-manifold with connected boundary, and let γ be a
circle embedded in ∂M which is nontrivial (i.e., it does not bound a disk) in M.

Let A be an annular regular neighborhood of γ in ∂M, and A′ a properly embedded separating annulus in M with
∂ A′ = ∂ A. We say that A′ is a companion annulus for γ in M if A′ is not parallel into ∂M. It follows from [16, Lemma 5.1]
that the region cobounded in M by A′ and the annular neighborhood A of γ is a solid torus, the companion solid torus of γ
in M , and that a companion annulus and a companion solid torus for γ are unique up to isotopy. We define the multiplicity
μ(γ ) of γ in M to be 1 if γ has no companion annuli, and as the number of times γ runs around its companion solid
torus when γ has a companion annulus. Thus γ has a companion annulus in M iff μ(γ ) � 2.

Multiplicities of circles in the case where M is a genus two handlebody will be of particular interest in later develop-
ments. So let H be a genus two handlebody; we shall see that the fact that π1(H) (rel some base point) is a free group on
two generators allows for a simple interpretation of multiplicities of circles in ∂ H in purely algebraic terms. We will need
the following general definitions.

Let F2 denote the free group on the two generators; if free generators (i.e., a basis) x, y for F2 are given, so that
F2 = 〈x, y | −〉, we may refer to the elements of F2 as words in x and y. For convenience, we will denote the inverse u−1

of u by u, and by [u, v] the commutator uvuv of any two elements u, v of F2. A word u ∈ F2 is primitive if there is v ∈ F2
such that {u, v} is a basis of F2, and that u is a power if there is a nontrivial element w ∈ F2 and an integer n � 2 such that
u = wn . We write u ≡ v for u, v ∈ F2 if u = cvεc for some c ∈ F2 and ε ∈ {1,−1}. A word u ∈ 〈x, y | −〉 is said to be cyclically
reduced if, for ε = ±1 and z ∈ {x, y}, the pair of symbols zε, z−ε do not occur consecutively in u nor u simultaneously begins
with zε and ends with z−ε; notice u ≡ v whenever v is a cyclic reduction of u or u.

We will see in Lemma 2.3 below that multiplicities of circles in ∂ H can be characterized in terms of primitive or power
elements in π1(H). A complete characterization of primitive words in F2 = 〈x, y | −〉 can be found in [5]; for our purposes,
the following partial characterization of such primitive words (originally given in [3]), which easily extends to words that
are powers of primitive elements, will suffice.

Lemma 2.1. ([3,5].) If an element u in the free group F2 = 〈x, y | −〉 is primitive or a power of a primitive then there is a basis
{a,b} ⊂ {x, x, y, y} of F2 and an integer n � 1 such that either u ≡ abn−1 , u ≡ an+1 , or u ≡ abm1 · · ·abmk , k � 2, for some integers
{m1, . . . ,mk} = {n,n + 1}.

The next result establishes some useful equivalences in F2.

Lemma 2.2. Let {u, v} and {a,b} be any two bases of F2 and m,n � 1 any two integers.

(a) The identities [w, w ′] ≡ [w, w ′] ≡ [w ′, w] hold for any w, w ′ ∈ F2 .
(b) If w ∈ F2 , then {u, w} is a basis for F2 iff w = uk vεul for some integers k, l and ε ∈ {−1,1}.
(c) If um ≡ am then [um, v] ≡ [am,b].
(d) If um ≡ am and vn ≡ bn then [um, vn] ≡ [am,bn].

Proof. Part (a) follows by direct computation, while the result in (b) is well known (cf. [9, §3.5, Problem 3]).
For part (c) we have that um = camεc = (caεc)m for some c ∈ F2 and ε ∈ {−1,1}, and hence that u = caεc (cf. [9, §1.4]). It

follows that cuc = aε and cvc form a basis for F2, and hence by (b) that cvc = akbε′
al for some integers k, l and ε′ ∈ {−1,1}.

Therefore
[
um, v

] = [
camεc, cakbε′

alc
] ≡ [

amε,bε′] ≡ [
am,b

]
.

Similarly, for part (d) we continue to have um = camεc = (caεc)m and also have vn = dbnδd = (dbδd)n for some d ∈ F2 and
δ ∈ {−1,1}, whence u = caεc and v = dbδd hold in F2. It follows that cuc = aε and cvc = ebδe form a basis of F2, where
e = dc. By (b) we must have ebδe = akbδak , and so [um, vn] = [camεc, cakbδakc] ≡ [amε,bδ] ≡ [am,bn] holds. �

The following sequence of lemmas will establish several fundamental facts about circles in ∂ H which may represent
primitive/power elements in π1(H). For any loop α ⊂ H , denote by [α] the element of π1(H) representing α (rel some base
point). We will call any disk properly embedded in H which separates H into two solid torus components a waist disk of H .
Also, for a 3-manifold M, we will say that the pair (M, ∂M) is irreducible if M is irreducible and ∂M is incompressible
in M.
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Lemma 2.3. Let H be a handlebody of genus two and γ ,γ ′ be disjoint circles embedded in ∂ H which are nontrivial in H.

(a) ∂ H \ γ compresses in H iff [γ ] is primitive or a power in π1(H), in which case there is a waist disk of H which is disjoint from γ .
In particular, if [γ ] is a power in π1(H) then [γ ] is a power of a primitive element.

(b) γ has multiplicity n � 2 in H iff [γ ] is the nth power of some primitive element in π1(H); moreover, if [γ ] = λn for some integer
n � 1 and some primitive element λ ∈ π1(H) then n = μ([γ ]).

(c) Suppose γ and γ ′ are not parallel in ∂ H. If [γ ] is primitive or a power in π1(H) and [γ ′] is conjugate to [γ ] in π1(H), then γ
and γ ′ cobound a nonseparating annulus in H.

(d) Suppose γ ′ does not cobound an annulus with γ in H and that, in π1(H), either [γ ] is primitive or a power while [γ ′] is a power.
Then there is a waist disk D of H which separates γ and γ ′ .

Proof. Parts (a) and (b) follow from the argument used in the proof of [2, Theorem 4.1], which deals with roots in the
fundamental group of a compression body; we prove them here in the context of handlebodies of genus two for the
convenience of the reader.

Suppose ∂ H \ γ compresses in H along a disk D . If D is nonseparating then there is an embedded circle α ⊂ ∂ H \ γ
which intersects ∂ D transversely in a single point, and hence the frontier of a small regular neighborhood in H of D ∪ α is
a waist disk in H which compresses ∂ H \ γ ; we may thus assume D is a waist disk of H . Cutting H along D produces two
solid torus components, one of which, say V , contains γ in its boundary; given that γ is nontrivial in H , it follows that γ
must be a nonseparating circle in ∂ H . By Van Kampen’s theorem, if β is a core of V then [β] is primitive in π1(H) and
[γ ] = [β]k for some integer k �= 0. Thus [γ ] is either primitive or a power of a primitive in π1(H); moreover, it is not hard
to see that if |k| � 2 then V is the companion solid torus of γ in H , so μ(γ ) = |k|. This proves one direction of part (a).

Conversely, let M be the 3-manifold obtained by adding a 2-handle to H along γ . If, in π1(H), [γ ] is primitive then
π1(M) = Z and so M is a solid torus, while if [γ ] is a power then π1(M) has nontrivial torsion by [9, Theorems N3
and 4.12] and hence M is reducible (cf. [8, Theorem 9.8]). Therefore the pair (M, ∂M) is not irreducible, so the surface
∂ H \ γ compresses in H by the 2-handle addition theorem (cf. [2]), and hence by the above argument [γ ] is a primitive or
a power of a primitive in π1(H). Thus (a) holds.

For part (b), assume γ has multiplicity n � 2; that is, for A ⊂ ∂ H an annular neighborhood of γ and A′ a companion
annulus of γ with ∂ A′ = ∂ A, A and A′ cobound a solid torus V ⊂ H such that γ runs n times around V . Since γ is nontrivial
in H , and A′ separates H , it follows that A′ boundary compresses in H into a nontrivial separating compression disk
of ∂ H \ γ ; hence, by the first part of the argument for (a), γ is the nth power of a primitive element of π1(H). Conversely,
suppose [γ ] = λn for some integer n � 1 and some primitive element λ ∈ π1(H). By the first part of the argument for (a),
there is a loop β in H with [β] primitive in π1(H) and [γ ] = [β]μ(γ ) . Therefore the abelianization of π1(H)/〈[γ ]〉 is
isomorphic to both Z ⊕ Zn and Z ⊕ Zμ(γ ) , so n = μ(γ ). Thus (b) follows.

In parts (c) and (d), let F = ∂ H \ γ , so that γ ′ ⊂ F ; observe that F compresses in H by (a), given that [γ ] is either
primitive or a power in π1(H). Let M be the manifold obtained by attaching a 2-handle to H along γ ′ , so that γ ⊂ ∂M . In
part (d), [γ ′] is a power in π1(H) and so M is reducible by the argument used in part (a); in part (c), since [γ ] is conjugate
to [γ ′] in π1(H) but γ and γ ′ are not parallel in ∂ H , and γ ⊂ ∂M , [γ ] must be trivial in π1(M) but nontrivial in ∂M ,
and hence γ bounds a nonseparating disk in M . Either way the pair (M, ∂M \ γ ) is not irreducible, so by the 2-handle
addition theorem the surface F \ γ ′ = ∂ H \ (γ ∪ γ ′) compresses in H along some disk D ⊂ H . In part (c) the disk D must
be nonseparating, so γ ,γ ′ lie in the boundary of the solid torus H \ int N(D) and hence cobound a nonseparating annulus
in H ; similarly, in part (d) the disk D must be a waist disk of H which separates γ and γ ′ . �

For a Seifert Klein bottle P in a knot exterior XK , recall that T P is the twice punctured torus obtained from the frontier
of N(P ) in the knot exterior XK , so T P ⊂ ∂ X(P ) \ ∂ P and int T P , X(P ) \ ∂ P are homeomorphic surfaces. In this context,
Lemma 2.3(a) has the following immediate consequence.

Corollary 2.4. An unknotted Seifert Klein bottle P for a knot K is π1-injective in XK iff [∂ P ] is neither primitive nor a power of a
primitive in π1(X(P )). Specifically, T P is boundary compressible in XK iff [∂ P ] is primitive in π1(X(P )).

Proof. Since N(P ) is an I-bundle over P , we have that P is π1-injective in N(P ) and T P is incompressible in N(P ); hence,
by the Dehn’s lemma-loop theorem [8], P is π1-injective in XK iff T P is geometrically incompressible in X(P ). Thus the
first part follows from Lemma 2.3(a).

Now, given the relationship between the surfaces T P and X(P ) \ ∂ P , it is not hard to see that the boundary compress-
ibility of T P in X(P ) is equivalent to the existence of a properly embedded disk D in X(P ) which intersects the circle
∂ P ⊂ ∂ X(P ) transversely in one point; as the latter condition is equivalent to [∂ P ] being primitive in π1(X(P )), the second
part of the claim follows. �

The following result gives a simple algebraic way of determining if the manifold T × I , T a torus, is obtained by attaching
a 2-handle to a genus two handlebody H ; though the result is well known, we sketch its proof as preparation for the
argument used in its generalization given in Lemma 2.6, which deals with the case of attaching a 2-handle to a genus two
sub-handlebody of H .
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Lemma 2.5. Let H be a genus two handlebody and T be a closed torus. Let γ be a circle embedded in ∂ H and M = H ∪γ N(D) be the
manifold obtained by attaching a 2-handle N(D) to H along γ . Then M ≈ T × I iff [γ ] ≡ [a,b] for some (and hence any) basis {a,b}
of π1(H).

Proof. Suppose that π1(M)/〈[γ ]〉 = Z ⊕ Z, so that γ is nontrivial in H . If ∂ H \ γ compresses in H then by Lemma 2.3(a)
there is a waist disk in H disjoint from γ and so M is a manifold of the form S1 × D2 # L for L = S3 or a lens space; but
then π1(M)/〈[γ ]〉 �= Z ⊕ Z, contradicting our hypothesis. Thus ∂ H \ γ is incompressible in H and so the pair (M, ∂M) is
irreducible by the 2-handle addition theorem, hence by [8, Theorem 12.10] the condition M ≈ T × I is equivalent to the
condition π1(H)/〈[γ ]〉 = Z ⊕ Z. The lemma follows now from the fact (due to Nielsen, cf. [9, §4.4]) that, for any word w
in 〈x, y | −〉, 〈x, y | −〉/〈w〉 = Z ⊕ Z iff w ≡ [x, y]. �
Lemma 2.6. Let H be a handlebody of genus two and γ0, γ1, γ2 be disjoint circles embedded in ∂ H which are nontrivial in H ; let T
denote a closed torus.

(a) If A0 ⊂ H is a companion annulus for γ0 with core α0 and corresponding companion solid torus V 0 ⊂ H, then H ′ = cl(H \ V 0) is
a genus two handlebody, and there is a common waist disk D of H and H ′ such that

(i) H ′ = W0 ∪D W1 for some solid tori W0, W1 in H ′ with D = ∂W0 ∩ ∂W1 = W0 ∩ W1 and A0 ⊂ ∂W0 \ D,
(ii) if β1 is a core of W1 then {w0 = [α0], w1 = [β1]} is a basis for π1(H ′),

(iii) if β0 is a core of V 0 then {u = [β0], v = [β1]} is a basis for π1(H), and the inclusion map i: H ′ ⊂ H induces an injection

π1(H ′) i∗→ π1(H) given by w0 �→ uμ(γ0) ≡ [γ0] and w1 �→ v,
(iv) if H ′ ∪ N(D(γ2)) is the manifold obtained by attaching a 2-handle N(D(γ2)) along γ2 , then H ′ ∪ N(D(γ2)) ≈ T × I iff

[γ2] ≡ [aμ(γ0),b] for some (and hence any) basis {a,b} of π1(H) such that [γ0] ≡ aμ(γ0) .

(b) Suppose A0, A1 ⊂ H are disjoint companion annuli for γ0, γ1 , respectively, with corresponding cores α0,α1 and companion solid
tori V 0, V 1 ⊂ H. Then H ′ = cl(H \ (V 0 
 V 1)) is a genus two handlebody, and there is a common waist disk D of H and H ′ such
that

(i) H ′ = W0 ∪D W1 for some solid tori W0, W1 in H ′ with D = ∂W0 ∩ ∂W1 = W0 ∩ W1 , A0 ⊂ ∂W0 \ D, and A1 ⊂ ∂W1 \ D,
(ii) {w0 = [α0], w1 = [α1]} is a basis for π1(H ′),

(iii) if β0, β1 are cores of V 0, V 1 , respectively, then {u = [β0], v = [β1]} is a basis for π1(H) and the inclusion map i: H ′ ⊂ H

induces an injection π1(H ′) i∗→ π1(H) given by w0 �→ uμ(γ0) ≡ [γ0] and w1 �→ vμ(γ1) ≡ [γ1],
(iv) if H ′ ∪ N(D(γ2)) is the manifold obtained by attaching a 2-handle N(D(γ2)) along γ2 , then H ′ ∪ N(D(γ2)) ≈ T × I iff

[γ2] ≡ [aμ(γ0),bμ(γ1)] for some (and hence any) basis {a,b} of π1(H) such that [γ0] ≡ aμ(γ0) and [γ1] ≡ bμ(γ1) .

Proof. For part (a), by Lemma 2.3(a), (b), there is a waist disk D for H such that H = U0 ∪D W1 for some solid tori U0, W1
with γ0 ⊂ ∂U0 \ D . After a slight isotopy we may also assume that A0 ⊂ U0, and then we may write U0 = W0 ∪A0 V 0 for
some solid torus W0 ⊂ U0. Thus H ′ = cl(H \ V 0) = W0 ∪D W1 is a genus two handlebody and (i) holds.

As the circles γ ,α ⊂ ∂V 0 run μ(γ0) � 2 around V 0, and U0 = W0 ∪A0 V 0 is a solid torus, it follows that α0 ⊂ ∂W0
must run once around W0 and hence that α0 is isotopic to a core of W0; therefore, that (ii) and (iii) hold follows by Van
Kampen’s theorem and the fact that α0 and γ0 are isotopic in V 0.

For part (a)(iv), we assume as we may that ∂ A0 and γ2 are disjoint in ∂ H , whence γ2 ⊂ ∂ H ′; we write [γ2]′, [γ2]
for the elements in π1(H ′),π1(H) represented by γ2, respectively, so that i∗([γ2]′) = [γ2]. Recall by Lemma 2.5 that H ′ ∪
N(D(γ2)) ≈ T × I iff [γ2]′ ≡ [x, y] for some and in fact any basis {x, y} of π1(H ′). Thus, if H ′ ∪ N(D(γ2)) ≈ T × I then
[γ2]′ ≡ [w0, w1] in π1(H ′) and hence [γ2] = i∗([γ2]′) ≡ [uμ(γ0), v] in π1(H); that [γ2] ≡ [aμ(γ0),b] holds for any basis {a,b}
of π1(H) with [γ0] ≡ aμ(γ0) now follows from Lemma 2.2(c).

Suppose now {a,b} is any basis of π1(H) such that [γ0] ≡ aμ(γ0) and [γ2] ≡ [aμ(γ0),b] hold in π1(H); by Lemma 2.2(c),
we then also have that [γ2] ≡ [uμ(γ0), v]. Observe that [uμ(γ0), v] is a cyclically reduced word in π1(H) = 〈u, v | −〉; for
definiteness, we will assume, that [uμ(γ0), v] is a cyclic reduction of [γ2] in π1(H) = 〈u, v | −〉.

Let W (w0, w1) be a cyclic reduction of [γ2]′ in π1(H ′) = 〈w0, w1 | −〉. Then, in π1(H) = 〈u, v | −〉, i∗(W (w0, w1)) =
W (i∗(w0), i∗(w1)) = W (uμ(γ0), v) is also a cyclically reduced word, which must then be a cyclic reduction of [γ2] =
i∗([γ2]′). Thus the words i∗(W (w0, w1)) and [uμ(γ0), v] are identical except for the cyclic order of their factors. Given that
i∗(w0) = uμ(γ0) and i∗(w1) = v , it is not hard to see that changing the cyclic order of the w0, w1 factors in W (w0, w1) will
produce the identity i∗(W (w0, w1)) = [uμ(γ0), v], so we may assume that such identity holds. As i∗([w0, w1]) = [uμ(γ0), v]
holds too, so that i∗([w0, w1]) = i∗(W (w0, w1)), we must have [w0, w1] = W (w0, w1) ≡ [γ2]′ in π1(H ′). Thus (a)(iv) holds.

The proof for part (b) is similar: by Lemma 2.3(d), there is a waist disk D for H such that H = U0 ∪D U1 for some solid
tori U0, U1 with γ0 ⊂ ∂U0 \ D and γ1 ⊂ ∂U1 \ D , and we may also assume that A0 ⊂ U0, A1 ⊂ U1. Thus U0 = W0 ∪A0 V 0 and
U1 = W1 ∪A1 V 1 for some solid tori W0 ⊂ U0, W1 ⊂ U1, so H ′ = cl(H \ (V 0 ∪ V 1)) = W0 ∪D W1 is a genus two handlebody
and (i) holds. As before, α0,α1 are isotopic to cores of W0, W1, respectively, so that (ii) and (iii) hold follows by Van
Kampen’s theorem. The proof of (b)(iv) follows from the same argument as that of (a)(iv), using Lemma 2.2(d) instead of
Lemma 2.2(c) to deduce [γ2] ≡ [uμ(γ0), vμ(γ1)] from [γ2] ≡ [aμ(γ0),bμ(γ1)]. �
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Fig. 3. Construction of the Seifert Klein bottle P (cε0
0 , cε1

1 , R).

3. Crosscap number two knots

In this section we establish necessary and sufficient conditions for a crosscap number two hyperbolic knot to admit
a (1,1) decomposition. We also establish miscellaneous results that can be used to detect when a crosscap number two
knot with an unknotted Seifert Klein bottle has tunnel number one or is hyperbolic, as well as means of identifying and
constructing the lifts of meridians, centers, and longitudes of a Seifert Klein bottle.

3.1. (1,1) decompositions

The following construction of a special family of Seifert Klein bottles P (cε0
0 , cε1

1 , R) in S3 with boundary a (1,1)-knot is
taken from [11, §1]. Let T be an unknotted (i.e., Heegaard) torus embedded in S3; we identify a small regular neighborhood
of T in S3 with a product T × I , where I = [0,1]. Thus, there are unknotted solid tori V 0, V 1 ⊂ S3 such that

S3 = V 0 ∪∂V 0=T ×{0} T × I ∪∂V 1=T ×{1} V 1. (3.1)

We say that an arc γ embedded in T × I is monotone if the natural projection map T × I → I is monotone on γ . We may
further assume that T × I lies within a slightly larger embedding of the form T × [−δ,1 + δ], for some small δ > 0.

For i = 0,1, let ci be a circle nontrivially embedded in T ×{i}. Let R be a rectangle properly embedded in T × I with one
boundary side along c0 and the opposite side along c1, such that R ∩ (T ×[0, δ] ∪ T ×[1 − δ,1]) ⊂ c0 ×[0, δ] ∪ c1 ×[1 − δ,1]
and some core β ⊂ T × I of R is monotone. The union of R with the annuli Ai = ci × [i − δ, i + δ], i = 0,1, is then a
pair of pants; giving one half-twist relative to T × {i} to each annulus piece Ai , away from R , produces a once punctured
Klein bottle P (cε0

0 , cε1
1 , R), where εi ∈ {+,−} and the notation cεi

i stands for one of the two possible half-twists that can be
performed on the annulus Ai (see Fig. 3). We remark that in [11] the knot ∂ P (cε0

0 , cε1
1 , R) is denoted by K (c∗

0, c∗
1, R).

We say that P (cε0
0 , cε1

1 , R) is in vertical position if some monotone core β ⊂ R is a fiber {q} × I of T × I; in such case,
P (cε0

0 , cε1
1 , R) can be isotoped so as to properly embed in some regular neighborhood of c0 ∪ ({q} × I) ∪ c1 in S3. The next

result states that vertical position is always attainable for any surface of the form P (cε0
0 , cε1

1 , R).

Lemma 3.1. Any once-punctured Klein bottle of the form P (cε0 , cε1 , R) can be isotoped into vertical position.
0 1



1470 E. Ramírez-Losada, L.G. Valdez-Sánchez / Topology and its Applications 156 (2009) 1463–1481
Fig. 4. A pair of disjoint centers c0, c1 in P and some twisted lifts ĉ0, ĉ1 ⊂ T P .

Proof. Consider an arbitrary once-punctured Klein bottle of the form P (cε0
0 , cε1

1 , R) with β a monotone core of R . We claim
that the arc β is isotopic in T × I to some (and hence any) fiber {q} × I , q ∈ T ; in such case, the isotopy that moves β onto
some fiber {p} × I can be extended to an isotopy of c0 ∪ β ∪ c1 in T × I , and then further extended to an isotopy of S3 that
puts P (cε0

0 , cε1
1 , R) in vertical position.

Given 0 � x � y � 1 and any monotone arc γ ⊂ T × I , denote the point γ ∩ (T × {x}) by γx and the arc γ ∩ (T × [x, y])
by γ[x,y] . Since β is monotone in T × I , there is a sufficiently large integer n > 0 such that, for each integer 1 � k � n, the
arc β[(k−1)/n,k/n] is isotopic, rel βk/n (i.e., fixing the set {βk/n}), to the arc {βk/n} × [(k − 1)/n,k/n] in T × [(k − 1)/n,k/n].

Isotope the arc β[0,1/n] onto the arc {β1/n} × [0,1/n] rel β1/n , and let β(1) be the union of the arcs {β1/n} × [0,1/n]
and β[1/n,1]; clearly, β(1) and β are isotopic in T × I rel β[1/n,1] . Now isotope the arc β

(1)
[1/n,2/n] (= β[1/n,2/n]) onto the arc

{β2/n}×[1/n,2/n] in T ×[1/n,2/n] rel β2/n; this isotopy easily extends to an isotopy of the arcs β
(1)
[0,2/n] and {β(1)

2/n}×[0,2/n]
in T × [0,2/n] rel β

(1)
2/n , and produces the arc β(2) = {β(1)

2/n} × [0,2/n] ∪ β
(1)
[2/n,1] in T × I , isotopic to β(1) rel β

(1)
[2/n,1] = β[2/n,1] .

Continuing the process in this fashion, the claim follows by induction, with β isotopic to β(n) = {β1} × [0,1] in T × I
rel β1. �
Assumption 3.2. In light of Lemma 3.1, any Seifert Klein bottle of the form P = P (cε0

0 , cε1
1 , R) constructed relatively to an

unknotted T × I ⊂ S3 will be assumed to be in vertical position relatively to T × I . In particular, we may always assume
that N(P ) = N(c0 ∪ {q} × I ∪ c1) for some point q ∈ T and that T × I \ int N(P ) is isotopic to T0 × I for the once punctured
torus T0 = T \ int N(q) ⊂ T (see Fig. 3).

Now let K be a knot in S3 spanning a once-punctured Klein bottle P . If c0, c1 are two disjoint center circles of P , we
say that K admits a {P , c0, c1}-structure if P is isotopic to some once-punctured Klein bottle of the form P (cε0

0 , cε1
1 , R). In

this context, [11, Theorem 1.1] can be restated, in the case of hyperbolic non 2-bridge knots, as follows:

Theorem 3.3. ([11].) Let K be a hyperbolic knot in S3 which is not 2-bridge and bounds a Seifert Klein bottle P . Then K has a (1,1)

decomposition iff K admits a {P , c0, c1}-structure for some pair of disjoint centers c0, c1 of P .

3.2. Twisted lifts of centers

Let P ⊂ XK be any Seifert Klein bottle for a knot K ⊂ S3, and let N(P ) ⊂ XK be its regular neighborhood. If c0, c1 are
disjoint centers of P , then, up to isotopy, there is a unique arc α properly embedded in P which separates c0 from c1, and
which gives rise (via the I-bundle structure of N(P )) to a waist disk D ⊂ N(P ) with D ∩ P = α, which cuts N(P ) into two
solid tori W0, W1 with ci ⊂ W i (see Fig. 4). Notice that such a waist disk is also unique up to isotopy, and that Bi = P ∩ W i
is a Moebius band for i = 1,2. Performing one half-twist to Bi in W i produces an annulus in W i ; there are two ways of
half-twisting Bi , and each way produces an annulus, say with boundary slope ĉi or ĉ′

i ⊂ ∂W i \ D , respectively. Each of the
circles ĉi, ĉ′

i runs once around W i and intersects ∂P transversely in one point. We call the circles ĉi, ĉ′
i the twisted lifts of

the center ci ⊂ P to ∂N(P ).
In the particular case where P = P (cε0

0 , cε1
1 , R) for some disjoint centers c0, c1 ⊂ P , relative to some unknotted T ×

I ⊂ S3, so that N(P ) = N(c0 ∪ ({q} × I) ∪ c1), it follows that any circle of intersection ĉi between ∂N(c0 ∪ ({q} × I) ∪ c1) and
T × {i} is a twisted lift of ci (see Fig. 3), which we call the induced twisted lift of ci .

Back in the general case, assume further that P has atoroidal exterior X(P ) ⊂ S3; as X(P ) is irreducible, companion
solid tori and multiplicities of circles on ∂ X(P ) ⊂ X(P ) are thus defined. So, for any pair c0, c1 of disjoint centers of P
with twisted lifts ĉ0, ĉ1 ⊂ T P ⊂ ∂ X(P ), define V (ĉi) ⊂ X(P ) as the companion solid torus of ĉi if μ(ĉi) � 2 in X(P ), with
A(ĉi) ⊂ ∂W i the annular neighborhood of ĉi ⊂ ∂W i such that V (ĉi) ∩ N(P ) = A(ĉi), and otherwise set V (ĉi) = ∅ = A(ĉi);
we now construct the manifold

M(P , ĉ0, ĉ1) = cl
(

X(P ) \ (
V (ĉ0) ∪ V (ĉ0)

)) ⊂ S3. (3.2)
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Let D be a waist disk of N(P ) that separates ĉ0 and ĉ1 (see Fig. 4); D is unique up to isotopy, and can always be chosen
such that

∂ D ⊂ ∂M(P , ĉ0, ĉ1). (3.3)

Let cl(N(P )\ N(D)) = W0 
 W1, where W0, W1 are solid tori with ĉ0 ⊂ ∂W0 and ĉ1 ⊂ ∂W1. Then U0 = W0 ∪A(ĉ0) V (ĉ0) and
U1 = W1 ∪A(ĉ1) V (ĉ1) are solid tori since, whenever present, each annulus A(ĉi) runs once around W i (see Fig. 4); since, in
light of (2.1), we have

S3 = U0 ∪∂

(
M(P , ĉ0, ĉ1) ∪ N(D)

) ∪∂ U1, (3.4)

it follows that M(P , ĉ0, ĉ1) ∪ N(D) is the exterior in S3 of the link formed by cores of the solid tori U0 and U1.
The manifolds M(P , ĉ0, ĉ1) and M(P , ĉ0, ĉ1) ∪ N(D) can be readily identified whenever P is of the form P (cε0

0 , cε1
1 , R).

Lemma 3.4. Suppose P = P (cε0
0 , cε1

1 , R) for some disjoint centers c0, c1 ⊂ P , relative to some unknotted T × I ⊂ S3; let ĉ0, ĉ1 be the
induced twisted lifts, respectively, and let D ⊂ N(P ) be the unique waist disk that separates ĉ0 and ĉ1 . If X(P ) is atoroidal then there
is a once punctured torus T0 ⊂ T such that, in S3 , M(P , ĉ0, ĉ1) is isotopic to T0 × I and M(P , ĉ0, ĉ1)∪ N(D) is isotopic to T × I , with
the isotopy carrying the circle ∂ D ⊂ ∂M(P , ĉ0, ĉ1) to a circle in ∂(T0 × I) isotopic to (∂T0) × {0}.

Proof. Recall from (3.1) that S3 = V 0 ∪ T × I ∪ V 1; also, by Assumption 3.2, we may assume that N(P ) = N(c0 ∪{q}× I ∪ c1)

for some q ∈ T , so that T × I \ int N(P ) is isotopic to T0 × I for the once punctured torus T0 = T \ int N(q) ⊂ T .
For i = 0,1, consider the annuli Ai ⊂ ∂ X(P ) and A′

i ⊂ T × {i} indicated in Fig. 3, with ∂ Ai = ∂ A′
i . We then have

X(P ) = V ′
0 ∪A′

0
T0 × I ∪A′

1
V ′

1,

where V ′
i = V i \ int N(P ) ⊂ V i is a solid torus. Now, for i = 0,1, the circle ĉi is isotopic to a core of the annulus Ai ⊂ ∂ X(P );

moreover, if μ(ĉi) � 2 in X(P ) then the annulus A′
i is a companion annulus for a core of Ai , so we can take V (ĉi) = V ′

i ,
while if μ(ĉi) = 1 in X(P ) then the annuli Ai and A′

i are isotopic in V ′
i ⊂ X(P ). It is not hard to see now that the

manifold M(P , ĉ0, ĉ1) may always be isotoped in S3 onto the manifold T0 × I in such a way that ∂ D ⊂ ∂M(P , ĉ0, ĉ1)

isotopes to a circle in ∂(T0 × I) isotopic to (∂T0) × {0}, and that such an isotopy can be extended to an isotopy that maps
M(P , ĉ0, ĉ1) ∪ N(D) onto T × I . �

We are now ready to give necessary and sufficient conditions for a Seifert Klein bottle P to be of the form P (cε0
0 , cε1

1 , R).

Lemma 3.5. Let K ⊂ S3 be a knot, P any Seifert Klein bottle in XK with atoroidal exterior X(P ), c0, c1 any two disjoint centers of P ,
ĉ0, ĉ1 ⊂ T P any two twisted lifts of c0, c1 , respectively, and D the unique waist disk of N(P ) that separates ĉ0 and ĉ1 . Then, K admits
a {P , c0, c1}-structure with induced twisted lifts ĉ0, ĉ1 iff the following conditions hold:

(a) the manifold M(P , ĉ0, ĉ1) is a genus two handlebody, and
(b) M(P , ĉ0, ĉ1) ∪ N(D) ≈ T × I , where T is a closed torus.

Proof. If such a {c0, c1}-structure exists, that (a) and (b) hold follows from Lemma 3.4.
Conversely, suppose (a) and (b) hold. By (b), M(P , ĉ0, ĉ1) ∪ N(D) = T × I for some closed torus T = T × {0} ⊂ S3; the

identity in (3.4) implies that T is unknotted in S3 and hence that M(P , ĉ0, ĉ1) ∪ N(D) is the exterior of the Hopf link in S3.
We will assume that ĉi ⊂ T × {i} for i = 0,1, and that T × I lies inside a slightly larger product of the form T × [−δ,1 + δ]
for some sufficiently small δ > 0.

Let N(D) be a small regular neighborhood of D in N(P ) which is disjoint from ci and ĉi for i = 0,1, and such that
R = N(D) ∩ P is a rectangle properly embedded in N(D) whose core α ⊂ R is also a cocore of the 2-handle N(D).

Recall from the construction of M(P , ĉ0, ĉ1) that cl(N(P ) \ N(D)) = W0 
 W1, where W0, W1 are solid tori in N(P ) with
ĉ0 ⊂ ∂W0 and ĉ1 ⊂ ∂W1, so that for i = 0,1, we have

Ai = W i ∩ (
M(P , ĉ0, ĉ1) ∪ N(D)

) = W i ∩ (T × I) = (∂W i) ∩ ∂(T × I)

is an annulus with core ĉ′
i ⊂ int Ai isotopic to ĉi in ∂W i and ∂(T × I). We may further assume, after an isotopy of W0 ∪

(T × I) ∪ W1 which leaves T × I fixed, that W0 = A0 × [−δ,0], and W1 = A1 × [1,1 + δ] in T × [−δ,1 + δ].
Consider now the Moebius bands Bi = P ∩ W i , i = 0,1; the rectangle R has one boundary side on ∂ B0 ∩ T × {0} and

its opposite side on ∂ B1 ∩ T × {1}, with P = B0 ∪ R ∪ B1. Since ĉ0 is a twisted lift of c0 in N(P ), giving one half-twist
to B0 in W0 away from R ⊂ N(D) produces an annulus properly embedded in W0 with the same boundary slope as the
core ĉ′

0 of A0; this annulus can be isotoped within W0 onto the annulus ĉ′
0 × [−δ,0], with c0 ⊂ B0 corresponding to the

circle ĉ′
0 × {−δ/2}. In a similar way, one half twist on B1 ⊂ W1 (away from R) may be assumed to produce the annulus

ĉ′
1 × [1,1 + δ], with c1 ⊂ B1 corresponding to the circle ĉ′

1 × {1 + δ/2}. Finally, the rectangle R ⊂ T × I may be slightly
isotoped within T × I so that its side R ∩ T × {0} lies on ĉ′ and its side R ∩ T × {1} on ĉ′ , in such a way that P may be
0 1
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recovered from the pair of pants Q = ĉ′
0 × [−δ,0] ∪ R ∪ ĉ′

1 × [1,1 + δ] ⊂ N(P ) by performing the corresponding reverse one
half twists on the annuli ĉ′

0 × [−δ,0] ⊂ W0 and ĉ′
1 × [1,1 + δ] ⊂ W1.

Now, the endpoints q0 = α ∩ T × {0}, q1 = α ∩ T × {1} of α lie on ĉ′
0, ĉ′

1, respectively. Therefore, if α′ is the arc {q0} ×
[−δ/2,0]∪α∪{q1}×[1,1+δ/2] ⊂ Q then α′ is an arc properly embedded in the product T ×[−δ/2,1+δ/2] with endpoints
on c0 
 c1 such that cl(T × [−δ/2,1 + δ/2] \ N(α′)) is homeomorphic to cl(T × [0,1] \ N(α)).

By (a), the manifold cl(T × [0,1] \ N(α)) ≈ cl(T × [0,1] \ N(D)) = M(P , ĉ0, ĉ1) is a genus two handlebody. Since T ×
[−δ/2,1 + δ/2] and T × [0,1] are isotopic in S3, and T × [0,1] ⊂ S3 is the exterior of the Hopf link, it follows that α′ is
a tunnel for the Hopf link exterior T × [−δ/2,1 + δ/2] ⊂ S3. As the Hopf link is a 2-braid link, by [1, Theorem 2.1] such a
tunnel arc α′ is unique up to isotopy, hence α′ can be isotoped into a fiber {∗} × [−δ/2,1 + δ/2] of T × [−δ/2,1 + δ/2].
Therefore P is isotopic to a surface of the form P (cε0

0 , cε1
1 , R) and so K admits a {P , c0, c1}-structure. �

With the aid of Lemma 2.6, the conditions in Lemma 3.5 can now be expressed entirely in simple algebraic terms
whenever the Seifert Klein bottle surface P is unknotted; this is the main content of the next result.

Lemma 3.6. Suppose P is an unknotted Seifert Klein bottle for a knot K ⊂ S3 . Let c0, c1 be disjoint centers of P with corresponding
twisted lifts ĉ0, ĉ1 ⊂ ∂ X(P ) and D the unique waist disk of N(P ) that separates ĉ0 and ĉ1 .

(a) The knot K admits a {P , c0, c1}-structure with induced twisted lifts ĉ0, ĉ1 iff one of the following set of conditions holds:
(i) μ(ĉ0) = 1 = μ(ĉ1) and [∂ D] ≡ [u, v] in π1(X(P )) for some (and hence any) basis {u, v} of π1(X(P ));

(ii) for some {i, j} = {0,1}: μ(ĉi) = 1, μ(ĉ j) � 2, and ∂ D ≡ [u, vμ(ĉ j)] in π1(X(P )) for some (and hence any) basis {u, v}
of π1(X(P )) such that [ĉ j] ≡ vμ(ĉ j);

(iii) μ(ĉ0) � 2, μ(ĉ1) � 2, and ∂ D ≡ [uμ(ĉ0), vμ(ĉ1)] in π1(X(P )) for some (and hence any) basis {u, v} of π1(X(P )) such that
[ĉ0] ≡ uμ(ĉ0) and [ĉ1] ≡ vμ(ĉ1) .

(b) Suppose K admits a {P , c0, c1}-structure with induced twisted lifts ĉ0, ĉ1 , and let {i, j} = {0,1}. If μ(ĉi) = 1 in X(P ) then,
in π1(X(P )), either [ĉi], [ĉ j] are both primitive or [ĉ j] is a power of a primitive.

Proof. Since X(P ) is a genus two handlebody, part (a) follows from a direct application of Lemma 2.6 to Lemma 3.5;
in particular, observe that, by Lemma 2.6, a basis {u, v} of π1(X(P )) satisfying the condition [ĉ j] ≡ vμ(ĉ j) in (ii) or the
conditions [ĉ0] ≡ uμ(ĉ0) and [ĉ1] ≡ vμ(ĉ1) in (iii) always exists.

For part (b) we have that P is a surface of the form P (cε0
0 , cε1

1 , R) with induced twisted lifts ĉ0, ĉ1; we assume for
definiteness that μ(ĉ0) = 1 in X(P ). If μ(ĉ1) = 1 too then X(P ) = M(P , ĉ0, ĉ1); since, by Lemma 3.4, M(P , ĉ0, ĉ1) = T0 × I
for some once punctured torus T0 ⊂ S3 such that ĉ0 ⊂ T0 × {0} and ĉ1 ⊂ T0 × {1}, it follows that [ĉ0], [ĉ1] are prim-
itive in π1(X(P )) = π1(T0 × I) = π1(T0). Otherwise, μ(ĉ1) � 2 and so [ĉ1] is a power of a primitive in π1(X(P )) by
Lemma 2.3(b). �
3.3. A tunnel number one criterion

The next result gives a condition for a knot with an unknotted Seifert Klein bottle to have tunnel number one.

Lemma 3.7. Let K ⊂ S3 be a nontrivial knot with an unknotted Seifert Klein bottle P . Then K has tunnel number one if some center
circle of P has a lift to T P which is primitive in X(P ).

Proof. Since P is unknotted, it follows from (2.1) that N(P ) ∪ X(P ) is a genus two Heegaard decomposition of S3. Let c0 be
any center circle of P , and let c1 be the only other center circle of P which is disjoint from c0. Then N(P ) = W0 ∪D W1,
where W0, W1 ⊂ N(P ) are solid tori and D is the (unique) waist disk D of N(P ) which separates c0, c1. Finally, let B(c0)

be the Moebius band in N(P ) constructed in Section 2.1, so that ∂ B(c0) ⊂ T P is the lift of c, and let V (c0) be a regular
neighborhood of B(c0) in N(P ) disjoint from ∂ P ; V (c) is a solid torus.

If ∂ B(c0) is primitive in X(P ) then H1 = X(P ) ∪ V (c0) is a genus two handlebody, while clearly H2 = cl(N(P ) \
V (c0)) ⊂ S3 is also a genus two handlebody; thus H1 ∪ H2 is a Heegaard decomposition for S3. From the representa-
tion of N(P ), D, ∂ P shown in Fig. 4 it is not hard to see that [∂ P ] is primitive in π1(H2), which implies that there is a
properly embedded disk D0 in H2 which intersects ∂ P transversely in one point. Therefore the knot ∂ P , and hence K , has
tunnel number one. �
3.4. Hyperbolicity

Lemma 3.8. Let k ⊂ S3 be a knot which is a (possibly trivial) torus knot or a 2-bridge knot. Let P be a Seifert Klein bottle for k with
meridian circle m, and let T P be the frontier of N(P ) in Xk.

(a) If k is a trivial or 2-bridge knot then m is a trivial knot in S3 .
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Fig. 5. The torus knots T (3,7) and T (3,5).

(b) If k is nontrivial then P is unknotted; moreover, if k is a torus knot then
(i) T P is not π1-injective in Xk,

(ii) T P is boundary compressible in Xk iff k = T (3,5), T (3,7), or T (2,n) for some odd integer n �= ±1, in which case

m =
{

trivial knot, k �= T (3,7),

T (2,3), k = T (3,7).

Proof. If k is a 2-bridge knot then it follows from [11, Theorem 1.2(a)] that k is a plumbing of an annulus A and a Moebius
band B , which are unknotted and unlinked in S3. Moreover, k bounds a unique Seifert Klein bottle P by [7], namely the
one obtained as the plumbing of A and B , so P is unknotted. This proves part (a) for k a 2-bridge knot; since the meridian
circle m of P is the core of A, it also follows that m is a trivial knot in S3.

The only nontrivial torus knots that bound a Moebius band are those of the form T (2,n) for some odd integer n �= ±1.
Hence, any nontrivial torus knot k which is not of the form T (2,n) and bounds a Seifert Klein bottle has crosscap number
two, so it follows from [16, Corollary 1.6] that P is unique in Xk up to isotopy and that P is unknotted and not π1-injective
in Xk; moreover, by the argument used in the proof of [16, Corollary 1.6], T P is boundary compressible in Xk iff k is a torus
knot of the form T (5,3) or T (3,7). Projections of the knots T (3,5) and T (3,7) spanning their unique Seifert Klein bottle
P are shown in Fig. 5; it can be seen that indeed the meridian circle m of P is the trivial knot and the trefoil T (2,3),
respectively (T (3,5) can also be drawn as the pretzel (−2,3,5), again showing the meridian circle of its Seifert Klein bottle
is trivial).

We now deal with the cases where k is either a nontrivial torus knot of the form T (2,n), or k is the trivial knot with
a Seifert Klein bottle whose boundary slope, relative to a standard meridian-longitude pair μ,λ ⊂ ∂ Xk , is not 0/1. These
cases have in common that any Seifert Klein bottle P in Xk , and hence the associated surface T P , boundary compress in Xk:
this follows from [12, Lemma 4.2] if k = T (2,n), while if k is trivial then Xk is a solid torus and hence the surface P must
boundary compress in Xk . In either case, P boundary compresses into a Moebius band B ⊂ Xk such that �(∂ P , ∂ B) = 2. If
k = T (2,n) then B is unique and so, for a fixed boundary slope, P is obtained by adding a band (rectangle) in ∂ Xk to the
Moebius band B , and hence P is unique up to isotopy in Xk; if k is the trivial knot we will see below that though B may
not be unique, the surfaces P are unique relative to their boundary slopes.

Using a standard meridian-longitude pair μ,λ in ∂ Xk , we may assume that ∂ P = aμ + λ and

∂ B =
{

2μ + bλ (b = odd), k = trivial,

2nμ + λ, k = T (2,n).

Since �(∂ P , ∂ B) = 2, we must then have

a =
{±4 and b = ∓1, k = trivial,

2n ± 2, k = T (2,n).

The knot k = T (2,n) can be represented as the pretzel knots (n − 2,1,−2) or (n + 2,−1,2), and in these projections k
spans a Seifert Klein bottle with boundary slope 2n − 2,2n + 2, respectively, all having meridian circle a trivial knot. Since
the Seifert Klein bottle for k is unique for each of these slopes, it follows that the meridian circle of any Seifert Klein bottle
bounded by k = T (2,n) is a trivial knot.

If k is the trivial knot then it follows from the above computation that k bounds two Seifert Klein bottles with boundary
slopes distinct from 0/1: P1 with boundary slope +4, which boundary compresses to the unique Moebius band B1 ⊂ Xk
such that ∂ B1 = 2μ−λ, and P2 with boundary slope −4, which boundary compresses to the unique Moebius band B2 ⊂ Xk
such that ∂ B2 = 2μ + λ. Therefore P1 and P2 are unique relative to their boundary slope; the trivial knot k can be repre-
sented as the pretzel knots (0,1,1) or (0,−1,−1) and in these projections k spans the unique Seifert Klein bottles with
boundary slopes 4,−4, respectively, both of which have the trivial knots as meridian circle.

Therefore part (b) holds, and for part (a) only the case when k is trivial and P has boundary slope 0/1 remains. But
in this last case, if D is the meridian disk of the solid torus Xk then ∂ D and ∂ P both have the same boundary slope and
so P and D can be isotoped in Xk so that ∂ D and ∂ P are disjoint, and hence so that P ∩ D intersect transversely and
minimally in circles only. Necessarily, P ∩ D is nonempty and consists of orientation preserving circles in P , i.e. of meridians
or longitudes of P (cf. Section 2.1). As an innermost disk D ′ of P ∩ D ⊂ D compresses P along ∂ D ′ , the circle ∂ D must be a
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meridian of P , for otherwise ∂ D would be a longitude of P that bounds some Moebius band B ⊂ P , and B ∪∂ D ′ would be
a closed projective plane in S3, an impossibility. Hence the meridian circle of P is a trivial knot in S3. �

The above lemma can be used to give conditions under which a knot bounding a Seifert Klein bottle P is hyperbolic in
terms of the lifts of the meridians and the longitudes of P .

Lemma 3.9. Let K be a nontrivial knot with Seifert Klein bottle P such that X(P ) is atoroidal. Let m1,m2 be the lifts of the meridian
circle m of P and L the collection of lifts of longitudes of P . If, in X(P ), μ(�′) = 1 for each �′ ∈ L and either μ(m1) = 1 or μ(m2) = 1,
then XK is atoroidal, and in such case,

(a) if P is π1-injective in XK then K is hyperbolic,
(b) if the frontier T P of N(P ) is boundary compressible in XK and the meridian circle m of P is a nontrivial knot in S3 then either

K is hyperbolic and not 2-bridge, or K = T (3,7) and m = T (2,3).

Proof. By Lemma 2.3(b), no element of L, nor say m2, has a companion annulus in X(P ).
Suppose T is an essential torus in XK . Since, by [12, Lemma 4.2], the fact that K is a nontrivial knot implies that the

surface P is incompressible in XK , and both N(P ) and X(P ) are atoroidal, we may assume T intersects P transversely and
minimally with P ∩ T a nonempty collection of circles which are nontrivial in both P and T . Necessarily, P ∩ T ⊂ T is a
family of mutually parallel nontrivial circles, so we may assume that T ∩ N(P ) is a collection of annuli which are fibered
under the I-bundle structure of N(P ) = P ×̃ I , i.e. T ∩ N(P ) = (T ∩ P ) ×̃ I ⊂ N(P ), and that each component of T ∩ X(P )

is an annulus. Moreover, each circle in P ∩ T ⊂ P is either a meridian circle, a longitude circle, or a circle parallel to ∂ P .
It is not hard to see that if all circles P ∩ T ⊂ P are parallel to ∂ P then T must be parallel to ∂ XK , which is not the case.
Therefore there is a component A of T ∩ X(P ) such that at least one of its boundary components ∂1 A, ∂2 A is not parallel
to ∂ P in P . By [16, Lemma 2.3] we then have that, in ∂ X(P ), the circles ∂1 A, ∂2 A are either both parallel to m1, both parallel
to m2, or both parallel to some element of L. Given our hypothesis on L and m1,m2, since |P ∩ T | is minimal, this implies
necessarily that A is a companion annulus in X(P ) for m1. By minimality of |P ∩ T |, there are two annular components
A′, A′′ of T ∩ N(P ) with, say, ∂1 A = ∂1 A′ , ∂2 A = ∂1 A′′ , and with ∂2 A, ∂2 A′′ ⊂ ∂N(P ) = ∂ X(P ) parallel to m2. Applying [16,
Lemma 2.3] again, it follows that some component of T ∩ X(P ) must be a companion annulus of m2 in X(P ), which by
hypothesis is not the case.

Therefore XK is atoroidal and so by [15] the knot K is either a hyperbolic or torus knot, hence part (a) holds by
Lemma 3.8(b)(i). Suppose now T P is boundary compressible in XK . If m is a nontrivial knot then K is not a 2-bridge knot
by Lemma 3.8(a), and if K is a torus knot then by Lemma 3.8(b)(ii) K must be the T (3,7) torus knot and m = T (2,3);
hence (b) holds. �
3.5. Meridians, centers, longitudes, and their lifts

Our first result gives a criterion to identify the lifts of a meridian or longitude circle of a once punctured Klein bottleP ;
along with Lemma 2.3(c), this result will provide a simple algebraic way of identifying the lifts of the meridian.

Lemma 3.10. Let P be a once punctured Klein bottle and H = P ×̃ I . If A is an incompressible annulus properly embedded in H with
∂ A ⊂ ∂ H \ ∂ P , and A is not parallel into ∂ H, then A can be isotoped in H so that A ∩ P is either one meridian (if A is nonseparating)
or one longitude (if A is separating) circle of P ; in particular, ∂ A are the lifts of the circle A ∩ P to ∂ H.

Proof. Let A P be an annular regular neighborhood of ∂ P in ∂ H , T be the twice punctured torus ∂ H \ int A P , and M be the
manifold obtained by cutting H along P , so that M = T × I with T corresponding to T × 0.

Isotope A and P in H so as to intersect transversely and minimally. If A ∩ P = ∅ then A lies in M = T × I with ∂ A ⊂ T ×0;
but then A is parallel into T × 0 in M (cf. [17, Corollary 3.2]), and hence A is parallel into ∂ H in H , contradicting our
hypothesis; thus A ∩ P �= ∅. Since A is orientable, A ∩ P consists of a collection of circles which preserve orientation in P ,
i.e., of longitudes of P only or meridians of P only. If α,β are distinct components of A ∩ P which cobound an annulus
A′ ⊂ A with P ∩ int A′ = ∅, then the annulus A′ ∩ M has both of its boundary components in T × 1, and hence A′ is parallel
into T × 1 in T × I . It follows that A′ is parallel into P in H , contradicting the fact that A ∩ P is minimal. Therefore, A ∩ P
consists of a single circle γ , a meridian or longitude of P , and so ∂ A are the lifts of γ to ∂ H . �

Now let m be the meridian circle of P , and let c, � be a center and a longitude circle of P , respectively. If c(n), �(n) ⊂ P
denote the circles obtained by Dehn-twisting n-times the circles c, � along m, it follows from [16, Lemma 3.1] that the
collections {c(n) | n ∈ Z} and {�(n) | n ∈ Z} consist of all center and longitude circles of P up to isotopy.

This fact generalizes into the following result, which describes the construction of the twisted lifts of all centers of P
and of all lifts of longitudes; its proof follows easily from the fact that Dehn-twisting P ×̃ I along the fibered annulus
A(m) ⊂ P ×̃ I defined in Section 2.1 is an automorphism of H that fixes m and maps P ⊂ H into itself.
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Fig. 6.

Fig. 7.

Lemma 3.11. Let P be a once punctured Klein with meridian circle m ∈ P and fibered annulus A(m) ⊂ H = P ×̃ I . Let c0, c1 be a pair
of disjoint center circles of P with c′

0, c′′
0 and c′

1, c′′
1 their twisted lifts to ∂ H, respectively, and let �′ ⊂ ∂ H be the lift of any longitude

of P .
Let c0(n), c1(n) ⊂ P and c′

0(n), c′′
0(n), c′

1(n), c′′
1(n), �′(n) ⊂ ∂ H be the circles obtained from c0, c1, c′

0, c′′
0, c′

1, c′′
1, �′ after Dehn

twisting H n-times along A(m). Then,

(a) the collection {(c0(n), c1(n)) | n ∈ Z} consists of all pairs of disjoint centers of P , and the twisted lifts of each ci(n) are the circles
c′

i(n), c′′
i (n);

(b) the collection {�′(n) | n ∈ Z} consists of all lifts of longitudes of P .

4. The knots K (p,q)

We begin this section by providing a detailed construction of the family of knots K (p,q) given in Section 1. Let H be
a genus two handlebody standardly embedded in S3 with a complete system of meridian disks D0, D1, as shown in Fig. 6,
and let c′

0, c′′
0 and c′

1, c′′
1 be the four circles embedded in the boundary ∂ H shown in the same figure; notice that any pair

formed by one circle in c′
0, c′′

0 and one in c′
1, c′′

1 give rise to a basis of π1(H). The homological sums �′
0 and �′

1 of the pairs
of curves c′

0, c′′
0 and c′

1, c′′
1, respectively, indicated in Fig. 7, bound disjoint Moebius bands B0, B1 in H , respectively.

A waist disk D2 of H separating B1 and B2 can be constructed from the meridian disk D0 of H in Fig. 9, which is
disjoint from B1 and intersects B0 in a single essential arc, by taking the frontier of a regular neighborhood of D0 ∪ c′

1 (or
of D0 ∪ c′′

1) in H ; such a waist disk of H is unique up to isotopy.
We now connect the Moebius bands B0, B1 with the rectangle R shown in Fig. 8 and produce a properly embedded

Seifert Klein bottle P (0,0) in H whose boundary ∂ P (0,0) is isotopic to the knot K (0,0) shown in Fig. 1; notice the cores
c0, c1 of B0, B1, respectively, are disjoint centers of P (0,0). The fact that R intersects D2 transversely in a single arc implies
that H = P (0,0) ×̃ I , whence H ′ = X(P (0,0)), by Section 3.2 that the twisted lifts of the centers c0, c1 are the pairs c′

0, c′′
0

and c′
1, c′′

1, respectively, and by Section 2.1 that �′
0 = ∂ B0 and �′

1 = ∂ B1 are the lifts of the longitudes of P corresponding to
the centers c0, c1, respectively. In particular, P (0,0) is unknotted.

Finally, consider the circles m0,m1 shown in Fig. 10, which are disjoint from K (0,0). Relative to the base of π1(H) dual
to the meridian disks D0, D1, m0,m1 give rise to conjugate primitive words and so m0,m1 cobound a nonseparating annulus
in A(0,0) in H by Lemma 2.3(c). By Lemma 3.10, it follows that m0,m1 are the lifts of the meridian m of P (0,0), so A(0,0)

can be isotoped so as to intersect P (0,0) in m; thus A(0,0) is the fibered annulus generated by m in H = P ×̃ I .
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Fig. 8. The Seifert Klein bottle bounded by K (0,0) in H .

Fig. 9.

Fig. 10.

By Lemma 3.11, Dehn twisting H n times along A(0,0) for n ∈ Z gives rise to the collections {(c′
0(n), c′′

0(n)) | n ∈ Z} and
{(c′

1(n), c′′
1(n)) | n ∈ Z} of twisted lifts of disjoint pairs of centers of P , as well as to the collection {�′(n) | n ∈ Z} of all lifts of

longitudes of P (with c′
0 giving rise to c′

0(n), �′
0 to �′

0(n), etc.). At the same time the waist disk D2 ⊂ H gives rise to a waist
disk D2(n) separating the twisted lifts c′

0(n) ∪ c′′
0(n) and c′

1(n) ∪ c′′
1(n).

Remark 4.1. Any once punctured Klein bottle with H as regular neighborhood can be constructed following the procedure
outlined above for P (0,0). That is, once the pairs of circles c′

0, c′′
0 and c′

1, c′′
1 (such that any pair formed by one circle in c′

0, c′′
0

and one in c′
1, c′′

1 is a basis for π1(H)), and the disk D2 separating them are given, any rectangle R ⊂ H that intersects D2
in one arc may be used to join the Moebius bands B0, B1; the latter condition on R guarantees that H = P ×̃ I . In general,
different rectangles R will give rise in H to nonisotopic once punctured Klein bottles whose meridians induce nonisotopic
fibered annuli.

For any integers p,q, the Seifert Klein bottle P (p,q) and the knot K (p,q) = ∂ P (p,q) are then obtained by Dehn twisting
the pair (P (0,0), K (0,0)) p and q times along the disks D0, D1 of Fig. 1, respectively, as explained in Section 1. We will
denote the pairs of twisted lifts of centers of P (p,q) by c′ (n, p,q), c′′(n, p,q) and c′ (n, p,q), c′′(n, p,q), by D2(n, p,q) ⊂ H
0 0 1 1
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Fig. 11. The knot K (−1,1) ⊂ ∂H .

the waist disk that separates these pairs, by �′(n, p,q) the lifts of the longitudes of P (p,q), and by A(p,q) ⊂ H the fibered
annulus in H = P (p,q) ×̃ I induced by the meridian circle m of P (p,q) (with c′

0(n) giving rise to c′
0(n, p,q) after the Dehn

twists along D0, D1, etc.).
By construction we have H = N(P (p,q)) = P (p,q) ×̃ I and H ′ = X(P (p,q)), so P (p,q) is unknotted. Let π1(H ′) = 〈x, y〉,

where x, y is the base dual to the complete disk system of H ′ indicated in Fig. 1 (with the disks, and hence the circles x, y,
oriented by the arrow head and arrow tail shown in the same figure). It is not hard to see that the words in π1(H ′) =
〈x, y | −〉 corresponding to the circles constructed above, up to equivalence, are the ones given in the next lemma; for
convenience, we may denote the elements [c′

0(n, p,q)], [c′′
0(n, p,q)], etc., of π1(H ′) simply by c′

0(n, p,q), c′′
0(n, p,q), etc.

Lemma 4.2. In π1(H ′) = 〈x, y | −〉,

(i) c′
0(n, p,q) ≡ xp(xp+1 yxp yq+1xp y)n;

(ii) c′′
0(n, p,q) ≡ xp yxy(yxp yxp yqxp yxp yxp)n;

(iii) c′
1(n, p,q) ≡ yxp yxp yq(yq+1xp yxp+1 yxp)n;

(iv) c′′
1(n, p,q) ≡ yqxp yxp(xp yxp yqxp yxp yxp y)n;

(v) �′
0(n, p,q) ≡ (xp+1 yxp yq+1xp y)nxp+1 y(yxp yxp yqxp yxp yxp)nxp y;

(vi) �′
1(n, p,q) ≡ (yq+1xp yxp+1 yxp)n yxp yxp yqxp yxp(xp yxp yqxp yxp yxp y)n yq;

(vii) ∂ D2(n, p,q) ≡ (
xp yxp+1 yxp yq+1)n(

yqxp yxp yxp yxp yxp)n(
yxp yxp yxp yqxp yxp)n

xp yxp(
yqxp yxp yxp yxp yxp)n

y

· (xp yxp+1 yxp yq+1)n
xp yxp(

xp yxp yqxp yxp yxp y
)n

y;
(viii) m0(p,q) ≡ xp yxp yxp yxp yxp yq;

(ix) m1(p,q) ≡ xp yxp+1 yxp yq+1;

(x) ∂ P (p,q) ≡ xp yx2p+1 yxp yqxp yxp yq.

Lemma 4.3. The knot K (p,q) is trivial if (p,q) = (0,0), (0,1), and a torus knot if p = 0 and q �= −1,0 (with K (0,q) = T (2,2q − 1))
or (p,q) = (−1,1) (with K (−1,1) = T (5,8)). In all other cases, K (p,q) is a hyperbolic tunnel number one knot which is not 2-bridge,
and its Seifert Klein bottle P (p,q) is π1-injective in the knot exterior iff (p,q) is not a pair of the form (−1,2), (−2,1), or (p,0).

Proof. It is easy to see that K (0,0) and K (0,1) are trivial knots, K (−1,1) = T (5,8) (see Fig. 11), and K (0,q) = T (2,2q − 1)

for all q. From now on we assume that (p,q) is not a pair of the form (0,0), (0,1), (−1,1), or (0,q).
By Lemma 3.7, since �′

0(0, p,q) ≡ x(xp y)2 is primitive in π1(H ′), all the knots K (p,q) have tunnel number one.
By Corollary 2.4, the Seifert Klein bottle P (p,q) is π1-injective iff [∂ P (p,q)] is not primitive nor a power in π1(H ′).

By Lemma 4.2(x), ∂ P (p,q) ≡ xp yx2p+1 yxp yqxp yxp yq , so ∂ P (p,0) ≡ x(x2p y)3 is a primitive word. Suppose now q �= 0. If
p �= −1 then by Lemma 2.1 ∂ P (p,q) is primitive/power iff q = 1; since ∂ P (p,1) ≡ xp+1(xp y)5, it follows that ∂ P (p,1) is
primitive/power iff |p + 1| � 1 iff p = −2 (as p �= 0,−1), in which case ∂ P (−2,1) is primitive. If p = −1 then ∂ P (−1,q) =
xyxyxyqxyxyq , so by Lemma 2.1, as q �= 0, ∂ P (−1,q) is a power iff q = 1 (which corresponds to the torus knot K (−1,1) =
T (5,8)) and primitive iff q = 2. Therefore, P (p,q) is π1-injective iff (p,q) is not one of the pairs (−1,2), (−2,1), or (p,0).

Now, for p �= 0, the circle m1(p,q) is a positive or negative braid on s = 3 strings with c = 6|p| crossings (see Fig. 10),
whence its genus is g = (c − s + 1)/2 = 3|p| − 1 � 2 (cf. [14]), and so the meridian circle of P (p,q) is a nontrivial knot
which is distinct from the genus one knot T (2,3). Since ∂ P (−1,2), ∂ P (−2,1), ∂ P (p,0) are all primitive in π1(H ′) by the
argument above, the hyperbolicity of K (p,q) for (p,q) �= (0,0), (0,1), (−1,1), (0,q) can be established via Lemma 3.9 by
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checking that μ(�′
0(n, p,q)) = 1 = μ(�′

1(n, p,q)) and either μ(m0(p,q)) = 1 or μ(m1(p,q)) = 1 hold in H ′ = X(P (p,q)) for
all n and the allowed values of (p,q).

By Lemma 4.2, m0(p,q) ≡ xp yxp yxp yxp yxp yq ∈ π1(H ′). As p �= 0, if q �= 0 then the word for m0(p,q) is cyclically
reduced, while the cyclic reduction of m0(p,0) is x2p yxp yxp yxp y; in either case the word for m0(p,q) contains both y
and y factors and so it is neither primitive nor a power by Lemma 2.1; thus μ(m0(p,q)) = 1 for all p,q by Lemma 2.3(b).

Consider now �′
0(n, p,q) ≡ (xp+1 yxp yq+1xp y)nxp+1 y(yxp yxp yqxp yxp yxp)nxp y ∈ π1(H ′). Clearly �′

0(0, p,q) ≡ x(xp y)2 is
primitive. If |n| � 2 then, since p �= 0, it is not hard to see that the cyclic reduction of the word �′

0(n, p,q) contains both y
and y factors, while for n = ±1 the word �′

0(n, p,q) contains both yn and y3n factors. Hence in all cases μ(�′
0(n, p,q)) = 1

by Lemmas 2.1 and 2.3(b).
Finally, �′

1(0, p,q) ≡ xp yxp yqxp yxp yq−1 ∈ π1(H ′). For n = 0, if |p| � 2 then �′
1(0, p,q) contains at least three factors xp ;

if |p| = 1 then �′
1(0, p,0) contains both y and y factors, �′

1(0, p,1) = xp(xp y)3 is primitive, and for any q �= 0,1 the word
�′

1(0, p,q) contains three different powers y, yq, yq−1. Finally, for |n| = 1 we have �′
1(n, p,q) ≡ (x(xp y)2)|n| , a primitive

word, and for |n| � 2 the word �′
1(n, p,q) contains both y and y factors. Thus again μ(�′

1(n, p,q)) = 1 in all cases. �
Lemma 4.4.

(a) The boundary slope of the surface P (p,q) is r = 4q − 36p.
(b) If (p,q) is not a pair of the form (0,0), (0,1), (−1,1), (0,q) then, except for K (−1,2)(r) = S2(2,2,3), K (−2,1)(r) =

S2(2,2,7), and K (p,0)(r) = S2(2,2, |6p − 1|), the manifold K (p,q)(r) is irreducible and toroidal.

Proof. Since ∂ P (p,q) lies in ∂ H , the boundary slope of ∂ P (p,q) coincides with the linking number between ∂ P (p,q) and
a parallel copy in ∂ H . From Fig. 1 we can thus see that the boundary slope of ∂ P (p,q) is r = 0, and that the above linking
number decreases by 62 = 36 with each positive Dehn twist along D0, and increases by 22 = 4 with each positive Dehn
twist along D1. Thus the boundary slope of P (p,q) is r = 4q − 36p and (a) holds.

For part (b) suppose (p,q) �= (0,0), (0,1), (−1,1), (0,q), and denote P (p,q) by P for simplicity. Let X̃ and Ñ be the
manifolds obtained by attaching 2-handles to H ′ = X(P ) and N(P ) along ∂ P , respectively; thus, if r is the boundary slope
of P then K (p,q)(r) = X̃ ∪∂ Ñ . We will consider N(P ) as a Seifert fibered space over a disk with two singular fibers
of indices 2,2; in particular, the pair (Ñ, ∂ Ñ) is irreducible, and the circle �′

0(0, p,q) ⊂ ∂ Ñ is a fiber of Ñ disjoint from
∂ P (p,q).

By Lemma 4.3, if (p,q) �= (−1,2), (−2,1), (p,0) then the surface P is π1-injective in the exterior of K (p,q), which
implies that the surface T P is incompressible in H ′ = X(P ) and hence, by the 2-handle addition theorem, that the pair
( X̃, ∂ X̃) is irreducible. Therefore K (r) = X̃ ∪∂ Ñ is irreducible and ∂ X̃ = ∂ Ñ is an incompressible torus in K (r).

Now, by Lemma 4.2, [∂ P (p,0)] ≡ x(x2p y)3 is primitive in π1(H ′) = π1(X(P )) and so X̃ is a solid torus; thus the Seifert
fibration of Ñ extends to a Seifert fibration of K (p,0)(r) = X̃ ∪∂ Ñ over the 2-sphere with fibers of indices 2,2,n, where
n = |6p − 1| is the order of the cyclic group

π1( X̃)/
〈[
�′

0(0, p,0)
]〉 = π1(H ′)/

〈[
∂ P (p,0)

]
,
[
�′

0(0, p,0)
]〉 = Z|6p−1|.

Therefore K (p,0)(r) = S2(2,2, |6p − 1|). The identities K (−1,2)(r) = S2(2,2,3) and K (−2,1)(r) = S2(2,2,7) follow in a
similar way. �

We now classify the words [c′
i(n, p,q)] and [c′′

i (n, p,q)] which are primitive or a power in π1(H ′); we will need this
information to discern which knots K (p,q) admit a (1,1) decomposition.

Lemma 4.5. In π1(H ′), for p �= 0,

(a) • c′
0(n, p,q) is primitive iff (n, p,q) = (0,±1,q), (1,−2,0), (1,−1,1), (1, p,−1), (−1,2,0), (−1,1,1), (2,−1,0), (−2,1,0),

or (n, p,q) = (n,1,−1) for all n;
• c′

0(n, p,q) is a power iff (n, p,q) = (0, p,q) for |p| � 2, or (n, p,q) = (1,−1,0), (−1,1,0);

(b) • c′′
0(n, p,q) is primitive iff (n, p,q) = (0,2,q), (1, p,0), (1,−1,2), (1,−2,1);

• c′′
0(n, p,q) is a power iff (n, p,q) = (0,1,q), (1,−1,1);

(c) • c′
1(n, p,q) is primitive iff (n, p,q) = (0,±1,1), (0,±1,3), (−1,2,0), (−1,−1,2), or (−1, p,1);

• c′
1(n, p,q) is a power iff (n, p,q) = (−1,1,0) or (0, p,2);

(d) • c′′
1(n, p,q) is primitive iff (n, p,q) = (0,±1,2) or (0, p,0);

• c′′
1(n, p,q) is a power iff (n, p,q) = (0, p,1).

Proof. The words for c′
i(n, p,q) and c′′

i (n, p,q) in π1(H ′) = 〈x, y | −〉 are given in Lemma 4.2. It is easy to see that in the
given cases the words c′

i(n, p,q) and c′′
i (n, p,q) are indeed primitive or powers as claimed. In order to establish the converse

statements we apply Lemma 2.1; the fact that a word of the form us vt in the free group 〈u, v | −〉 is primitive iff |s| = 1 or
|t| = 1, and a power iff s = 0, |t| � 2 or |s| � 2, t = 0, will also be of use.
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So suppose some word c′
i(n, p,q) or c′′

i (n, p,q) is primitive or a power in π1(H ′). We consider the case of the word
c′

0(n, p,q) ≡ xp(xp+1 yxp yq+1xp y)n in part (a) in full detail; the other parts of the lemma follow along entirely similar lines,
so their proof will be omitted.

(1) For n = 0, c′
0(0, p,q) ≡ xp . Thus c′

0(0, p,q) is primitive iff p = ±1 and a power iff |p| � 2.
(2) For n = 1, c′

0(1, p,q) ≡ x2p+1 yxp yq+1xp y.

• If q �= −1 then x2p+1 yxp yq+1xp y is cyclically reduced, so by Lemma 2.1 either all exponents of x are 1 or all −1, or
all exponents of y are 1 or all −1; that is, either p = −1 or q = 0. By Lemma 2.1, the word c′

0(1,−1,q) ≡ xyxyq+1xy
is primitive iff q = 1 and a power iff q = 0, while the word c′

0(1, p,0) ≡ x2p+1 yxp yxp y = xp+1(xp y)3 is primitive iff
p + 1 = ±1 iff p = −2 (as p �= 0) and a power iff p = −1.

• If q = −1 then c′
0(1, p,−1) ≡ x2p+1 yx2p y is primitive for all p.

Remark. For the rest of the argument in this proof, we will implement the strategy used in (2) and will not explicitly
indicate the use of Lemma 2.1 for the sake of brevity.

(3) For n = −1, c′
0(−1, p,q) ≡ xyxp yq+1xp y.

• If q �= −1 then xyxp yq+1xp y is cyclically reduced, hence either p = 1 or q = 0. The word c′
0(−1,1,q) ≡ xyxyq+1xy is

primitive iff q = 1 and a power iff q = 0, while the word c′
0(−1, p,0) ≡ xyxp yxp y is primitive iff p = 2 and a power iff

p = 1.
• If q = −1 then the word c′

0(−1, p,−1) ≡ xyx2p y ≡ x2p−1(xy)2 is primitive iff p = 1 (as p �= 0) and never a power.

(4) For n � 2, c′
0(n, p,q) ≡ xp(xp+1 yxp yq+1xp y)n .

• If p �= −1 and q �= −1 then c′
0(n, p,q) ≡ xp(xp+1 yxp yq+1xp y)n is cyclically reduced and x appears with the three distinct

exponents 2p + 1, p + 1, p, so c′
0(n, p,q) is never primitive nor a power.

• If p = −1, c′
0(n,−1,q) ≡ x(yxyq+1xy)n is cyclically reduced and y appears with exponents 1,2,q + 1, hence we must

have q + 1 = 0,1,2, i.e. q = −1,0,1.
– If q = −1 then c′

0(n,−1,−1) ≡ x(yx2 y)n = xyx2 y2x2 y(yx2 y)n−2 is cyclically reduced and both x and y appear with
exponents 1 and 2, so c′

0(n,−1,−1) is never primitive nor a power.
– If q = 0 then c′

0(n,−1,0) ≡ x(yxyxy)n ≡ un−1 v3 for the basis u = yxyxy and v = yx of π1(H ′), hence c′
0(n,−1,0) is

primitive iff n = 2 and never a power.
– If q = 1 then c′

0(n,−1,1) ≡ x(yxy2xy)n ≡ u2n−1 v2 for the basis u = yxy and v = yx of π1(H ′), hence c′
0(n,−1,1) is

neither primitive nor a power.
• For q = −1 and p �= −1 the word

c′
0(n, p,−1) ≡ xp(

xp+1 yx2p y
)n = x2p+1 yx2p yxp+1 yx2p y

(
xp+1 yx2p y

)n−2

is cyclically reduced and x appears with exponents 2p + 1,2p, p + 1, which are mutually distinct for p �= 1, in which
case c′

0(n, p,−1) is neither primitive nor a power, while for p = 1 the word c′
0(n,1,−1) ≡ x(x2 y)2n is always primitive.

(5) For n � −2,

c′
0(n, p,q) ≡ xp(

xp+1 yxp yq+1xp y
)|n| = xyxp yq+1xp yxp+1 yxp yq+1xp y

(
xp+1 yxp yq+1xp y

)|n|−2
.

• If q �= −1 then the word for c′
0(n, p,q) is cyclically reduced and x appears with exponents p + 1, p,1 while y appears

with exponents q + 1,1, so we must have p = 1 and q = 0; thus c′
0(n,1,0) ≡ x(x2 yxyxy)|n| ≡ u|n|−1 v3 for the basis

u = x2 yxyxy and v = xy of π1(H ′), so c′
0(n,1,0) is primitive iff n = −2 and never a power.

• If q = −1 then c′
0(n, p,q) ≡ xyx2p yxp+1 yx2p y(xp+1 yx2p y)|n|−2 and x appears with exponents 2p, p + 1,1, so p = 1

again; clearly c′
0(n,1,−1) ≡ x(x2 y)2|n| is always primitive.

Therefore part (a) holds. �
The following lemma is the last result needed in the proof of Theorem 1.1.

Lemma 4.6. If K (p,q) is a hyperbolic knot then K (p,q) is a (1,1)-knot iff (p,q) is a pair of the form (−1,0), (1,q), or (p,1), (p,2)

for p �= 0.
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Proof. By Lemma 4.3, (p,q) is not a pair of the form (0,0), (0,1), (−1,1), or (0,q). That K (p,q) admits a (1,1) decompo-
sition for (p,q) = (p,1), (p,2), (1,q), and (−1,0) follows directly from Lemma 3.6(a) using the following choices for ĉ0, ĉ1
and the fact that H ′ = X(P (p,q)):

(1) ĉ0 = c′
0(0, p,1) and ĉ1 = c′′

1(0, p,1); then [ĉ0] ≡ xp , [ĉ1] ≡ (yxp)2, whence μ(ĉ0) = |p| and μ(ĉ1) = 2, and
[∂ D2(0, p,1)] ≡ (yxp)2(yxp)2 ≡ [x|p|, v2] for the basis {x, v = yxp} of π1(H ′);

(2) ĉ0 = c′
0(0, p,2) and ĉ1 = c′

1(0, p,2); then [ĉ0] ≡ xp , [ĉ1] ≡ (yxp)2, so again μ(ĉ0) = |p| and μ(ĉ1) = 2 while
[∂ D2(0, p,2)] ≡ (yxp)2(yxp)2 ≡ [x|p|, v2] for the basis {x, v = yxp} of π1(H ′);

(3) ĉ0 = c′′
0(0,1,q) for q �= 1,2 (the cases q = 1,2 follow from (1) and (2) above); then [c′′

0(0,1,q)] = (yx)2, so μ(ĉ0) = 2,
while μ(ĉ1) = 1 by Lemma 4.5(c) and [∂ D2(0,1,q)] ≡ [u2, y] for the basis {u = yx, y} of π1(H ′);

(4) ĉ0 = c′
0(1,−1,0); then [ĉ0] ≡ (yx)3, so μ(ĉ0) = 3, and μ(ĉ1) = 1 by Lemma 4.5(c) while [∂ D2(1,−1,0)] ≡

(yx)2 y(xy)3x ≡ [u3, y] for the basis {u = yx, y} of π1(H ′).

Conversely, assume that K (p,q) admits a (1,1) decomposition and the pair (p,q) is not of the form (−1,0), (1,q), or
(p,1), (p,2) for p �= 0 (recall also that (p,q) is not a pair of the form (0,0), (0,1), (−1,1), or (0,q)); we show this situation
contradicts Lemma 3.6(a). The following fact will be useful in the sequel.

Claim 4.7. If μ(ĉ0) = 1 = μ(ĉ1) then n �= −1,0.

Proof. For n = −1,0 the word for [∂ D2(n, p,q)] in π1(H ′) has the following cyclic reductions:

[
∂ D2(0, p,q)

] ≡ (
yxp)2(

yxp)2
,[

∂ D2(−1, p,q)
] ≡ xp yxp yqxp yxp yxp yxyxp yqxp yxp yqxp yxp yxp yq yxyxp yq, q �= 0,[

∂ D2(−1, p,0)
] ≡ x2p yx2p yxp yxp yxyx2p yx2p yxp yxp yxy.

Thus [∂ D2(n, p,q)] �≡ [x, y] for n = −1,0, so the claim follows by Lemma 3.6(a)(i). �
We now consider two cases:

Case 1. μ(ĉ0) = 1.

By Lemmas 2.3(b) and 3.6(b), in π1(H ′), [ĉ0] is not a power and [ĉ1] is either primitive with μ(ĉ1) = 1 or a power with
μ(ĉ1) � 2. We thus consider the following subcases.

Subcase 1.1. [ĉ1] is primitive, μ(ĉ1) = 1.

As ĉ1 = c′
1(n, p,q) or c′′

1(n, p,q) gives rise to a primitive word in π1(H ′) then n = −1,0 by Lemma 4.5, contradicting
Claim 4.7.

Subcase 1.2. [ĉ1] is a power, μ(ĉ1) � 2.

By Lemma 4.5, ĉ1 must be one of c′
1(−1,1,0), c′

1(0, p,2), or c′′
1(0, p,1), contradicting our hypothesis that (p,q) is not of

the form (1,q), (p,1), (p,2).

Case 2. μ(ĉ0) � 2.

Then [ĉ0] is a power in π1(H ′); by Lemma 4.5, with the given restrictions on the pair (p,q), we must have ĉ0 = c′
0(0, p,q)

for |p| � 2 and q �= 1,2, and hence either [ĉ1] = [c′
1(0, p,q)] ≡ yq−1xp yxp or [ĉ1] = [c′′

1(0, p,q)] ≡ yqxp yxp .
Now, by Lemma 2.1, for any p �= 0, yq−1xp yxp is a power iff q = 2 while yqxp yxp is a power iff q = 1; thus μ(ĉ1) = 1 in

all cases. However, μ(ĉ0) = |p| � 2 since [ĉ0] = [c′
0(0, p,q)] ≡ xp , while [∂ D2(0, p,q)] ≡ (yxp)2(yxp)2 �≡ [xp, y] for the basis

{x, y} of π1(H ′), contradicting Lemma 3.6(a)(ii). �
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