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SUMMARY

Why are genes harmful when they are overexpressed?
By testing possible causes of overexpression pheno-
types in yeast, we identify intrinsic protein disorder
as an important determinant of dosage sensitivity.
Disordered regions are prone to make promiscuous
molecular interactions when their concentration is
increased, and we demonstrate that this is the likely
cause of pathology when genes are overexpressed.
We validate our findings in two animals, Drosophila
melanogaster and Caenorhabditis elegans. In mice
and humans the same properties are strongly associ-
ated with dosage-sensitive oncogenes, such that
mass-action-driven molecular interactions may be
a frequent cause of cancer. Dosage-sensitive genes
are tightly regulated at the transcriptional, RNA, and
protein levels, which may serve to prevent harmful
increases in protein concentration under physiolog-
ical conditions. Mass-action-driven interaction pro-
miscuity is a single theoretical framework that can
be used to understand, predict, and possibly treat
the effects of increased gene expression in evolution
and disease.

INTRODUCTION

Most of the genetic variation between any two individuals or

species consists of regulatory or copy number variants that alter

gene expression rather than coding sequence (Stranger et al.,

2007). Despite the importance of altered gene expression to

disease and evolution, it is not understood why only certain genes

are pathological when their expression is increased (are dosage

sensitive), and what the molecular mechanisms are that drive

these phenotypic changes (Semple et al., 2008). Indeed there

are no known molecular mechanisms that are predictive of

dosage sensitivity across the genome of an organism (Gelperin

et al., 2005; Semple et al., 2008; Sopko et al., 2006). As a result,

it is currently very difficult to understand the consequences of

increased gene expression in either disease or evolution.
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In yeast, �80% of genes can be constitutively overexpressed

without any severe detrimental effect on growth (Gelperin et al.,

2005; Sopko et al., 2006). In contrast a subset of genes are harm-

ful when overexpressed. These dosage-sensitive genes are en-

riched for diverse and multiple functions (Gelperin et al., 2005;

Sopko et al., 2006), and they do not significantly overlap the

set of genes that are harmful when their expression is decreased

(Deutschbauer et al., 2005; Semple et al., 2008). Unlike essential

genes, dosage-sensitive genes are not enriched among the

subunits of protein complexes (Sopko et al., 2006). Moreover,

whereas the loss-of-function phenotype of one subunit of

a protein complex is highly predictive of the loss-of-function

phenotype of the other subunits (Fraser and Plotkin, 2007; Hart

et al., 2007), this is not true for overexpression phenotypes

(Semple et al., 2008). Indeed, in the majority of cases examined

overexpression causes phenotypic effects that are different from

underexpression (Niu et al., 2008; Sopko et al., 2006). It has also

been shown that dosage-sensitive genes are only very weakly

enriched for cell-cycle-regulated genes (Sopko et al., 2006), so

forced expression of periodically expressed genes cannot be

a major cause of phenotypic change. In short, it is not under-

stood why cells function robustly following the overexpression

of most genes but are very sensitive to increases in the levels

of a subset of genes. It is also not clear what the most important

molecular mechanisms are that cause gain-of-function pheno-

types following gene overexpression.

To resolve this, we systematically tested possible causes of

dosage sensitivity in yeast. We find that the intrinsic disorder

content of a protein is an important determinant of dosage sensi-

tivity. These disordered regions are prone to make promiscuous

molecular interactions when their concentration is increased,

and we present evidence that this is a frequent cause of dosage

sensitivity. We confirm our findings in two animals, Drosophila

melanogaster and Caenorhabditis elegans, and we show that

the properties of dosage-sensitive genes detected in model

organisms are also strongly associated with dosage-sensitive

oncogenes in mice and humans. Finally, we show that dosage-

sensitive genes are tightly regulated at the transcriptional,

RNA, and protein levels, and we argue that this control acts to

prevent potentially harmful increases in protein concentration

under physiological conditions. The interaction promiscuity

theory yields predictions for future experimental studies and
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Figure 1. Features that Predict Dosage-Sensitive Genes in Yeast

Twenty-seven genomic and experimental features tested for their ability to predict dosage-sensitive genes in yeast by measuring the average area under

a receiver operating characteristic (ROC) curve in a tenfold cross-validation experiment. The features and their correlations with dosage sensitivity are described

in Table S1. Features that are significantly predictive are indicated, **p < 0.01, *p < 0.05 (one-tailed t test). Error bars show the 95% confidence interval for each

predictor.
provides a single theoretical framework for understanding, pre-

dicting, and potentially treating dosage sensitivity in disease

and evolution.

RESULTS

Testing Possible Determinants of Dosage
Sensitivity in Yeast
Loss-of-function phenotypes resulting from decreased gene

expression can be globally predicted in both unicellular and multi-

cellular animals (Lee et al., 2008; Pena-Castillo et al., 2008). In

contrast, the genes that are harmful when their expression levels

are increased cannot be predicted, primarily because the mech-

anisms that drive overexpression phenotypes are unknown

(Gelperin et al., 2005; Semple et al., 2008; Sopko et al., 2006).

In the budding yeast Saccharomyces cerevisiae �18% of

genes have a detrimental effect on growth when their expression

is increased (Gelperin et al., 2005; Sopko et al., 2006). In most

cases the overexpression phenotypes differ from loss-of-func-

tion phenotypes, suggesting that they normally represent gain-

of-function effects (Gelperin et al., 2005; Semple et al., 2008;

Sopko et al., 2006). Some of these phenotypic changes may
result from the ‘‘misexpression’’ of a regulatory gene in a condi-

tion in which that gene is not normally expressed (Sopko et al.,

2006). However, this cannot explain the vast majority of overex-

pression phenotypes. First, nearly all of the genes that are harm-

ful when overexpressed are constitutively expressed during

normal growth (93%; Holstege et al., 1998). Second, 87% of

them have expression patterns that do not alter in level during

the cell division cycle during normal growth (Gauthier et al.,

2008). Third, 85% of them do not encode proteins that are

considered to have regulatory functions (Segal et al., 2003).

Therefore, misexpression is likely to explain only a few cases

of overexpression phenotypes.

To identify alternative causes of dosage sensitivity, we tested

a total of 27 genomic and experimental features for their relation-

ship with overexpression phenotypes and used cross-validation

to assess the use of each feature as a predictor of dosage sensi-

tivity (see Experimental Procedures and Table S1). Among the

features for which we find no relationship with dosage sensitivity

are the abundance of an mRNA, the number of protein complex

interactions, the aromaticity of a protein, the underwrapping of

a protein (a measure of backbone exposure), and the aggrega-

tion propensity of a protein (Figure 1). Thus, for most genes,
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sensitivity to a dosage increase must be caused by a mechanism

distinct from misassembly of protein complexes, forced misex-

pression, or protein aggregation.

Intrinsic Protein Disorder and Linear Motif Content
Are Predictive of Dosage Sensitivity
Many proteins contain both structured regions and intrinsically

unstructured, or disordered, regions (Russell and Gibson, 2008).

We find that the content of these intrinsically disordered regions

is a good predictor of dosage sensitivity in yeast (r = 0.94, p =

2.9 3 10�5, Figure 2). This is seen using three alternative

measures of intrinsic disorder (Figure 1). Moreover the strong

relationship with disorder is seen when only considering genes

with low (Figure 2B), medium (Figure 2C), or high (Figure 2D)

levels of endogenous expression. It is also very strong when

excluding all genes with expression levels that change during

the cell cycle (Figure 2E) and when excluding all regulatory genes

(Figure 2F). Disorder is therefore predictive of dosage sensitivity

for many different types of genes in yeast.

To understand the mechanism that connects disordered

regions to dosage sensitivity it is necessary to consider the func-

tions of these regions. Unstructured protein regions are impor-

tant because they contain short, linear functional sites within

proteins (Russell and Gibson, 2008). Many recognition events

within a cell—for example protein associations and posttransla-

tional modifications—are mediated by the binding of globular

protein domains to linear peptide sequence motifs contained

within unstructured regions (Castagnoli et al., 2004; Collins

et al., 2008; Russell and Gibson, 2008). It is possible therefore

that dosage sensitivity is related to the ability of proteins to

make molecular interactions via linear sequence motifs. Indeed,

predicting instances of known linear motifs (Obenauer et al.,

2003) across the yeast proteome shows that the number of

known linear motifs within a protein is also highly correlated

with dosage sensitivity (r = 0.91, p < 2.3 3 10�4). That is, both

the intrinsic disorder content (Figures 2A–2F) and the linear motif

content (Figure 2G) of a protein are predictive of dosage sensi-

tivity in yeast.

The Interaction Promiscuity Hypothesis
The binding of two molecules depends not just on their affinity

but also on their concentration. That is, as a simple consequence

of mass action, any two molecules will associate if their concen-

tration is high enough. Within a cell, many proteins have both

physiological targets to which they bind with high affinity as

well as additional targets to which they will bind if their concen-

tration is increased. For high-affinity molecular interactions

mediated via the large and complex interaction interfaces of

two globular domains there are few potential ‘‘off target’’ interac-

tions within a cell. In contrast, for interactions mediated by short

linear motifs—for example the recognition of linear peptide

motifs or the binding of transcription factors to DNA—there are

many potential off target interactions with only marginally

reduced affinities. This is because linear motifs are short and

degenerate and so occur at high frequencies by chance in bio-

logical sequences (Diella et al., 2008; Russell and Gibson,

2008). Moreover, motif-binding protein domains are present in

families of proteins with very similar binding site preferences
200 Cell 138, 198–208, July 10, 2009 ª2009 Elsevier Inc.
and so will bind to each others’ physiological targets if their

concentration is increased (Diella et al., 2008; Russell and

Gibson, 2008). For example, proteins containing SH3 domains

bind to sequence motifs based on the consensus sequence

PxxP, and the binding site preferences of individual proteins

are both highly promiscuous and overlapping (Tong et al.,

2002). Thus the profile and promiscuity of the interactions of

proteins that contain linear motifs, or that are able to bind to

linear motifs, are inherently sensitive to increases in protein

concentration (Jones et al., 2006).

We propose that it is this potential for concentration-depen-

dent interaction promiscuity, mediated via linear motif interac-

tions, that is a major cause of dosage sensitivity in yeast.

Dosage Sensitivity Correlates with Binary
Protein Interaction Degree
As a test of the interaction promiscuity theory, we asked whether

there is any relationship between the number of protein interac-

tions known for a protein and its likelihood of being dosage sensi-

tive. As predicted by the hypothesis, there is (Figure 3A). Proteins

that have more known binary interaction partners are much more

likely to be dosage sensitive (r = 0.92, p = 1.6 3 10�4). This is not

true when considering stable (high-affinity) interactions that can

be identified using purification techniques (Figure 1, Table S1

available online) but only when considering binary interactions

detected by sensitive interaction assays. This is exactly what is

expected from the interaction promiscuity hypothesis, which

predicts that it is the number of potential low-affinity interactions

that is the important determinant of dosage sensitivity.

Linear Motif-Binding Proteins Are Dosage Sensitive
A further prediction of the promiscuity theory is that if linear motif

interactions are an important cause of dosage sensitivity, then

not just linear motif-containing proteins but also linear motif-

binding proteins should be dosage sensitive. Increasing the

concentration of a protein that can bind to short linear motifs

should cause mass-action-driven promiscuous interactions

just as increasing the concentration of a motif-containing protein

does. To test this, we compiled a set of yeast proteins that

contain domains that recognize linear sequence motifs and

asked whether these proteins are also more likely to be dosage

sensitive: they are (Figure 3B). Proteins that can bind to linear

motifs are highly dosage sensitive (p = 6.7 3 10�15). Thus both

linear motif-containing and linear motif-binding proteins are

dosage sensitive, in agreement with the promiscuity hypothesis.

Dosage Sensitivity in Drosophila

In yeast we find that four measures of the potential of a protein to

make promiscuous molecular interactions when overex-

pressed—the disorder content, the linear motif content, binary

protein interaction degree, and the ability to bind linear motifs—

are all predictive of dosage sensitivity. To test the generality of

this result, we asked whether the same four measures are also

predictive of dosage sensitivity in a second species, the fly

Drosophila melanogaster. We used systematic data from

screens in which �1000 genes have been overexpressed in

specific tissues and their phenotypic consequences assayed

(Rorth, 1996; Toba et al., 1999). Just as in yeast, we find that



Figure 2. Intrinsic Protein Disorder and Linear

Motif Content Are Associated with Dosage

Sensitivity in Yeast

(A) There is a very good correlation between the total

length of intrinsically disordered regions within

a protein and dosage sensitivity in yeast (Spearman’s

rank correlation coefficient r = 0.94, p = 2.9 3 10�5).

This correlation is still strong after normalizing by

protein length (Figure S1A). The strong relationship

between dosage sensitivity and intrinsic disorder is

also seen when only considering genes with low (B),

medium (C), or high (D) levels of endogenous expres-

sion (Beyer et al., 2004). It is also seen when excluding

all genes with cell-cycle-regulated (Gauthier et al.,

2008) expression patterns (E) and when excluding all

regulatory genes (Segal et al., 2003) (F). There is also

a strong correlation between the number of predicted

linear motifs (Obenauer et al., 2003) a protein contains

and its dosage sensitivity (r = 0.91, p = 2.4 3 10�4) (G).

The effect is still strong after normalizing by protein

length (Figure S1B). Also, the trend is strong when

only considering either enzymatic motif-binding sites

(Chi squared test for trend, p = 5.1 3 10�11) or nonen-

zymatic motif-binding sites (Chi squared test for trend,

p = 2.8 3 10�3). The dashed lines indicate the

frequency of dosage-sensitive genes for the whole

yeast genome.
Cell 138, 198–208, July 10, 2009 ª2009 Elsevier Inc. 201



all four predictions of the interaction promiscuity theory are vali-

dated in an animal. The intrinsic disorder content (r = 0.83,

p = 3.2 3 10�5, Figure 4A), the linear motif content (r = 0.78,

p = 8.0 3 10�3, Figure 4B), the number of binary interactions

(r = 0.73, p = 0.01, Figure 4C), and the ability to bind to linear

motifs (Fisher’s exact test, p = 2.2 3 10�3, Figure 4D) are all

predictive of dosage sensitivity.

We conclude that the potential for concentration-dependent

interaction promiscuity is predictive of dosage sensitivity in

both yeast and flies.
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Figure 4. Dosage Sensitivity in Drosophila

melanogaster and Caenorhabditis elegans

Just as in S. cerevisiae, in D. melanogaster the

intrinsic disorder content (A) (r = 0.83, p = 3.2 3

10�5), the linear-motif content (B) (r = 0.78, p =

8.0 3 10�3), the number of binary protein interac-

tions (C) (r = 0.73, p = 0.01), and the ability to

bind to linear motifs (D) (p = 2.2 3 10�3) are predic-

tive of dosage sensitivity.

(E) Integrating information on intrinsic disorder,

binary interaction degree, and linear motif binding,

we predicted dosage-sensitive genes in C. elegans

(see Experimental Procedures). We overexpressed

8 of these genes and found that 6 (75%) induced

embryonic lethality. The horizontal line indicates

the background rate of lethality following heat

shock. **p < 0.01, *p < 0.05 (Fisher’s exact test).
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A B Figure 3. Dosage-Sensitive Genes in Yeast

Have Many Binary Protein Interactions and

Bind to Short Linear Motifs

(A) There is a good correlation between the number

of binary protein interactions known for a protein

and its dosage sensitivity (r = 0.92, p = 1.6 3

10�4). Moreover, just as linear motif content is

predictive of dosage sensitivity (Figure 2), so is the

ability to bind to linear motifs (B) (p = 6.7 3 10�15,

Fisher’s exact test). The same result is seen when

only considering either enzymatic motif-binding

domains (p = 2.94 3 10�5) or nonenzymatic motif-

binding domains (p = 5.35 3 10�11).
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Predicting Dosage Sensitivity in C. elegans

To further confirm our findings, we integrated information on

protein disorder, linear motif binding, and protein interaction

degree to predict dosage-sensitive genes in a third species,

the nematode Caenorhabditis elegans (see Experimental Proce-

dures). We tested 8 of the most highly ranked genes and verified

6 (75%) as causing lethality when overexpressed (Figure 4E).

Figure 5. Dosage Sensitivity and Cancer in Mice

and Humans

Intrinsic disorder (A) (r = 0.93, p < 2.2 3 10�16), linear motif

content (B) (r = 0.74, p = 0.013), binary protein interaction

degree (C) (r = 0.91, p = 2.2 3 10�4), and linear motif

binding (D) (p < 2.2 3 10�16) are all also highly associated

with dosage-sensitive genes that cause cancer when acti-

vated by retroviral insertion in mice (Akagi et al., 2004). In (A)

to (C) the recall of oncogenes is shown for each equally

sized bin of genes. As in mice, intrinsic disorder (E) (r =

0.92, p = 1.6 3 10�4), linear motif content (F) (r = 0.89,

p = 1.1 3 10�3), binary protein interaction degree (G) (r =

0.83, p = 2.9 3 10�3), and linear motif binding (H) (p =

2.2 3 10�16) are highly associated with dosage-sensitive

genes that cause cancer when activated in humans. The

relationship between protein interaction degree and

dosage sensitivity is also seen when only using data from

high-throughput assays and so is not an artifact of ascer-

tainment bias (data not shown). In (E) to (G) the recall of

oncogenes is shown for each equally sized bin of genes.

Thus using criteria and parameters derived

from yeast, we are able to successfully predict

dosage-sensitive genes in C. elegans.

Dosage Sensitivity in Mice
To test whether our findings also apply to

mammals, we considered dosage-sensitive

genes that are oncogenic when overexpressed.

In mice these genes have been systematically

identified in genetic screens using the integration

of retroviruses to activate gene expression (Akagi

et al., 2004). As in yeast, flies, and worms, these

dosage-sensitive genes are strongly associated

with protein disorder (Figure 5A) and have the

presence of many linear motifs (Figure 5B),

a high binary protein interaction degree (Fig-

ure 5C), and the ability to bind to linear motifs

(Figure 5D). Thus the same properties associated

with dosage-sensitive genes in yeast are able to

predict dosage-sensitive cancer genes in mice.

Dosage Sensitivity in Human Cancer
In humans, the small set of genes that are known

to be causally amplified in cancer are also

strongly enriched for disorder (p = 5.8 3 10�4,

Wilcoxon rank sum test), linear motifs (p =

4.9 3 10�4), binary protein interactions (p =

0.035), and the ability to bind to linear motifs

(p = 5.0 3 10�9). This is also true of a larger

set of oncogenes activated by either amplifica-

tion or translocation (Figures 5E–5G). Thus, as in mice,

dosage-sensitive oncogenes share the same properties as

dosage-sensitive genes in model organisms.

We conclude that the properties of dosage-sensitive genes

that we identify in yeast are also conserved for dosage-sensitive

genes in mice and in human disease. Thus the principle of

mass-action-driven interaction promiscuity can be used to
Cell 138, 198–208, July 10, 2009 ª2009 Elsevier Inc. 203



Figure 6. Dosage-Sensitive Genes Are Tightly Regulated and Rapidly Cleared to Prevent Harmful Increases in Protein Concentration

Dosage-sensitive genes in yeast have more extensive (A) and more conserved (B) upstream regulatory regions, slower transcription rates (C), larger 50 (D) and 30

(E) untranslated regions in their mRNAs, and lower translation rates (F). Dosage-sensitive genes also have faster rates of mRNA decay (G) and protein degradation

(H), ensuring that they are rapidly cleared from the cell after use and resulting in lower overall protein abundances (I). They are also more likely to have overlapping

antisense transcripts (J). All plots for quantitative variables are shown for ten evenly sized bins of genes, ranked according to the variable under consideration.

Spearman’s rank correlation coefficients (and p values): (A) 0.81 (7.5 3 10�3), (B) 0.93 (8.2 3 10�5), (C) �0.66 (3.0 3 10�2), (D) 0.89 (5.5 3 10�4), (E) 0.87 (1.0 3

10�3), (F) �0.88 (2.0 3 10�5) (G) �0.66 (3.8 3 10�2), (H) �0.83 (3.0 3 10�3), (I) �0.79 (6.5 3 10�3). For (J), p = 0.014 by Fisher’s exact test.
successfully predict dosage sensitivity across many different

species.

Dosage-Sensitive Gene Products Are Tightly Regulated
and Rapidly Degraded in Yeast
Genes that are harmful when overexpressed should be tightly

regulated to prevent such harmful increases under physiological
204 Cell 138, 198–208, July 10, 2009 ª2009 Elsevier Inc.
conditions. To test this prediction we used global datasets on

gene regulation in yeast. In short, we find that this is the case,

and that dosage-sensitive genes are tightly regulated at many

levels.

At the DNA level, genes with overexpression phenotypes have

both larger (Figure 6A) and more conserved (Figure 6B) upstream

regions, reflecting tighter transcriptional control (Chin et al.,



Figure 7. Mass-Action-Driven Interaction

Promiscuity

As a result of mass action, increasing the concen-

tration of a protein can dramatically alter its profile

of cellular interactions. High-affinity domain-

domain interactions have complex binding inter-

faces and very few potential ‘‘off-target’’ interac-

tions. Their interaction profiles therefore change

little in response to alterations in protein concen-

tration (A). In contrast interactions with short,

degenerate linear motifs are low affinity and have

many potential off-target interactions within a cell

due to the large families of motif-binding proteins

and the high frequency of motifs and disordered

regions in proteins (B) (Castagnoli et al., 2004;

Neduva and Russell, 2005). The profiles of linear motif interactions in a network can therefore become much more promiscuous following increases in pro-

tein concentration. This is further illustrated in the phase-plane diagram shown in (C), which shows the sensitivity of linear motif interactions to changes

in free protein concentration over realistic ranges of dissociation constants (KD) (Neduva and Russell, 2005) and cellular concentrations (Wu and Pollard,

2005). As the free concentration of a protein (A) is increased it will interact both with physiological targets (A + T 4 AT) and also with off-target molecules

(A + OT 4 AOT) to which it binds with lower affinity. Fraction bound is the proportion of target (T) or off-target (OT) proteins bound to protein A.
2005). They also have a lower rate of transcription (Figure 6C). At

the mRNA level they have both larger 50 (Figure 6D) and 30

(Figure 6E) untranslated regions and faster rates of mRNA turn-

over (Figure 6G). They also have a lower translation rate (Fig-

ure 6F) and are subject to rapid degradation at the protein level

(Figure 6H), and as a result, they have lower overall protein levels

(Figure 6I). Dosage-sensitive genes are also more likely to have

overlapping antisense transcripts (Figure 6J), suggesting a

negative (or positive; Faghihi et al., 2008) role for antisense tran-

scription in the regulation of dosage-sensitive genes. The tight

regulation of dosage-sensitive genes is also seen when only

considering disordered proteins (Figure S2, Gsponer et al.,

2008), proteins with a high linear motif content (Figure S3),

proteins with a high protein interaction degree (Figure S4), or

proteins that bind to linear motifs (Figure S5).

We conclude that dosage-sensitive genes, and gene products

that have the potential to make promiscuous interactions, are

tightly regulated in yeast and, in particular, that they are slowly

producedand rapidly clearedatboth the mRNAand protein levels.

These regulatory ‘‘safety mechanisms’’ may act to limit harmful

accumulations of protein concentration during normal growth.

DISCUSSION

Mass-Action-Driven Interaction Promiscuity
and the Mechanisms of Dosage Sensitivity
Within any cell there are tens of thousands of physical interactions

that can occur between macromolecules. Although they are often

represented as static structures, these networks of molecular

interactions actually have topologies that alter in response to

changes in protein concentration (Figure 7). As a consequence

of mass action, an increase in the concentration of a protein

can result in that protein making more promiscuous molecular

interactions. What we term the interaction promiscuity hypoth-

esis states that it is these promiscuous molecular interactions,

primarily involving linear sequence motifs, that drive pathological

changes in response to increased gene dosage (Figure 7).

In yeast there is good evidence that interaction promiscuity is

a major cause of dosage sensitivity. First, the intrinsic disorder
content of a protein is a good predictor of dosage sensitivity in

this organism. Second, the more linear motifs a protein contains,

and the more binary protein interactions that are known for

a protein, the more likely it is to be dosage sensitive. Third,

proteins that can bind to linear motifs are also highly dosage

sensitive.

The same four measures of the potential for interaction

promiscuity—intrinsic disorder, linear motif content, protein

interaction degree, and motif binding—are all also predictive of

dosage sensitivity in an animal, Drosophila melanogaster.

Further, using the same four measures, it is possible to success-

fully predict de novo dosage-sensitive genes in a third species,

C. elegans. We conclude that the potential for interaction

promiscuity, mediated via linear motifs, is widely associated

with dosage-sensitive genes across eukaryotes.

Interaction Promiscuity in Human Disease
The properties of dosage-sensitive genes in yeast, flies, and

worms are also strongly associated with dosage-sensitive onco-

genes in both mice and humans. It seems therefore that interac-

tion promiscuity may provide a general method for predicting the

changes in gene expression that are most likely to be patholog-

ical in humans. In any disease there are often many genes over-

expressed or upregulated, and a central challenge for human

genetics is to identify which of these are etiologically important.

Interaction promiscuity provides one framework to do this.

Two previous observations also support our findings. First,

protein kinases that are activated in cancer have more promis-

cuous substrate specificities than other kinases (Miller et al.,

2008). Second, a quantitative study of the interactions of

members of the ErbB family of cell-surface receptors showed

that oncogenic family members become more promiscuous in

their interactions when overexpressed (Jones et al., 2006). Again

this is consistent with ectopic interactions being a widespread

cause of gain-of-function phenotypes.

In animals, mass-action-driven interaction promiscuity also

predicts an additional class of genes that should be particularly

dosage sensitive—miRNAs. The interactions of miRNAs also

depend on short, degenerate sequence motifs that are found
Cell 138, 198–208, July 10, 2009 ª2009 Elsevier Inc. 205



in very many cellular mRNAs. These interactions should also

therefore be sensitive to overexpression. Consistent with this,

there are many examples of miRNAs that are known to be path-

ological when overexpressed (Table S2). It is likely that many of

these effects result from the concentration-dependent binding of

miRNAs to nonphysiological target sequences.

Finally, our findings suggest that it may be possible to alleviate

dosage-sensitive phenotypes in humans by using competitive

inhibitors of linear motif interactions. The interactions of proteins

with linear sequence motifs, which normally bind in deep surface

clefts, are intrinsically more ‘‘druggable’’ than other protein inter-

actions (Russell and Gibson, 2008) and so represent good candi-

dates for therapeutic intervention.

Concluding Remarks
Most importantly, we demonstrate here a molecular mechanism

that is widely predictive of dosage sensitivity, and one that is

predictive across many different species. This makes it possible

to consider predicting the effects of both decreased (Lee et al.,

2008; Pena-Castillo et al., 2008) and increased gene expression

in disease and evolution. Our findings highlight the importance of

considering global interaction networks as having dynamic, not

static, structures, and it is likely that further work in this area

will illuminate many other areas of biology.

EXPERIMENTAL PROCEDURES

Testing Features for Their Ability to Predict Dosage Sensitivity

in Yeast

Yeast genes with overexpression phenotypes were identified in two genome-

wide screens (Gelperin et al., 2005; Sopko et al., 2006). There are a total of 839

genes with overexpression phenotypes out of 4591 genes tested. The

complete set of sequence and experimental features tested for their ability

to predict dosage sensitivity are described in Table S1. For each feature we

first tested for a correlation between the feature and dosage sensitivity (Table

S1). We then used a tenfold cross-validation experiment to test the ability of

each feature to predict dosage-sensitive genes. We use the mean area under

a receiver operating characteristic (ROC) curve for each of the cross-validation

experiments as a measure of the performance of each feature as a predictor

(Figure 1, Table S1).

Intrinsically Disordered Regions

Intrinsically disordered regions were identified using Globplot (Linding et al.,

2003) using the default settings and using DisEMBL as described (Beltrao

and Serrano, 2005). Genes were classified as low, medium, and highly

expressed using three equally sized bins (Beyer et al., 2004). Cell-cycle-modu-

lated genes were identified using the data from Cyclebase.org (Gauthier et al.,

2008). Regulatory genes were taken from the classification of Segal et al.

(2003).

Linear Motif Content

Predicted instances of known linear motifs were identified using Scansite 2.0 in

the most stringent setting and using the following motif families relevant to

yeast: pST_bind, SH3, acid_ST_kin, baso_ST_kin, DNA_dam_kin, Pro_ST_kin,

kin_bind, PDZ (Obenauer et al., 2003). For the distinction between enzymatic

and nonenzymatic motifs, we used the following grouping: pST_bind, SH3,

and PDZ as nonenzymatic and the remainder as enzymatic.

Protein Interactions

Yeast protein interactions were downloaded from BioGRID 2.0.33 (Stark et al.,

2006). We divided the interaction data into two sets—those detected by affinity

purification methods (protein complex interactions), and those only detected

by other methods (binary interactions). There are a total of 27,517 and
206 Cell 138, 198–208, July 10, 2009 ª2009 Elsevier Inc.
13,142 interactions in each dataset for the proteins tested for overexpression

phenotypes.

Linear Motif-Binding Proteins

Linear motif-binding proteins are proteins containing protein domains that are

known to bind to linear peptide motifs, as listed (Diella et al., 2008) (Interpro iden-

tifiers [Mulder et al., 2007] and the number of tested proteins are indicated, total

n = 324 proteins in yeast): SH3 (IPR001452, 21), 14-3-3 (IPR000308, 2), PDZ

(IPR001478, 2), EVH1 (IPR000697, 1), VHS (IPR002014, 4), FHA (IPR000253,

15), EH (IPR000261, 4), BRCT (IPR001357, 9), Bromo (IPR001487, 9), Chromo

(IPR000953, 4), GYF (IPR003169, 3), ER retention receptor (IPR000133, 1),

kinase (IPR011009, 122), Ser/Thr phosphatase (IPR006186, 12), dual-specificity

phosphatase (IPR000340, 6), plus sequence-specific DNA-binding proteins

(118; MacIsaac et al., 2006). For the distinction between enzymatic and nonen-

zymatic motif-binding proteins, we used the following grouping: kinase, Ser/

Thr phosphatase, and dual-specificity phosphatases as enzymatic and the

remainder as nonenzymatic.

Gene Regulation

Upstream intergenic distances were calculated from the SGD database (ftp://

ftp.yeastgenome.org/yeast/). The following additional genomic datasets were

used: transcription rate (Garcia-Martinez et al., 2004); mRNA half-life (Wang

et al., 2002); protein half-life (Belle et al., 2006); translation rate (Beyer et al.,

2004); protein abundance (Beyer et al., 2004); antisense transcripts (David

et al., 2006); upstream conservation (the fraction of the upstream region over-

lapping with sequences conserved in 7 yeast species (Gustafson et al., 2006));

and 50 and 30UTR lengths (Nagalakshmi et al., 2008).

Drosophila Datasets

Genes tested for overexpression phenotypes in flies using the Gal4-driven

overexpression system (Rorth, 1996; Toba et al., 1999) were downloaded

from Flybase on December 2, 2008 (Crosby et al., 2007). A total of 1068 genes

have been tested in overexpression screens, of which 279 have a reported

morphological overexpression phenotype in Flybase. These data are available

as Table S3. Protein interactions (a total of 4821 binary protein-protein interac-

tions), motif-binding domains, linear motifs, and disorder predictions were

defined as for yeast, with the addition of tyrosine kinase (Y_kin), SH2 motifs,

and the SH2 domain (IPR000980).

Predicting and Testing Dosage-Sensitive Genes in C. elegans

We predicted dosage-sensitive genes in C. elegans using a generalized linear

model fitted on the yeast data to rank C. elegans genes according to their likeli-

hood of being dosage sensitive (0.004D + 0.009PI + 0.587L + 1.914, measuring

the number of disordered residues [‘‘D’’] and the ability to bind to linear motifs

[‘‘L’’] as defined for Drosophila, as well as binary protein interaction degree

(‘‘PI’’) using the dataset of Simonis et al., 2009). We focused on genes between

1 and 1.2 kb to facilitate cloning (a total of 2801 genes) and tested the first 8 of

the top 20 ranked genes for which we obtained transgenic animals. Open

reading frames were cloned into the heat-shock-inducible promoter vectors

pMB1 and pMB7 (kindly provided by Mike Boxem) and microinjected into

C. elegans with a myo2::mCherry cotransformation marker. Overexpression

was induced using a 30 min heat shock at 35�C. Following heat shock worms

were allowed to lay eggs for 24 hr at 20�C and then removed from the wells.

Embryonic lethality was scored 24 hr later. A strain with heat-shock-inducible

expression of green fluorescent protein (TJ375; Rea et al., 2005) was used as

an internal control in all experiments.

Human and Mouse Datasets

Mouse oncogenes activated by retrovirus insertions are from the RTCGD data-

base (http://rtcgd.abcc.ncifcrf.gov/), a total of 460 genes (Akagi et al., 2004),

excluding all insertions that disrupt open reading frames. Human oncogenes

activated by amplification (n = 9) or translocation (n = 263) are from the Sanger

Cancer Gene Census (Futreal et al., 2004) (http://www.sanger.ac.uk/genetics/

CGP/Census/). Motif-binding domains, linear motifs, and disorder were

defined as for Drosophila. Human protein interaction data were taken from

an integration of 21 different databases (Bossi and Lehner, 2009) and filtered

to only include binary interactions detected by two-hybrid assays, removing

ftp://ftp.yeastgenome.org/yeast/
ftp://ftp.yeastgenome.org/yeast/
http://rtcgd.abcc.ncifcrf.gov/
http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.sanger.ac.uk/genetics/CGP/Census/


interactions also detected in complex purification methods (a total of 13,352

interactions). The same interaction dataset was used for mouse, using 1:1

orthology relationships identified by Ensembl.

SUPPLEMENTAL DATA

Supplemental Data include five figures and five tables and can be foundwith this

article online at http://www.cell.com/supplemental/S0092-8674(09)00454-1.
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