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Abstract

Here, we provide evidence for the neural crest origin of mammalian Merkel cells. Together with nerve terminals, Merkel cells form
slowly adapting cutaneous mechanoreceptors that transduce steady indentation in hairy and glabrous skin. We have determined the
ontogenetic origin of Merkel cells in Wntl-cre/R26R compound transgenic mice, in which neural crest cells are marked indelibly. Merkel
cells in whiskers and interfollicular locations express the transgene, 3-galactosidase, identifying them as neural crest descendants. We thus

conclude that murine Merkel cells originate from the neural crest.

© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Mammalian Merkel cells are localized in the basal layer
of the epidermis. Together with the terminals of sensory
neurons they form the Merkel nerve endings, slowly adapt-
ing cutaneous mechanoreceptors that are activated by steady
skin indentation (Iggo and Muir, 1969). The ontogenetic
origin of mammalian Merkel cellsis controversial. Accord-
ing to one view, they originate from the neura crest and
migrate into the mammalian epidermis during embryogen-
esis (Breathnach, 1978; Breathnach and Robins, 1970; Ha-
lata, 1981; Hashimoto, 1972; Winkelmann, 1977). In con-
trast, the predominant current opinion presumes that
mammalian Merkel cells are of epidermal origin (English et
a., 1980; Lyne and Hollis, 1971; Mall et al., 1984, 1986,
1990, 19964d). In chick-quail transplantation experiments,
the epidermal origin of avian Merkel cells has been ex-
cluded (Halata et al., 1990; Grim and Halata, 2000a,b). In
chimeric limbs, Merkel cells, together with the crest-derived
pigment cells and Schwann cells, originated from the host
embryo.
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The neural crest forms a transient primordium of the
vertebrate embryo that gives rise to awide array of progeny
in the adult organism, including the autonomic and enteric
nervous systems, most primary sensory neurons, endocrine
cells, and the cephalic mesenchyme (reviewed by Le Doua
rin and Kalcheim, 1999). Migratory neural crest cells con-
sist of a mixed population of cells that includes pluripotent
stem cells, fate-restricted progenitor cells, and cells that are
committed to a particular cell lineage (Baroffio et al., 1988;
Bronner-Fraser and Fraser, 1988; Henion and Weston,
1997; Ito et al., 1993; Sieber-Blum, 1989; Sieber-Blum and
Cohen, 1980; Sieber-Blum and Sieber, 1984; Stempleet dl.,
1988). Neural crest stem cells, or closely related pluripotent
progenitor cells, are present also in target locations in the
embryo (Duff et al., 1991; Gershon et a., 1993; Ito and
Sieber-Blum, 1993; Richardson and Sieber-Blum, 1993;
Sherman et al., 1993; Sieber-Blum et al., 1993) and in adults
(Kruger et a., 2002), explaining the extraordinary diversity
and plasticity of this embryonic tissue.

We have analyzed Merkel cellsinwhisker pads of Wnt1-
cre/R26R double transgenic mice, in which neura crest
cells and their derivatives are marked. In the mouse and in
all other vertebrate embryos studied to date, Wntl expres-
sion during embryogenesisis transient and limited to neural
crest cells and some central nervous system cells (Davis et
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al., 1988; Echelard et al., 1994; McMahon et a., 1992,
Molven et al., 1991; Wilkinson et al., 1987; Wolda et al.,
1993). The Wntl-cre mouse transiently expresses cre re-
combinase under the control of the Wnt1 promoter (Danie-
lian et al., 1998). The R26R mouse expresses 3-galactosi-
dase conditionally and ubiquitously in a cre-inducible
manner (Soriano, 1999). The transient expression of cre
recombinase under the control of the Wntl promoter in
double transgenic mice therefore specifically and perma-
nently activates expression of R26R-derived B-galactosi-
dase in premigratory and early migratory neural crest cells
(Chai et al., 2000; Danielian et al., 1998; Echelard et al,
1994; Friedrich and Soriano, 1991; Jiang et d., 2002; So-
riano, 1999).

Materials and methods
Genotyping

Heterozygous Wntl-cre mice were mated with R26R
heterozygotes. For genotyping, the DNA was isolated from
tail biopsies or extraembryonic membranes. The tissue was
treated with 5 ul proteinase K (10 mg/ml; Promega, Mad-
ison, WI) in lysis buffer (1 ml Tris, pH 8.5, 10% SDS, 5 M
NaCl in H,O) overnight at 55°C. After centrifugation, the
DNA in the supernatant was precipitated with 2-propanol,
transferred, and dissolved in TE buffer (10 mM Tris—Cl, 0.5
mM EDTA). One microliter of DNA was placed in PCR
buffer [1L M Tris, 2 ul; 2 M (NH,),SO,, 0.25 ul, 14.4 M
B-mercaptoethanol, 0.02 ul; 100% DMSO, 3 ul; 0.5 M
MgCl,, 0.18 ul; 0.1 M dATP, 0.15 ul; 0.1 M dCTP, 0.15
wl; 0.1 M dGTP, 0.15 wl, 0.1 M dTTP, 0.15 ul; nuclease-
free H,O (Promega), 21.78 ul; Tag polymerase (5 units/ul),
0.16 pl, together with 1 wl of each primer]. The following
primers were used. For detection of Wntl cre: primer Cre
(100 ng/ul): CGTTTTCTGAGCATACCTGGA; primer
Cre antisense (100 ng/ul): ATTCTCCCACCGTCAG-
TACG; primer RARB common (100 ng/ul): GTAGC-
CATCGAGACACAGAGT; primer RARB WT (100 ng/
wl): TGGTAGCCCGATGACTTGTCC (Chai et al., 2000).
The amplification conditions were as follows: 1 cycle of
94°C for 30 min, followed by 35 cycles of 60 denaturation
at 94°C, 2 min annealing at 55°C, 90 s extension at 72°C,
and 5 min final extension at 72°C. For detection of R26R,
the following primers were used: primer ol MRO 883 (200
ng/ul): AAAGTCGCTCTGAGTTGTTAT,; primer ol MRO
315 (200 ng/wl): GCGAAGAGTTTGTCCTCAACC;
primer ol MRO 316 (400 ng/ul): GGAGCGGGAGAAAT-
GGATATG (Soriano, 1999). The PCR buffer was the same
as for Wntl-cre, and the amplification conditions were as
follows. One cycle of 19 min at 94°C, followed by 35 cycles
of 45 s denaturation at 94°C; 45 s annealing at 53°C, 90 s
extension at 72°C, followed by 5 min final extension at
72°C.

Indirect immunocytochemistry and Xgal histochemistry

The tissue was dissected in phosphate-buffered saline
(PBS) at RT, fixed for 20 min with 4% paraformal dehyde at
RT, rinsed with PBS, incubated in 15 and 30% sucrose in
dH,O for 4-5 h, mounted with OCT compound (Sakura
Finetek USA Inc., CA) in vinyl Biopsy Cryomolds (Miles
Inc. Elkhart, IN), frozen on dry ice, and stored at —80°C.
Twelve-micron cryosections were prepared and placed on
“Probe On Plus’ dides (FisherBiotech, Fisher Scientific,
Pittsburgh, PA). Sections were incubated for 10 min. in
PBS, the tissue circled with rubber cement and let dry for 2
min at RT. For blocking unspecific antibody binding, slides
were incubated for 30 min at RT with calcium—magnesium-
free PBS (CMF-PBS) containing 2% normal goat serum
(NGS), 0.2% BSA, and 0.2% Triton X-100. Subsequently,
the pooled primary antibodies were added; Troma-1 (1:20,
recognizes cytokeratin-8; Developmental Studies Hybrid-
oma Bank, lowa City, IA) and anti-B-galactosidase rabbit
IgG (gift of Joshua Sanes) in CMF-PBS containing 2%
NGS, 0.2% bovine serum abumin (BSA), and 0.2% Triton
X-100 overnight in the cold. The tissue was then rinsed
three times for 10 min with CMF-PBS, and the pooled
secondary antibodies were added; fluorescein-conjugated
donkey anti-rat 1gG (1:200; Jackson ImmunoResearch,
West Grove, PA) and ALEXA Fluor 594-conjugated goat
anti-rabbit 1gG (1:600; Molecular Probes, Eugene, OR), and
incubated for 1 h at RT in the dark. Finaly, nuclel were
stained with DAPI (1:1000; Molecular Probes, Eugene, OR)
for 12 min at RT, the tissue rinsed three times for 2 min with
CMF-PBS, mounted with ProLong antifade (Molecular
Probes, Eugene, OR), and coverslipped.

For combined Xgal histochemistry/TROMA-1 immuno-
cytochemistry, the dlides were rinsed three times with
0.005% NP40 and 0.01% sodium deoxycholate in PBS and
finally incubated in Xgal reaction solution (5 mM potassium
ferricyanide, 5 mM potassium ferrocyanide, 2 mM MgCl,,
and 0.4% Xgal) overnight at RT. The next day, the dlides
were rinsed twice with PBS, and postfixed for 10 min in 4%
PFA at RT. For blocking unspecific antibody binding, slides
were incubated for 30 min at RT in CMF-PBS containing
2% NGS, 0.2% BSA, and 0.2% Triton X-100. Slides were
then incubated with the primary antibody (TROMA-1 at
1:20; Hybridoma Bank) in 2% NGS, 0.2% BSA, and 0.2%
Triton X-100 overnight in the cold. The next day, the slides
were rinsed three times for 10 min in CMF-PBS and then
incubated with secondary antibody (fluorescein-conjugated
donkey anti-rat 1gG at 1:200; Jackson ImmunoResearch,
West Grove, PA) for 1 h at RT in the dark. The slides were
subsequently rinsed three times for 10 min at RT with
0.05% Triton X-100 in CMF-PBS.

In control experiments, either one of the primary anti-
bodies or one of the secondary antibodies was substituted by
buffer. In none of the control experiments was significant
staining observed (data not shown).

In some experiments, TROMA-1 was detected by immu-
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noperoxidase reaction. To this end, Xgal histochemical re-
action was performed as described above. Subsequently,
TROMA-1 immunoperoxidase reaction was performed as
follows. The dlides were rinsed once with PBS for 10 min,
endogenous peroxidase blocked with 0.6% H,O, in metha-
nol for 20 min at RT. The slides were then rinsed three times
for 5 min with PBS and preincubated in 2% BSA in PBS
containing NGS (1:20) for 20 min at RT. Subsequently, the
tissue was incubated with TROMA-1 (1:10) in PBS over-
night at 4°C. The next day, the tissue was rinsed three times
for 5 min with PBS. Peroxidase-conjugated goat anti-rat
1gG (1:500) in 1% BSA was added for 90 min a RT
(Jackson ImmunoResearch, West Grove, PA). This was
followed by three rinsesfor 5 min each in PBS. The staining
was developed in the dark at RT for 10 min in the following
freshly prepared and filtered solution: 22 ml 0.005 M Tris,
pH 7.6—7.8, 17 mg imidazol, 10 mg 3,3’ diaminebenzidine
tetrahydrochloride tablets (Sigma), and 5 wl H,O,. Thiswas
followed by a rinse with H,O for 5 min. The nuclei were
counterstained with nuclear red, the tissue dehydrated, and
the dlides mounted with DePex (SERVA). Some sections, in
which B-galactosidase was visualized by peroxidase reac-
tion product, were processed further for electron micros-
copy as described (Haata et al., 1999).

Results

The whisker pads of day 16.5 mouse embryos were
dissected, frozen, genotyped, and double transgenic tissue
processed further for B-galactosidase immunohistochemis-
try, Xga histochemical stain, TROMA-1 immunohisto-
chemistry, immunoelectron microscopy, or combinations
thereof. The TROMA-1 antibody is a Merkel cell marker
that recognizes cytokeratin 8 (Moll et al., 1996a; Vielkind et
al., 1995).

Merkel cells are located in the epithelium of the outer
root sheet of whiskers, in the rete ridge and in touch domes
in the epidermis between hairs (Halata, 1993; Halata and
Munger, 1980). Double transgenic Merkel cells, identified
by TROMA-1 antibody binding, express B-galactosidase in
all three locations, follicular (Fig. 1A-D, L-N), rete ridge
(Fig. 1A, E-G), and touch dome (Fig. 1H—K). Cdlls in
which TROMA-1 and B-galactosidase immunoreactivities
colocalize appear yellow (Fig. 1A, D, G, K, and N). The
majority of the facial mesenchyme is derived from the
neural crest (reviewed in Le Douarin and Kalcheim, 1999).
Large numbers of B-galactosidase immunoreactive cells
form the connective tissue of the facial dermis and the blood
sinuses (bls; Fig. 1A), that surround the whisker follicle. We
have confirmed colocalization of B-gaactosidase and
TROMA-1 immunoreactivities in the same optical section
by confocal microscopy (Fig. 1L-N). Furthermore, we have
combined Xgal histochemistry with TROMA-1 immunocy-
tochemistry (Fig. 2A—E). Cytokeratin 8 immunoreactive
cells contain Xgal reaction product (Fig. 2A and B; eg.,

Fig. 1. B-Gaactosdaseimmunoreectivity in Merkd cdlsin the outer root sheet of
the follicle, the rete ridge, and in touch domes. (A) Longitudina section, double
tranggenic E16.5 mouse whisker; merged images of double stain with g-gdacto-
Sdase (red ALEXA fluor 594 fluorescence) and TROMA-1 (cytokeratin 8; green
fluorescein fluorescence) antibodies. Merke cdllsarelocated in the outer root sheet
(A, B-D) that surrounds the hair shaft (hs) and in the rete ridge (A, E-G). The hair
and the stratum corneum of the epidermis show ungpecific saining (A). (B-D)
Higher magnification of area outlined on the I€ft in (A). All Merke cdlls express
B-gdactosdase (B) and cytokeratin 8 (C). (D) Merged images, cdls with colo-
cdizing antibody binding appear yelow. (E-G) Higher magnification of Merkel
cdlsin reteridge outlined in (A) on the right. (E) B-Galactosidase (ALEXA fluor
594) and (F) TROMA-1 (fluorescein) in the same focd plane; (G) merged images.
(HK) B-Gaactosdase immunoreectivity of two cdls in an interfollicular touch
dome (H, arrow). (H) B-Galactosdase immunoreactivity (ALEXA fluor 594); (1)
corresponding TROMA-1 immunoreactivity; (K) merged images, 3-galactosdase
and TROMA-1 immunoreectivities colocdize (yellow). (L-N) Confoca micros-
copy of follicular Merkd cdlls Three Merkel cdlls express B-gdactosidase (L; red
ALEXA fluor 594), as do dermd cdls (d) of the sinuses, (M) corresponding
TROMA-1 immunoreectivity (green fluorescein fluorescence) in the same foca
plane (N) merged images of same opticd section, showing colocdization of
cytokeratin 8 and B-gdactosdase. Bars, (A) 50 um; (B-G, H-K, L-N) 10 um.
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Fig. 2. Colocalization of Xgal histochemistry and cytokeratin 8 in Merkel
cells; immunoelectron microscopy of Merkel cells. (A, B) Merkel cellsin
the fallicle and rete ridge express cytokeratin 8 (TROMA-1; brown per-
oxidase reaction product) and are positive for Xgal reaction product (blue;
e.g., long arrows in A and B). (B) Occasiona Xgal-positive, TROMA-1-
negative cells, putative undifferentiated progenitor cells, or melanogenic
precursors, are present also (B; short arrow). (C-E) Confocal images of
Xga/TROMA-1 double stains. In contrast to -galactosidase immunore-
activity, Xgal stain often does not fill the entire cell, but is located in
inclusion bodies that are not seenin all optical planes of a cell, as has been
noted also in other studies (see, e.g., Rico et al., 2002). Confocal micros-
copy thus confirmed the presence of Xga reaction product (D, black)
within TROMA-1-positive cells (C; green fluorescein fluorescence). (E)
Merged images showing colocalization of Xga and TROMA-1 stains in
the same cell and focal plane. (F) After peroxidase immunostaining for
B-galactosidase, some sections were further processed for electron micros-
copy. A typical Merkel cell that contains dense core granules (short arrow)
also contains fine granular peroxidase reaction product (long arrow), con-
firming at the electron microscopic level the presence of B-galactosidasein
Merkel cells. Bars, (A, B) 50 um; (C-E) 10 um; (F) 1 wm.

long arrows). Interestingly, occasional 8-galactosidase-pos-
itive cells (not shown) or Xgal-positive cells (Fig. 2B, short
arrow) that are TROMA-1-negative are present as well.
They constitute a small subset of neural crest-derived cells
in the outer root sheet. Since whisker development is com-
pleted postnatally only, it is conceivable that they are mul-
tipotent progenitors or committed Merkel cell precursors.
Furthermore, it is possible that they are melanogenic pre-
cursors, as has been shown by Peters et al. (2002). We have
corroborated colocalization of Xgal stain and cytokeratin 8
immunoreactivity by confocal microscopy (Fig. 2C-E). Ina

third approach, immunoelectron microscopy showed perox-
idase reaction product in B-galactosidase-immunostained
Merkel cells (Fig. 2F).

Discussion

We have provided evidence for the neura crest origin of
murine Merkel cells by three independent methods. Our
findings thus resolve a long-standing controversy.

All Merkel cells expressed 3-gal actosidase when probed
with anti-B-galactosidase antibodies, and immunoreactivity
was distributed throughout the cytoplasm. In contrast, in
histochemical stains, some Merkel cells appeared Xgal-
negative, and the Xgal stain was limited to one or a few
inclusion bodies within the cell, as has been observed in
other studiesaswell (e.g., Rico et al., 2002). Thus, there are
severa reasons for the discrepancy between immunocyto-
chemistry and histochemistry. B-Galactosidase protein ex-
pression may differ from B-galactosidase enzyme activity.
Infact, it has been shown that a higher number of transgenic
cells are B-galactosidase-immunoreactive than Xgal-posi-
tive (Couffinhal et al., 1997). The Xgal-positive inclusion
body can be in a different focal plane, rendering TROMA-
1-positive Merkel cells falsely Xgal-negative. Furthermore,
it is conceivable that cre-induced recombination does not
take placein every neura crest cell. Thisappearsunlikely as
we have observed high intensity of cre-immunoreactivity in
migrating neural crest cells of E9.5 double transgenic em-
bryos (data not shown). Several observations are in agree-
ment with our present data. By transplanting Hamburger—
Hamilton stage 17-18 (Hamburger and Hamilton, 1951)
chick limb buds to replace same-age limb buds of host quail
embryos, and vice versa, we have excluded the epidermal
origin of avian Merkel cells and suggested their neural crest
origin (Halata et a., 1990, Grim and Halata, 2000a,b).
Moreover, occasional fetal human Merkel cells have been
localized in the dermis, where neural crest cells migrate
before they invade the epidermis (Halata, 1981; Hashimoto,
1972).

In contrast, other studies have favored the epidermal
origin of Merkel cells. One reason for associating mamma-
lian Merkel cellswith the epidermisistheir location, as they
reside in the basal layer of the epidermis (English et dl.,
1980; Lyne and Hollis, 1971). Moreover, Merkel cells ex-
press low molecular weight cytokeratins, which are charac-
teristic for epithelial cells (Moll et a., 1984, 1986). Third,
xenograft experiments in which human fetal skin was
grafted onto host nude mice have suggested an epidermal
origin of Merkel cells (Moll et al., 1990). There are severa
problems with the interpretation of these studies. Low mo-
lecular weight cytokeratins are characteristic of simple ep-
ithelia, not of keratinocytes (Kemler et al., 1981). Neither
the location of acell, nor the expression of aparticular gene,
or a set of genes, necessarily defines cell type identity. Mall
and collaborators have grafted gestational week 8—11 hu-
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man fetal skin onto nude mice and observed the develop-
ment of human Merkel cellsin the grafts (Mall et a., 1990).
However, Merkel cell progenitors and neural crest-derived
glia are present in human fetal skin already at gestational
weeks 611 (Moll et a., 1996b; Moore and Munger, 1989;
Terenghi et al., 1993). Therefore, the human fetal skin
xenograft experiments do not provide conclusive evidence
in support of the epidermal origin of Merkel cells.

Whnt genes, specifically Wnt3 and Wnit5a, are expressed
in the skin (Millar et al., 1999; Reddy et a., 2001; St-
Jacques et a., 1998), including in the ectodermal placodes
of E16.5 mouse embryos (Fuchs et a., 2001). In contrast,
Whntl is expressed exclusively in the central nervous system
and the neura crest during embryonic development (Davis
et a., 1988; Echelard et a., 1994; McMahon et a., 1992;
Molven et a., 1991; Wilkinson et al., 1987; Wolda et al.,
1993). We have nevertheless confirmed the absence of cre
recombinase in E16.5 double transgenic whisker pads by
immunocytochemistry with anti-cre antibodies (data not
shown).

Taken together, we have shown that Merkel cells in
double transgenic Wntl-cre/R26R mouse embryos express
B-gaactosidase, identifying them as neural crest progeny.
We thus conclude that avian and mammalian Merkel cells
share the same ontogenetic origin, the neural crest. Accord-
ing to our findings, Merkel cells can be added to the list of
cell types that originate from the neural crest.
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