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is introduced and duality results in terms of efficient solutions are established.
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1. INTRODUCTION

Duality theory for multiobjective fractional programming was developed
w xby several authors. Among them, Egudo 7 studied Mond]Weir type and

Schaible type duals for a multiobjective fractional programming problem.
Lagrangian duality for multiobjective fractional problem was studied by

w xWeir and Jeyakumar 18 under preinvexity assumptions and by Suneja and
w xAggarwal 16 under cone convexity assumptions. Relations between a

Lagrange multiplier of a multiobjective programming problem and a weak
saddle point of its vector-valued Lagrangian function were obtained by

w xmany authors 5, 11, 15, 17 , under different assumptions on the functions
involved.
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w xRecently, Coladas et al. 4 introduced two types of duals to a more
general multiobjective programming problem. They further suggested that
their results could be extended for efficient solutions instead of weakly
efficient solutions.

The purpose of this paper is to explore this possible extension suggested
w xby Coladas et al. 4 . Moreover, the present results have been obtained in a

more general setting, that is, for the multiobjective fractional programming
problem involving n-set functions.

w xMorris 13 was the first one to introduce the general theory for
optimizing set functions. These results were subsequently generalized by

w x w x w x w x wBector et al. 2 , Corley 6 , Hsia and Lee 9 , Lin 12, 13 , and Zalmai 19,
x20 to the multiobjective optimization problems involving n-set functions.

w xHsia and Lee 8 obtained necessary conditions for a properly efficient
solutions through a vector-valued Lagrangian function and its associated

w xsaddle points. Hsia et al. 10 developed Lagrange multiplier theorems for
the cases of single objective and multiobjective programming problems

w xwith set functions. Recently, Bector et al. 3 introduced Wolfe type and
Mond]Weir type duals for a multiobjective fractional programming prob-
lem involving differentiable n-set functions and established duality results
in terms of properly efficient solutions. They also related the problem to a
certain vector-valued saddle point of a corresponding vector-valued La-
grangian function.

This paper has been divided into four sections. Section 2 includes
preliminaries and a statement of the problem while in Section 3, necessary
and sufficient conditions for the existence of a saddle point of a vector-val-
ued Lagrangian are obtained. Section 4 is devoted to the construction of
the Lagrangian dual and to establish duality results.

2. PRELIMINARIES

The following notations, definitions, and results are used in the sequel.
The m-dimensional Euclidean space of m-tuples is denoted by R m and

the interior of a subset K of R m is denoted by int K.
A subset K of R m is a cone if a x g K whenever x g K and a P 0.

n Ž . � 4Let K be a cone in R . Then K is said to be pointed if K l yK s 0 .
A positive dual cone K* of K is defined as

K* s y* g R m N y t y* P 0, for all y g K .� 4

w x Ž . mLEMMA 2.1 15 . a If K ; R is a pointed con¨ex cone, then K q
� 4 � 4K _ 0 s K _ 0 .



BHATIA AND MEHRA302

Ž . tb If K is a cone with int K / f then y y* ) 0 for any y g int K and
� 4y* g K* _ 0 .

Let K be a pointed convex cone in R m with int K / f and let E be a
non-empty subset of R m. For x, y g R m, we define cone orders with
respect to K as follows:

x - y iff y y x g int K ,K

� 4x F y iff y y x g K _ 0 ,K

x O y iff y y x g K .K

The set of K-minimal points and the set of the K-maximal points of are
defined as

Min E s y g E N there is no y g E such that y F y ,� 4K K

Max E s y g E N there is no y g E such that y F y ,� 4K K

respectively.
Ž . Ž .Let X, AA, m be a finite atomless measure space with L X, AA, m1

separable. A pseudometric d on AA n, the n-fold product of s algebra AA of
subsets of a given set X, is defined as

1r2n
2d S, T s m S DT ,Ž . Ž .Ý r r

rs1

Ž . Ž . nwhere S s S , . . . , S , T s T , . . . , T g AA , and S DT denotes the1 n 1 n r r
Ž .symmetric difference of S and T . For f g L X, AA, m and S g AA, ther r 1 r

² :integral H f dm is denoted by f , I , where I denotes the characteristicS S Sr r r

function of S .r
The multiobjective fractional programming problem considered in this

paper is

Min Q S s Q S , . . . , Q SŽ . Ž . Ž .Ž .C 1 p

VFPŽ . s F S rH S , . . . , F S rH SŽ . Ž . Ž . Ž .Ž .1 1 p p

subject to G S O 0,Ž . K

S s S , . . . , S g LL 9,Ž .1 n

� Ž . 4 Ž .let LL s S g LL 9 N G S O 0 be the set of feasible solutions of VFP ,K
where

Ž .i C is the nonnegative orthant of n-dimensional Euclidean space
of reals, i.e., C s R n , and K is a pointed convex cone in R m with aq
non-empty interior,
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Ž . nii LL 9 is a convex subfamily of AA ,
Ž .iii For i s 1, . . . , p and for j s 1, . . . , m, F P 0, H ) 0 and G arei i j

real valued w* continuous functions defined on LL ,
Ž .iv F and yH are C-convex functions and G is a K-convex

function on LL .

Ž .DEFINITION 2.1. S g LL is called an efficient solution of VFP if
Ž . � Ž . 4Q S g Min Q S N S g LL .C

DEFINITION 2.2. An efficient solution S g LL is said to be a properly
Ž .efficient solution of VFP if there exists a scalar M ) 0 such that

Q S - Q SŽ . Ž .i i

Ž .for some index i and a feasible solution S of VFP implies

Q S y Q SŽ . Ž .i i O M
Q S y Q SŽ . Ž .j j

Ž . Ž .for all j such that Q S ) Q S .j j

w xFor a convex set function, Hsia et al. 10 have proved the following
alternative theorem.

LEMMA 2.2. Let t be a pointed closed con¨ex cone in R n with int t / f.
Let P be a t-con¨ex, w* continuous n-set function defined on a con¨ex

n Ž .subfamily LL 9 of AA . If the system P S - 0 has no solution o¨er LL 9, thent
t Ž .there exists a non-zero m* g t * such that m* P S P 0 for all S g LL 9.

3. LAGRANGIAN FUNCTION AND SADDLE POINT

p Ž .Define the vector-valued Lagrangian L: LL = G ª R of VFP by

y1
L S, U s Q S q diag H S , . . . , H S UG SŽ . Ž . Ž . Ž . Ž .Ž .1 p

w Ž Ž . Ž ..xwhere diag H S , . . . , H S is the diagonal matrix of order p consisting1 p
Ž . Ž .of H S , . . . , H S as its diagonal entries and G is the set of all p = m1 p

matrices U satisfying UK ; C.

Ž . w Ž Ž . Ž ..xRemark 3.1. Since H S ) 0 for i s 1, . . . , p, diag H S , . . . , H S1 1 p
is therefore a full row rank matrix and is hence invertible.

w xFollowing the notations of Coladas et al. 4 , we write

y1
U(G S s diag H S , . . . , H S UG S .Ž . Ž . Ž . Ž .Ž .1 p
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Ž .DEFINITION 3.1. A point S, U g LL = G is called a C-saddle point of
the vector valued Lagrange function L if

L S, U g Min L S, U N S g LL l Max L S, U N U g G .Ž . Ž .� 4 � 4Ž . C C

The following theorem provides necessary and sufficient conditions for
the existence of a saddle point.

Ž .THEOREM 3.1. S, U is a C-saddle point of L if and only if

Ž . Ž . � Ž . 41 L S, U g Min L S, U N S g LL ,C

Ž . Ž .2 G S O 0,K

Ž . Ž .3 U(G S s 0.

Ž .Proof. First we suppose that S, U is a C-saddle point of L. By the
Ž .definition of a C-saddle point of L, condition 1 is satisfied and

L S, U g Max L S, U N U g G .Ž .� 4Ž . C

The above expression implies

L S, U g L S, U , for all U g GŽ .Ž . C

which further implies

� 4U(G S y U(G S f C _ 0 , for all U g G. 3.1Ž . Ž . Ž .

Let

B s U(G S y U(G S N U g G .Ž . Ž .� 4
p Ž .Clearly, B is a non-empty convex subset of R and by 3.1

� 4B l C s 0 . 3.2Ž .
Also,

p ² :yB* s m g R N m , U(G S y U(G S O 0, ;U g GŽ . Ž .� 4
p Ž .is a non-empty, closed, convex cone in R . Hence, 3.2 implies

yB* l int C* / f .

Thus, there exists m g int C* such that

tm U(G S y U(G S O 0, for all U g G. 3.3Ž . Ž . Ž .Ž .
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Ž . Ž .We assert that G S O 0; that is, condition 2 is satisfied. Let, ifK
Ž .possible, G S g 0. Then there would exist l g K* such thatK

tl G S ) 0. 3.4Ž . Ž .

As m g int C*, we choose a vector j g int C such that

tmj s 1. 3.5Ž .
tˆ ˆw Ž Ž . Ž ..x Ž .Set U s diag H S , . . . , H S lj . Then U g G and 3.5 yields1 p

t tˆm U(G S s l G S . 3.6Ž . Ž . Ž .Ž .
5 5Making the norm l of l sufficiently large, we get

t t tˆm U(G S y U(G S s l G S y m U(G S ) 0Ž . Ž . Ž . Ž .Ž .Ž .
ˆŽ . Ž .which contradicts 3.3 for U s U. Therefore, 2 is satisfied. Since U g G

Ž .and G S O 0, henceK

UG S O 0. 3.7Ž . Ž .C

Ž . Ž .Further, since C is a cone and H S ) 0 for i s 1, . . . , p, 3.7 givesi

U(G S O 0. 3.8Ž . Ž .C

Ž .Letting U s 0 in 3.3 , we get

tm U(G S P 0,Ž .Ž .
which, in view of the fact that m g int C*, implies

U(G S g 0. 3.9Ž . Ž .C

Ž . Ž .3.8 and 3.9 together yield

U(G S s 0.Ž .

Ž .That is, 3 is satisfied.
Ž . Ž . Ž .Next, we show that S, U is a C-saddle point of L if 1 ] 3 are

satisfied.
Ž . Ž .Suppose that 1 ] 3 are satisfied. Let, if possible,

L S, U f Max L S, U N U g G .Ž .� 4Ž . C
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˜Then there would exist U g G such that

˜L S, U F L S, U .Ž . Ž .C

Ž .By condition 3 , we get

˜0 F U(G S . 3.10Ž . Ž .C

˜ Ž .Also, for U g G and G S O 0, we haveK

Ũ(G S O 0,Ž . C

Ž .which contradicts 3.10 . Hence, we have

L S, U s Max L S, U N U g G .Ž .� 4Ž . C

Ž . Ž .The above expression together with 1 implies that S, U is a C-saddle
point of L. The proof is thus completed.

The next result establishes a relation between a C-saddle point of L and
Ž .an efficient solution of VFP .

Ž .THEOREM 3.2. If S, U is a C-saddle point of L, then S is an efficient
Ž .solution of VFP .

Ž .Proof. Suppose that S, U is a C-saddle point of L. Then by Theorem
Ž .3.1, S g LL and U(G S s 0.

Ž .Let, if possible, S not be an efficient solution of VFP . Then there
ˆwould exist S g LL such that

ˆQ S F Q S . 3.11Ž . Ž .Ž . C

ˆAlso, S g LL and U g G implies

ˆU(G S O 0. 3.12Ž .Ž . C

Ž . Ž .3.12 together with U(G S s 0 implies

ˆU(G S O U(G S . 3.13Ž . Ž .Ž . C

Ž . Ž . Ž .3.12 and 3.13 , along with Lemma 2.1 a , give

ˆ ˆQ S q U(G S O Q S q U(G S ;Ž . Ž .Ž . Ž . c

that is,

ˆL S, U F L S, U .Ž .Ž . C
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This contradicts the fact that

L S, U g Min L S, U N S g LL .Ž .� 4Ž . C

Ž .Therefore S is an efficient solution of VFP . This completes the proof.

Ž . t pLet w s w , . . . , w g R , w P 0 and set1 p

V S, w s F S y w H S , . . . , F S y w H S .Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 p p p

Remark 3.2. In case H is C-linear, then w need not be nonnegative.

Ž .DEFINITION 3.2. The problem VFP is said to satisfy the Slater con-
ˆ ˆŽ .straint qualification if there exists S g LL 9 such that G S - 0.K

Under the assumption of the Slater constraint qualification, we establish
a relation between a C-saddle point of L and a properly efficient solution

Ž .of VFP .

THEOREM 3.3. Suppose that the Slater constraint qualification is satisfied
Ž . Ž .for the problem VFP . If S is a properly efficient solution of VFP , then

Ž .there exists U g G such that S, U is a C-saddle point of L.

F SŽ .Ž . Ž .Proof. Let w s Q S s . Thus V S, w s 0. Since S is a properly
H SŽ .

Ž .efficient solution of VFP , we therefore have that S is also a properly
efficient solution of the following programming problem:

Min V S, wŽ .C

subject to S g LL .

Now, F and yH are C-convex, w* continuous functions on LL ; there-
Ž .fore, it follows that V S, w is C-convex, w* continuous on LL . Also G is a

K-convex, w* continuous function on LL .
w xHence, it follows from Lemma 4.1 of 10 that there exists m g int C*

such that S is an optimal solution of the following scalar convex program:

² :Min m , V S, wŽ .
subject to S g LL .

Therefore, the system

² :m , V S, w - 0Ž .
3.14Ž .

G S - 0Ž . K

has no solution S g LL 9.
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Then by Lemma 2.2, there exists l g K* such that

t tm V S, w q l G S P 0, for all S g LL 9. 3.15Ž . Ž . Ž .
Ž . Ž .Letting S s S in 3.15 and using V S, w s 0, we get

tl G S P 0. 3.16Ž . Ž .
Ž .Further, since G S O 0 and l g K*, we haveK

tl G S O 0. 3.17Ž . Ž .
Ž . Ž .3.16 and 3.17 imply

tl G S s 0. 3.18Ž . Ž .
t tChoose j g int C such that mj s 1 and set U s jl . Then, clearly U g G

t t Ž .and m U s l . By using 3.18 , we obtain

y1
U(G S s diag H S , . . . , H S UG SŽ . Ž . Ž . Ž .Ž .1 p

y1 ts diag H S , . . . , H S jl G SŽ . Ž . Ž .Ž .1 p

s 0.

Ž .By Theorem 3.1, if S, U is not a C-saddle point of L, then

L S, U f Min L S, U N S g LL ;Ž .� 4Ž . C

˜that is, there exists S g LL such that

˜L S, U F L S, UŽ .Ž . C

Ž .which, in view of the fact that U(G S s 0, can be rewritten as

˜ ˜ ˜Q S q U(G S F Q S s w. 3.19Ž .Ž . Ž . Ž .C

˜� 4 Ž . Ž .Since C _ 0 is a cone and H S ) 0, 3.19 therefore yields

˜ ˜V S, w q UG S F 0.Ž .Ž . C

Ž .Using Lemma 2.1 b , we obtain

t ˜ ˜m V S, w q UG S - 0Ž .Ž .ž /
on account of m g int C*, which further, on using the definition of U,
implies

t t˜ ˜m V S, w q l G S - 0.Ž .Ž .
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˜Ž . Ž .This contradicts 3.15 for S s S. Hence, S, U is a C-saddle point of L.
The proof is thus completed.

4. DUAL MAP AND DUALITY THEORY

Ž .We now derive the duality for VFP under the Slater constraint
qualification.

Define the dual function by

c U s Min L S, U N S g LL� 4Ž . Ž .C

and write

c G s D c U N U g G .� 4Ž . Ž .
Ž .For the multiobjective fractional programming problem VFP , the cor-

responding Lagrange dual problem is defined as follows:

DFP Max c G .Ž . Ž .C

p Ž .DEFINITION 4.1. y g R is said to be a feasible value efficient value
Ž . Ž . Ž Ž ..of DFP if there exists U g G such that y g c U and y g Max c G .C

Ž . Ž .THEOREM 4.1 weak duality . Let S be a feasible solution of VFP and y
Ž . Ž .be a feasible ¨alue of DFP . Then we cannot ha¨e Q S F y.C

Ž .Proof. Since y is a feasible value of DFP , therefore there exists
Ž . � Ž . 4U g G such that y g c U . That is, y g Min L S, U N S g LL . There-C

fore, there does not exist any S g LL for which

L S, U F y. 3.20Ž . Ž .C

Let, if possible,

Q S F y. 3.21Ž . Ž .C

Ž . Ž .Since S is feasible for VFP , U g G, H S ) 0 and C is a cone, it
therefore follows that

U(G S O 0. 3.22Ž . Ž .C

Ž . Ž . Ž .3.21 and 3.22 , along with Lemma 2.1 a , give

Q S q U(G S F y ;Ž . Ž . C

that is,

L S, U F y.Ž . C
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Ž . Ž .This contradicts 3.20 for S s S. Hence, we cannot have Q S F y. ThisC
completes the proof.

Remark 4.1. In Theorem 4.1, the set K ; R m need not be a cone.
Moreover, no convexity restrictions are required on the n-set functions F,
yH, and G.

Ž .THEOREM 4.2 strong duality . Suppose that the Slater constraint qualifi-
Ž .cation is satisfied for the problem VFP . If S is a properly efficient solution of

Ž . Ž . Ž .VFP , then Q S is an efficient ¨alue of DFP .

Ž .Proof. Let S be an efficient solution of VFP . By Theorem 3.3, there
Ž .exists U g G such that S, U is a C-saddle point of L and hence, on
Ž . Ž . Ž . Ž .account of Theorem 3.1 3 , U(G S s 0. Thus, L S, U s Q S . Also

L S, U g Min L S, U N S g LL ;Ž .� 4Ž . C

that is,

Q S g c U .Ž . Ž .
Ž . Ž .This implies that Q S is a feasible value for DFP .

Ž . Ž .If Q S is not an efficient value of DFP , then there would exist a
˜ ˜Ž . Ž .U g G such that for some y g c U , we have Q S F y. This contradicts˜ ˜C

Ž . Ž .Theorem 4.1 for a feasible S of VFP and a feasible value y of DFP .
Ž . Ž .Hence, Q S is an efficient value of DFP . The proof is thus completed.
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