evaluated on the same day of PET imaging.

Results: The subjects were divided into three groups; high FDG uptake (62 of 197, 32%), mild FDG uptake (56 of 197, 28%), and no FDG uptake (79 of 197, 40%). For all groups and no FDG uptake (79 of 197, 40%). A clear trend to the magnitude of FDG uptake was observed in age (p = 0.005), diabetes (p = 0.05) and hypertension (p = 0.005). Multivariate analysis revealed that both hypertension and diabetes were independently associated with FDG uptake after being adjusted by age.

Conclusions: Whole-body FDG PET imaging holds promise for the noninvasive assessment of atherosclerosis in healthy subjects.

T094-T15 Suppression of Physiological Myocardial Fluorodeoxyglucose Uptake

Naoki Tokita, Pat Zanzonico, Mark Dunphy, Gregor Forster, Elmer Santos, Peter Santus, Steve Jones, Steve Larson, Harry W. Strauss, Memorial Sloan-Kettering Cancer Center, New York, NY

Background: F-18-fluorodeoxyglucose (FDG)-PET is concentrated in macrophages at sites of inflammation, providing a means of identifying these lesions on FDG-PET scans. Atheroma has a significant inflammatory component, and can be visualized in large vessels. However, visualizing coronary artery plaque is difficult, due to the high concentration of FDG that often occurs in normal myocardium. This experiment was performed to determine if pretreatment to block alpha or beta adrenergic receptors, or increasing blood levels of fatty acids would reduce the myocardial concentration of FDG. Methods: A total of 35 C57BL/6 male mice were divided into control and treated groups (n = 7 per group). After an overnight fast, the groups except control were treated with either propranolol (1 mg/kg, IV), intralipid (5 ml of 20 % intralipid/g, IV), phenolamine (1 mg/kg, IV), or fructose (10 g/kg, orally). One hour later, F-18-FDG (600 microCi) was injected IV. MicroPET images were obtained 1 hr post-injection with mice under isoflurane anesthesia. After the PET scan, the animals were sacrificed and the biodistribution of FDG determined. FDG uptake (%ID/g) was calculated by tissue counting. Result: Propranolol decreased myocardial FDG uptake on the PET image, while intralipid exerted the usual intense heart activity. The myocardial uptake was (mean ± SD): control; 6.81 ± 1.18, propranolol; 3.08 ± 1.33 (p < 0.05), intralipid; 7.38 ± 3.56 (p = NS), phenolamine; 14.33 ± 3.63 (p < 0.05), and fructose; 4.74 ± 2.88 %ID/g (p = NS). Uptake in the aorta was (mean ± SD): control; 6.34 ± 3.32, propranolol; 9.64 ± 2.67 %ID/g (p = NS), intralipid; 14.01 ± 6.14 (p < 0.05), phenolamine; 27.38 ± 21.34 (p < 0.05), and fructose; 8.55 ± 3.95 %ID/g (p = 0.05). The ratios of aorta / heart were: control; 1.19 ± 0.68, propranolol; 2.83 ± 1.30, phenolamine; 2.14 ± 1.32, fructose; 2.16 ± 0.88. The highest aorta / heart ratio was obtained by treated with propranolol. Conclusion: Beta blockade was the most successful intervention to reduce myocardial FDG concentration. This finding suggests the possibility of detecting atherosclerosis in coronary arteries by FDG-PET with propranolol pre-treatment.

T094-T15 Effects of Surgical Myectomy on Myocardial Energetics and Blood Flow in Patients With Hypertrophic Cardiomyopathy and Symptomatic Left Ventricular Outflow Obstruction

Stuart D. Christensen, Panithaya Chareonthaitawee, Steve R. Ommen, Rick A. Nishimura, Brad J. Kemp, A. Jamil Tajiik, Raymond J. Gibbons, Mayo Clinic, Rochester, MN

Background: In symptomatic, drug-refractory hypertrophic cardiomyopathy (HCM) with left ventricular outflow obstruction (LVOT obstruction), surgical myectomy can result in symptom improvement. Invasive data suggest that benefits may relate to an energy-sparing effect and improvement in myocardial blood flow (MBF). The purpose of this study was to determine the effect of myectomy on myocardial oxygen consumption, efficiency, and MBF as measured by positron emission tomography (PET) and echocardiography. Methods: Seven HCM patients with LVOT gradient >50 mmHg and planned myectomy were assessed. Patients were studied pre- and 3 months post-surgery. Oxidative metabolism (m) was measured using C-11 acetate PET, and stroke volume index (SVI) was measured using echocardiography. The work metabolic index (WMI) was calculated as follows: [(cystolic blood pressure + peak LVOT gradient) x SVI x heart rate]/k. MBF was assessed using PET and N-13 ammonia. A symptom-limited treadmill was utilized to assess exercise capacity and oxygen consumption, and the Minnesota Living with Heart Failure Questionnaire was completed pre- and post-myectomy. Results: LVOT gradient was reduced after myectomy (60.85 ± 45.39 to 5.71 ± 7.18 mmHg; p < 0.02). Global oxidative metabolism (m) = 0.061 ± 0.024 to 0.058 ± 0.012/ min; p = 0.59) and regional oxidative metabolism (k) = 0.060 ± 0.001 to 0.057 ± 0.015/ min; p = 0.15) were unchanged after myectomy. The SVI (25.49 ± 11.50 to 30.66 ± 5.68 mmHg x ml/m2; p = 0.29) and WMI (3.73 ± 10.16 to 3.16 ± 10.02 3.82 x 10^4 - 1.94 x 10^4 mmHg x ml/m2; p = 0.92) were also unchanged. Regional MBF remained stable (0.839 ± 0.032 to 0.802 ± 0.209 ml/min/100 g; p = 0.89). Treadmill METs increased by 9.8 (p = 0.02) and oxygen consumption trended towards improvement post-myectomy (p = 0.07). NYHA class improved (p = 0.09) while quality of life scores trended towards improvement (p = 0.15). Conclusion: In HCM patients with LVOT obstruction, myectomy results in reduced gradient, clinical improvement, and increased exercise capacity. However, neither a change in MBF nor an energy-sparing effect could be elucidated as a potential mechanism in this limited sample of patients.

T094-T15 Utility of Fluorodeoxyglucose-Positron Emission Tomography for Predicting Left Ventricular Functional Recovery in Patients With Acute Myocardial Infarction After Successful Revascularization: Comparison With Technetium-99m Tetrofosmin SPECT

Haruhisa Shirasak, Jong-dae Lee, Akira Nakano, Hiroyasu Utsui, Toru Geshi, Kiyohiro Toyoda, Naoki Amaya, Toshihiro Mizuguchi, Takanori Ueda, Fukui Medical University, Fukui, Japan

Background: Although positron emission tomography (PET) using F-18-fluorodeoxyglucose (FDG-PET) is considered to be one of the most accurate modalities to evaluate myocardial viability in patients with old myocardial infarction, it is not fully elucidated whether it also evaluates viability in patients with acute myocardial infarction. Methods: To assess the ability for detecting myocardial viability in patients with AMI using FDG-PET, we performed FDG-PET and technetium-99m tetrofosmin SPECT (TF), as an index of myocardial blood flow, at 2 weeks after the onset of AMI in 16 patients whose infarct-related arteries were successfully recanalized within 24 hours after the onset. For image analysis, the left ventricle was divided into 9 segments, and the mean %uptake of FDG (%FDG) and TF (%TF) in infarct-related segments was calculated. The left ventriculography was also performed immediately after revascularization (LVG1) then we determined the wall motion score (WMS, normal: 0-dyskinesia: 4). Results: Of total 144 segments, 78 showed abnormal wall motion on LVG1 (infarct-related segment: RS). In RS, 46 (G) were preserved glucose metabolism (%FDG≥45%) and 32 (non-G) were not. In G, 37 (71%) of the heart of AMI patients non-involved on LVG2. In non-G, only 9 (28%) showed the improvement of WMS (p<0.01 vs. G). On the other hand, 48 segments (F) showed preserved myocardial blood flow (TF>50%) and 36 (non-F) were not. In F, 40 (87%) showed significant improvement of WMS on LVG2. In non-F, only 7 (19%) showed the improvement of WMS (p<0.01 vs. F). The %TF≥45% was an optimal threshold yielding a sensitivity of 80% and specificity of 72%. The %TF≥55% was the best cut-off value resulting in a sensitivity of 87% and a specificity of 75%. Of 9 segments showed flow-metabolism mismatch (%FDG≥45% and %TF<55%), only 3 (33%) exhibited the improvement of WMS. On the other hand, 6 out of 11 segments (55%) showed reverse mismatch (%FDG<45% and %TF≥55%), demonstrated significant improvement of WMS. Conclusion: In patients with AMI, FDG-PET was well predict functional recovery of LV wall motion. However, this predictive accuracy did not predominated over TF.