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Abstract 

Additional external electromagnetic fields are used in laser beam welding of aluminium with silicon containing filler wire to 
manipulate the flow of the liquid metal due to induced volume forces and hence to modify the element distribution. Aiming for a
better understanding of the fluid-dynamic processes inside the meld pool, a CFD model has been implemented to simulate the 
melt flow.     
In this paper, simulation results on the resulting element distribution of filler wire material under a coaxial magnetic field with 
different frequencies is compared to experimental results for the same parameters. It is shown that in both cases the concentration 
of alloying elements of the filler material has a spatial periodicity. From the CFD model it can be concluded that the change of
the distribution of the filler material results from a modulation of the melt flow due to the periodic induced electromagnetic 
volume forces. 
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1. Introduction 

The use of magnetic fields is common in a variety of applications and well known in the metal industry, e.g. in 
continuous casting of steel, often used to achieve a refined grain structure [1]. Using steady and alternating magnetic 
fields in arc welding is also well understood, aiming predominantly at a stabilisation of the arc. Also, a distinct 
effect on the weld bead shape and dendrite growth was observed [2] due to a manipulation of the melt flow. The 
interaction between a conducting fluid and a magnetic field is treated in the magnetohydrodynamic theory [3]. Since 
nearly no liquid metal has a magnetic order, the interaction is based only on induction. That necessitates either a 
time dependent magnetic field or a fluid that is moving through the magnetic field. 

In laser welding, the use of magnetic fields to influence the welding process has been investigated [4] and is also 
part of recent research activities [5]. It was shown that, by applying a steady magnetic field, the shape of the 
resulting seam cross section can be significantly influenced [6]. Using high frequency magnetic fields, a surface 
pressure can be induced that is capable of supporting the melt pool and thus avoiding melt sagging [7]. Also, 
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investigations on the influence of low-frequency alternating magnetic fields on melt bead dilution in laser beam 
welding of aluminium with Si-containing filler wire were performed. A homogeneous silicon distribution above 2% 
throughout the seam can significantly decrease the hot-crack susceptibility of aluminium alloy (e.g. 6XXX-alloys) 
[8]. This so-called magnetic “stirring” technique has been successfully applied to modify Si dilution [9]. A full 
review on the application of electromagnetic fields in arc and laser beam welding is given by Vollertsen and Thomy 
[10]. Yet, the effect of the alternating magnetic fields on the element distribution is predominantly known from 
experiments, especially metallographic inspections of the resulting weld seam [11]. To obtain a more profound 
knowledge about the stirring effect taking place inside the liquid melt pool, both experimental and theoretical 
research efforts have been taken recently to fully understand the complex, mainly fluid dynamic processes during 
laser welding in the presence of a magnetic field [12]. A more profound understanding of these interactions in 
dependence of the process parameters might promote the ability to significantly increase the homogeneity of the 
element distribution of filler material in the weld seam.  

To access the problem theoretically, it is advisable to use a CFD model since both the fluid-dynamic phenomena 
induced by the laser irradiation and the interaction between the liquid melt pool and the magnetic field can be dealt 
with applying the Navier-Stokes-equation. Modelling the laser beam welding process [13] and laser beam hybrid 
welding [14] is part of several research activities around the globe. Depending on the primary aim of the respective 
numerical investigations, some of the welding phenomena are modelled in more detail (e.g. the laser beam 
absorption process [15] or effects of contamination (e.g. the influence of zinc coating) [16]) and some other are 
rather simplified to keep the required calculation time at an acceptable degree.    

2. Aim and scope 

The aim of the work presented here is to promote a deeper understanding of the influence of the magnetic stirring 
effect on the concentration distribution of filler wire material during full penetration laser beam welding of 
aluminium with a filler wire that contains an alloying element. The main focus of this work is the theoretical 
understanding of the complex and transient fluid dynamic interactions between the magnetic field and the laser 
induced liquid melt pool that leads to a specific concentration distribution of the filler material after solidification. A 
CFD model, involving the main driving forces of the process, is therefore presented. This model can be used to 
calculate a welding sequence of about 0.3 s within an adequate calculation time. The model was applied to 
investigate the influence of different frequencies and flux densities of the magnetic field on the resulting element 
distribution. For comparison, a full penetration laser welding experiment on Al99.5 aluminium was performed using 
a hyper eutectic filler wire with a very high silicon content of 18%.  

3. Experimental setup and procedure 

The welding experiments were carried out with a TruDisk8002 disc laser at an output power of 5.5 kW. Focal 
length of the optics (Trumpf optics) was 250 mm and collimation length was 250 mm. With a fiber diameter of 
200 μm the nominal focal spot size was 200 μm. Full penetration bead-on-plate welding was performed on 3 mm 
thick Al99.5 sheets with the focal position 2 mm above the specimen. A prototype AlSi18 wire (with an average 
silicon content of 18% [17]) of diameter 1.2 mm was used as filler material. The welding velocity was v0 = 8 m/min 
and the wire feeding rate was vd = 6 m/min, respectively. With the chosen laser power and welding velocity, the 
experiment was performed as full penetration welding.  

A magnetic field of different reference flux densities B0 and different frequencies f was supplied by the welding 
head shown in Figure 1(a). The DC flux density distribution ),,( 0 zrBB of the magnetic field was coaxial to the 
laser beam with the amplitude of the flux density decreasing slightly with increasing axial distance from the welding 
head (see Figure 1(b)). The point of origin of this coordinate frame was set to the sheet surface and the laser axis. 
The time dependency or pulse shape of the magnetic field )(~ tb shows a triangular shape as given in Figure 1(c). 
After welding, longitudinal sections of the specimen are taken and analyzed using EDX method to quantify the 
silicon distribution. 
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Figure 1. Welding head prototype to supply both laser beam and coaxial magnetic field  (a),  flux density distribution below the protruding iron 
core (b) and pulse shape of the magnetic field (c)  

4. Development of the numerical model 

A CFD model of full penetration bead-on-plate welding with additional filler wire has been developed to 
calculate the melt flow under influence of an alternating magnetic field which is aligned nearly coaxially to the laser 
beam (see Figure 1(b)). In order to calculate the melt pool and seam geometry together with the filler wire, a model 
geometry as shown in Figure 2 is used. It consists of a 3 mm thick quadrangular geometry of thickness 3 mm that 
forms the aluminium sheet. A cylindrical body of radius 0.6 mm is attached to this geometry to account for the filler 
wire. Both geometries are partially penetrated by a rotationally symmetric geometry that follows a typical keyhole 
shape. This simplified keyhole model (based on the work of [18]) enables the simulation of the laser beam 
absorption by attaching the evaporation temperature to the surface of the keyhole geometry.  

To account for the main driving forces like the flow around the keyhole, Marangoni convection and buoyancy 
inside the melt pool along with phase change effects such as the evolution of latent heat or the solidification/melting 
specific model implementations are done predominantly by adding force and energy sources to the momentum and 
energy equation.  

Buoyancy effects are considered by adding a volume force according to 

gf refbuoy           (1)  

to the momentum equation in which g describes the gravitational acceleration,  the local density and ref

the reference density of the fluid at the melting temperature, respectively. This formulation requires a temperature 
dependent density. To allow for the phase change, the latent heat evolution has to be considered. The enthalpy is 
therefore described as 

HTTch p 0          (2) 
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Figure 2. Model geometry of the process with filler wire and approximated keyhole shape (left) and list of dynamic and thermal boundary 
conditions (right) 

with pc , T, T0 and H  being the specific heat capacity at constant pressure, temperature of the control volume, 

ambient temperature and latent heat of fusion, respectively. describes the so called liquid fraction that follows 
from 
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with ST  and LT  being the solidus and liquidus temperature, respectively. Within a temperature range of 34 K 

the liquid fraction of the control volume transfers from 0 to 1. To simulate the solidification dynamically, a volume 
force according to 

00/ vvCf ls            (4) 

is added to the momentum equation to reduce any liquid movement to that of the solid metal which is moving 

with the welding velocity 0v . v  and 0C  are the velocity field and a force factor that defines the strength of the 

volume force, respectively. In comparison to another model implementation [11] in which free surfaces were 
considered, the calculations given herein are performed for a single phase model for simplicity. Hence, surface 
deformations are neglected and surface tension effects are introduced as boundary conditions. The Marangoni 
convection can be simulated by adding a boundary force according to 

Tf TMarangoni           (5) 

with T  being the local temperature gradient and T  the surface tension temperature coefficient. This results 
in an acceleration of the liquid along the temperature gradient. In case of a negative temperature coefficient (which 
is the case for the aluminium material used this model) the acceleration is aligned towards a decreasing temperature.  
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The interaction between the magnetic field and the conducting fluid with velocity field v  induces a current 

density inside the moving melt and base material. Together with other external or internal electric fields E the 
current density is described by 

extBvEj           (6) 

with  being the electrical conductivity and extB  the flux density of the external AC magnetic field. The latter 
is the product of the local DC density distribution ),,( 0 zrBB  shown in Figure 1(b) and the pulse shape )(~ tb
shown in Figure 1(c). An empirical description of ),,( 0 zrBB in dependence of the reference flux density 0B  is 
given elsewhere [11]. The pulse shape of the magnetic field is approximated by  

0~ cosarccos
2

1 ttb          (7) 

 which describes a triangular shape with t and t0 being the time and time-offset, respectively. The interaction 
between the current density and the external field entails a volume (Lorentz) force according to 

extL Bjf           (8) 

that is also added to the momentum equation. 
The material properties of the fluid used in these calculations are those of pure aluminium (liquid and solid). 

They are listed in Table 1. They are assumed for the base material and the filler wire as well to simplify the 
calculation. The silicon that is supplied by the filler wire was included as an additional mass free scalar quantity ,
which temporal and spatial distribution was calculated by an additional transport equation  

0v
t

.          (9) 

It is calculated based on the calculated velocity field. A value of 1characterizes a 100% alloying element 
content in a control volume, while a value of 18.0  which was assumed at the wire inlet boundary, 
characterizes a content of 18% of the alloying element. Other alloying elements both of the base material and the 
filler wire are neglected. Diffusion effects are not yet considered in these model calculations. 

The dynamic and thermal boundary conditions used for the calculations are listed in Figure 2. The governing 
equations are solved with the finite volume method using the commercial CFD-solver CFX5.1 with high resolution 
advection scheme [19] and a first order backward Euler scheme to calculate the flow transiently. The model 
geometry is therefore discretized into approximately 1 million tetrahedral control volumes. A steady state solution 
without taking the magnetic field into account is used as initial condition for the transient calculations. The time step 
assumed is 1e-03 s. Overall duration of the simulated welding process is 0.3 s starting from the quasi-static solution.   

Material property Liquid Solid Unit 

Density Temp. dep. 2385 kg m-3

Spec. heat capacity 1080 Temp. dep. J kg-1 K-1

Thermal conductivity Temp. dep. Temp. dep. W m-1 K-1

Viscosity 0.0013  100 N s m-2

Electrical conductivity Temp. dep. Temp. dep. S m-1

Latent heat of fusion 398 - kJ kg-1

Surface tens. temp. coef. -0.115 0 mN m-1 K-1

Solidus temperature TS - 899 K 

Liquidus temperature TL 933 - K 

Solidification constant C0 0 5*109  N s m-4

Table 1. Material properties used in the simulation [20, 21] 
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5. Results 

5.1. Influence of the frequency 

Calculations are performed for a welding velocity of v0 = 8 m/min and a wire feed rate of vd = 6 m/min. To 
investigate the influence of the frequency of the magnetic field on the element distribution , a fixed reference flux 
density of B0 = 160 mT is chosen. The calculations are performed for a frequency of 10 Hz, 15 Hz and 20 Hz. In 
Figure 3 the concentration distribution of  after 0.3 seconds of welding is shown along the longitudinal symmetry 
plane of the model system geometry as a coloured field plot. The black line indicates the melting isothermal line 
along the specimen and filler wire that surrounds the molten pool. The filler wire material is diluted through the melt 
pool according to the strong convections resulting from buoyancy effects, flow around the keyhole, Marangoni 
effect and the induced magnetic volume force. The melt pool is slightly elongated near the surfaces especially at the 
top surface.  

Figure 3.  Distribution of the mass free quantity at the longitudinal section (colored plot) and melting isothermal line (black line).   

In the solidified area left from the melt pool, the concentration of  is spatially modulated. By trend, the highest 
concentration can be found near the top surface, whereas no filler material can be found near the bottom surface. At 
a frequency of 10 Hz and 20 Hz the spatial modulation is clearly periodically; areas of high concentration and lower 
concentration are locally patterned. Using a frequency of 15 Hz, the resulting concentration distribution has no 
significant modulation.  

Additionally to this perspective, the resulting  concentration is shown at the top surface of the model geometry 
in Figure 4. After solidification, the highest concentration of the filler material can be found near the symmetry 
plane which would be the middle of the weld seam. Similar to the distribution at the longitudinal section, the spatial 
modulation of the filler material is periodical for a frequency of 10 Hz and 20 Hz and shows no significant 
modulation for a frequency of 15 Hz. 

10 Hz 160 mT

15 Hz 160 mT

20 Hz 160 mT

5 mm
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Figure 4.  Distribution of the mass free quantity at the longitudinal section (colored plot) and melting isothermal line (black line).   

5.2. Influence of the flux density 

A second series of calculations is performed to investigate the influence of the reference flux density B0 on the 
element distribution. In this case the frequency is fixed to a value of 10 Hz whereas the reference flux density is set 
to 160 mT, 260 mT and 360 mT, respectively. The calculated concentration distribution of at the longitudinal 
symmetry plane is shown in Figure 5. 

Figure 5.  Distribution of the mass free quantity at the longitudinal section (colored plot) and melting isothermal line (black line).   

5 mm

10 Hz 160 mT

15 Hz 160 mT

20 Hz 160 mT

5 mm

10 Hz 160 mT

10 Hz 260 mT

10 Hz 360 mT
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The periodic pattern of the concentration distribution is changing its shape with increasing flux density. A slight 
tendency towards a more homogeneous concentration in the upper half of the weld seam for an increasing flux 
density can be noticed.  

In Figure 6 the distribution for increasing flux density is shown at the top surface. The flux density shift from 
160 mT to 260 mT from this perspective seems to have little effect on the distribution, whereas a slight narrowing of 
the patterns with high concentration can be noticed at a value of 360 mT.     

Figure 6.  Distribution of the mass free quantity at the sheet surface (colored plot) and melting isothermal line (black line) for different flux 
densities at a fixed frequency of 10 Hz.   

5.3. Experimental Results 

For comparison, the silicon distribution of welded specimens (see chapter 3) is quantified by EDX-scans of their 
longitudinal section. A result is shown in Figure 7. The white areas are indicating high silicon concentration while 
the dark areas are predominately consisting of base material.  

Figure 7.  Distribution of silicon measured with EDX method at the longitudinal section (bright areas indicating high silicon content) for different 
fields.   

5 mm

10 Hz 160 mT

10 Hz 260 mT

10 Hz 360 mT

5mm

f  = 20 Hz
B  = 140 mT
PL = 5.5 kW
v0 = 8 m/min
vd = 6 m/min

f  = 10 Hz
B  = 120 mT
PL = 5.5 kW
v0 = 8 m/min
vd = 6 m/min



64  M. Gatzen et al. / Physics Procedia 12 (2011)56–65

Comparable to the calculated quantity , the silicon concentration distribution also shows a periodical pattering 
of high and low concentration areas, though the frequency of the concentration alternation differs slightly from the 
calculation results. The highest concentrations can be found near the top surface of the weld seam, whereas the 
maximum depth of the high concentration patterns is slightly higher than half of the overall weld seam depth. 

6. Discussion 

From recent research it is known that the induced Lorentz forces can have a significant impact on the velocity 
field inside the molten pool. The forces are mainly acting against the original melt flow if the fluid is flowing at an 
angle to the magnetic field [22]. Otherwise, no electric current is induced and hence no volume forces occur. The 
main flow direction in the melt pool is from the keyhole front to the melt pool rear, nearly perpendicular to the 
magnetic field. 

Under this assumption, a suitable explanation of the calculated concentration distribution, especially the 
periodical pattern, would be a periodically modulation of the velocity field inside the melt pool causing a deflection 
of the melt flow. The Lorentz forces should mainly act in the horizontal direction as can be easily understood from 
the vector relation in equation (6) and (8), which is then causing the flow resistance. The reaction of the melt flow is 
a deflection in a horizontal direction to decrease the angle between the magnetic field and the melt flow in order to 
reduce the flow resistance. The modulated melt flow is then mainly determining the element distribution, besides 
secondary effects, like the diffusion, which is however neglected in the simulations presented here.  

Since the magnitude of the volume forces is proportional to the local velocity, the highest forces are induced in 
the region of high velocities. From the calculation results, the highest velocities can be found near the upper and 
lower surface due to the Marangoni acceleration. Beside this, the slight inhomogeneity of the magnetic field both in 
radial and axial direction has to be considered. The highest flux density values are near the upper surface of the melt 
pool. Hence, taking into account the strong acceleration due to the Marangoni convection, the induced forces should 
be highest in this region. This assumption is also in agreement with other results [12]. 

A second effect that has to be considered is the deflection of the melt flow at the rear melt pool boundary that 
also causes a flow from the surfaces to the interior of the melt pool (even without any magnetic fields). This flow 
pattern is also modulated by the induced forces and should affect the resulting concentration distribution. 

The calculations on the influence of the frequency have revealed a periodic modulation of the concentration 
distribution (especially for 10 Hz and 20 Hz). That could be understood easily due to the pulsing force induced by 
the magnetic field together with the deflection of the melt flow. It is important to notice that the modulation is not 
always strictly periodic. With 15 Hz no significant modulation is visible. This might be explained by a general 
transient instability of the melt flow, also without any additional magnetic field. The resulting distribution at 15 Hz 
could then be a superposition of transient effects from the general flow instability together with the flow modulation 
due to the magnetic field and could cause some interference that hinders a periodic pattering.  

The periodic pattering of the concentration can be confirmed from the experimental results. Only the frequency 
of the pattering is different to that of the calculation results. That could be caused by simplifications in the model, 
especially of effects induced by instabilities of the keyhole. 

The flux density seems to have a significant impact on the homogeneity of the element distribution. It can be seen 
from the calculations that with increasing flux density the patterns of high and low concentrations are more blurred, 
which indicates that the homogeneity of the concentration is slightly increased.  

7. Conclusion 

The influence of an external applied inhomogeneous coaxial magnetic field on element distribution of filler wire 
material in the weld seam during laser beam welding was investigated using a numerical model. It was established 
that both the frequency of the magnetic field and the flux density have an effect on the resulting filler wire material 
distribution and the concentration of alloying elements in the remaining weld seam. The frequency is mainly 
determining the patterning of local concentration resulting in both a periodical patterning and a concentration 
distribution without a specific modulation as well. The flux density defines the absolute value of the induced volume 
forces and seems to have an effect on the homogeneity of the concentration distribution, as well. 
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